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Abstract

Background: Surgical site infection (SSI) continues to be a common and costly complication after surgery. The
current commonly used definitions of SSI were devised more than two decades ago and do not take in to
account more modern technology that could be used to make diagnosis more consistent and precise. Patient-
generated health data (PGHD), including digital imaging, may be able to fulfill this objective.
Methods: The published literature was examined to determine the current state of development in terms of
using digital imaging as an aide to diagnose SSI. This information was used to devise possible methodology that
could be used to integrate digital images to more objectively define SSI, as well as using these data for both
surveillance activities and clinical management.
Results: Digital imaging is a highly promising means to help define and diagnose SSI, particularly in remote
settings. Multiple groups continue to actively study these emerging technologies, however, present methods
remain based generally on subjective rather than objective observations. Although current images may be useful
on a case-by-case basis, similar to physical examination information, integrating imaging in the definition of
SSI to allow more automated diagnosis in the future will require complex image analysis combined with other
available quantified data.
Conclusions: Digital imaging technology, once adequately evolved, should become a cornerstone of the criteria
for both the clinical and surveillance definitions of SSI.
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Statement of the Problem

Surgical site infection (SSI) continues to be a major
cause of morbidity among surgical patients and is as-

sociated with the greatest financial burden among all health-
care–associated infections [1]. Because of this, regulatory
scrutiny related to SSI has become intense in terms of
measuring both process measures and outcomes. In some
situations, financial penalties might be levied upon poor
performers.

Underlying this well-intentioned enthusiasm for decreas-
ing rates of SSI, a fundamental problem exists. The current

gold standard definition of SSI, developed by the U.S. Cen-
ters for Disease Control and Prevention (CDC), is now 27
years old and does not take advantage of new technology,
such as the electronic health record, that could make de-
tecting SSI easier and more consistent [2]. In addition, cur-
rently used schema to diagnose SSI are somewhat subjective,
including the CDC’s: ‘‘Diagnosis.made by a surgeon or
attending physician [2],’’ or certain elements of the numerical
Additional treatment, Serous discharge, Erythema, Purulent
exudate, Separation of the deep tissues, Isolation of bacteria,
and the duration of inpatient Stay (ASEPSIS) scoring system,
such as assigning points for the use of antibiotics to treat
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cellulitis, a subjective intervention [3]. Finally, the ideal
process of having an unbiased, trained observer examine
surgical sites to determine the presence of SSI is impractical
and prohibitively expensive. Instead, many health systems
rely on self-reporting of SSI by surgeons, an approach that is
problematic at best. Because of these vagaries, multiple
definitions of SSI are used, both for clinical care and sur-
veillance purposes [4].

Differentiating Clinical and Surveillance Definitions

Any discussion of definitions of health-care–associated
infections and how modern technology can be leveraged to
improve them must begin with an acknowledgment that
clinical and surveillance SSI definitions, although ideally
identical or similar, are used for different purposes in the
healthcare system. Clinical definitions are formulated to al-
low ideal patient care. Because an SSI in an individual patient
leads to treatment, all patients are dichotomized as having or
not having an SSI, even though there may be uncertainty in
the mind of the treating clinician. The clinical diagnosis of an
SSI also has the advantage of including an almost endless
number of variables in the mind of the healthcare provider: all
available laboratory tests, imaging studies, physical exami-
nation, and how the incision has changed over time. On the
other hand, surveillance definitions must, for efficiency’s
sake, rely on a limited number of data points.

Because the purpose of surveillance is to detect major
changes in disease over time (rather than to treat individual
patients), surveillance definitions of SSI are optimized to
produce data at the population level. As a result, sampling can
be used to estimate rates of SSI in a population. Information
is not necessarily collected from every patient, operation,
surgeon, or subspecialty, introducing some bias to the results.
For example, patients who are lost to follow-up or receive
care at a venue not affiliated with the place of surgery will
yield missing data. These data subsequently must be ex-
trapolated to any unstudied population, and this may result in
inaccuracies. For example, in one hospital an increase in SSI
rates caused by resistant pathogens among colorectal surgery
patients (a heavily studied population) may or may not imply
a similar increase in infections among head and neck surgery
patients (a less studied group).

Furthermore, because of limited resources, surveillance
SSI definitions should be easily applied in a time-efficient
manner and be consistent between observers. Ideally, by re-
ducing subjectivity, they should also decrease the frequency
of intentional or unintentional underreporting based on con-
cerns over financial penalties for SSI. The actual require-
ments for clinical and surveillance definitions of SSI,
therefore, are different, and whether or not clinical and sur-
veillance definitions can ever be identical is far from clear.
Information technology holds the promise of being able to
narrow these differences by introducing new methods of
automated and objective analysis.

Goals for an Ideal SSI Definition Incorporating Imaging

One form of information technology that can rapidly im-
prove clinical care and surveillance of patients with SSIs is
digital image capture and analysis (potentially automated).
Even more intriguing, considering the common availability
of cameras on mobile phones and other devices, is the use of

patient-generated data (images) to help in the diagnosis and
management of SSI. Including imaging and analysis in the
definition SSI should be based on several identifiable goals.
First, an SSI should be identifiable in a patient almost re-
gardless of the patient’s care site or the personnel immedi-
ately available. For example, an SSI should be able to be
diagnosed similarly whether in the surgeon’s office or an
urgent care center. Second, the technology should allow for a
more rapid and accurate clinical diagnosis, in order to speed
care, whether the incision is open or antibiotics started. Si-
milarly, imaging should decrease the frequency with which
patients present to medical care with surgical site concerns, as
long as SSI can be ruled out reliably. Third, from a surveil-
lance perspective, incision imaging should be able to be in-
corporated into surveillance workflow more quickly than
waiting for information derived from physician offices or
clinics. This acceleration of the process should lead to a more
rapid identification of changes in infection rates overall or
outbreaks with specific, targeted pathogens. Finally, high-
quality image analysis incorporating artificial intelligence
should reduce or eliminate the subjectivity in the diagnosis of
SSI based on inspection.

Prior Literature on the Use of Imaging
in the Diagnosis of SSI

With several of the above goals in mind, some investiga-
tors have begun to investigate the use of imaging to diagnose
SSI. Gunter et al. [5] reported on a series of 40 vascular
surgery patients who used their mobile devices to transmit
images of their incisions to investigators. Combined with
questionnaire data, seven surgical site complications were
diagnosed, and patient participation was good.

Although image capture appears practical, without auto-
mated image analysis, one substantial concern is the potential
for variability in diagnosis based on the clinician viewing the
images, i.e., interrater agreement. Van Ramhorst et al. [6]
tested four surgeons, having them analyze incision photo-
graphs to make the diagnosis of SSI. Specificity of diagnosis
was 97%, and k for interrater agreement ranged from 0.43 to
0.76, showing modest to good reliability. Lepelletier et al. [7]
used a vignette-based method including photographs to as-
sess interrater agreement among 20 different specialties.
Although interrater agreement among similar specialists was
reasonable (maximum k of 0.73 for infectious diseases
practitioners), it was poor between specialties, at 0.47 over-
all. Hedrick et al. [8] obtained serial imaging of incisions
after colorectal surgery in 171 subjects. Three attending
surgeons analyzed the images and other data, calculated an
ASEPSIS score [3], and judged the presence or absence of
SSI. Although the overall rates of SSI were somewhat similar
(ranging from 6%–14% between the evaluators), the overall
k statistic was modest at 0.55. Using smartphone digital
images, Wiseman et al. [9] analyzed specific incision char-
acteristics for interrater reliability and found that agreement
was highest for necrosis and dehiscence, but lowest for red-
ness and ecchymosis. The authors found that although the
interrater variability varied between specific incision char-
acteristics, the reliability for determining treatment recom-
mendations was high. Finally, Sanger et al. [10] used
Web-based simulation surveys to query 83 surgeons asking
them to diagnosis SSI based on history and descriptions of the
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incision, then provided them with incision photographs. Al-
though the inclusion of photographs increased the diagnostic
specificity from 77% to 92%, the participant mean diagnostic
accuracy was only 75%, with a wide interquartile range of
66%–92%. Importantly, however, the addition of photo-
graphs dramatically decreased overtreatment including rec-
ommendation for emergency department visit and
prescription of antibiotics.

Imaging as One Component of a Definition

As noted in the previously cited article by Sanger et al.
[10], incision imaging enhances the use of other data points to
diagnose SSI but does not replace them. As such, similar to
other SSI definitions in the past, multiple parameters will be
needed to construct an ideal definition. Potential origins of
these parameters include demographics, medical history
(immunosuppression), surgical history, symptoms, vital
signs, laboratory values, and potentially radiologic imaging
studies. A major consideration when including or excluding
these parameters is the ease with which they can be extracted
from a robust electronic health record. An accurate definition
that relies on easily portable data, such as laboratory values
and demographics, would be preferable to one requiring ei-
ther human, manual, data extraction, or complex analytical
techniques, such as natural language processing of radiology
reports.

Several groups have already analyzed the ability of elec-
tronic health record-derived data to diagnose SSI. Hu et al.
[11] developed several machine-learned models using data
from the electronic health record to predict the likelihood of
SSI. Over a period of 33 months, 6,258 procedures were
performed and 405 SSIs were identified based on National
Surgical Quality Improvement Program (NSQIP) data. The
models built had excellent negative predictive values gen-
erally above 95%. Focusing on patient-generated data, Ma-
cefield et al. [12] used a validated three-phase, iterative
approach to develop a 16-item questionnaire for patients as
part of post-discharge SSI surveillance. The questions are
presented in the patient’s voice and generally assess the in-
cision, need for antibiotics or incision management, and in-
teractions with the healthcare system. This group has further
tested prospectively the questionnaire in nearly 600 patients,
noting an outstanding discrimination for SSI with a receiver
operating characteristic area under the curve C statistic of
0.91 [13]. A key limitation is whether widespread incorpo-
ration of a 16-item questionnaire will be practical outside of a
research setting.

Using Mobile Health and Patient-Generated Health Data
for Image Analysis

Patient-generated health data (PGHD) captured via mobile
health (mHealth) for SSI surveillance presents a novel op-
portunity to leverage the data produced for research. Mobile
health tools for SSI surveillance allow for the collection of
post-operative incision photographs taken by patients after
hospital discharge [14]. The process of turning a digital im-
age (potentially coming from any number of sources) into an
objective piece of data is one key development that is nec-
essary to evolve the definition of SSI into one that both in-
cludes imaging and can be captured from the electronic
health record. Obviously, this will entail complex comput-

erized image analysis, resulting in either an overall assess-
ment of a incision (infected or not), or multiple measures of
discrete incision characteristics (erythema, discharge, sepa-
ration, etc.), or both. The process to build such models is
arduous and will require thousands of images for training,
although such libraries are already in process [15]. However,
once built, such a mechanism could be further trained on an
ongoing basis to refine this variable further.

Ideally a database incorporating a diverse group of images
from a collaborating network of institutions would be formed
for storage and analysis. Diverse photographs/samples are
needed to address inherent analysis biases introduced by
homogeneity of patient populations contributing to the da-
tabase. It is important to capture photographic data on pa-
tients who exhibit normal incision healing, as well as those
who experience complications of incision healing, inclusive
of those who develop SSI (Fig. 1). Production of serial post-
operative incision images via PGHD presents the opportunity
for a large volume of data generation, and the ability to vi-
sualize and analyze incisions over time (Fig. 2). Current
practice in SSI monitoring, based in clinic/hospital settings,
allows for limited data generation, and rarely the production
of serial images. Serial images could impact current under-
standings of the progress of normal versus abnormal post-
operative incision healing and provide more robust and di-
verse training sets for clinicians and researchers.

Additional value of an incision image database lies in the
potential to utilize machine learning and computer vision
methods to create algorithms for SSI surveillance, for ex-
ample, to determine which patients are progressing toward
abnormal incision healing and may be at increased risk of
SSI. Analysis of serial incision photographs could also add to
the knowledge base of what additional criteria may be needed
to assess for SSI using mHealth tools.

Fortunately, image analysis already has precedent in sev-
eral related fields. For example, Landa et al. [16] developed
software to analyze traumatic wound images and characterize
the surface area, granulation, slough, and necrosis in each
wound, testing the program on 20 different wound photo-
graphs. Interrater reliability was highest for surface area
(k= 0.99), followed by granulation (0.76), slough (0.67), and
necrosis (0.22). A similar system could be devised to analyze
characteristics of post-surgical incisions, such as skin edge
apposition, erythema, and discharge. However, a barrier to
mHealth for SSI surveillance is that patients take and submit
photographs using devices of varying quality. Device angle,
lighting, and distance from the wound can all impact the
quality and usability of photos taken. Adequate patient
training will be necessary to ensure high-quality photo-
graphs.

How SSI Definition Information May Be Incorporated
into Clinical Care and Surveillance

With an updated definition of SSI incorporating enhanced
data capture from the electronic health record, PGHD inte-
gration of image capture, and computer image analysis, it is
reasonable to contemplate how a more automated surgical
site assessment could be used. First, especially if an algo-
rithm developed through machine learning is utilized, the
output from such an assessment would yield the probability
of presence of SSI. From a clinical standpoint, scores at the
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extremes would be easy to manage and dichotomized into
‘‘no therapy’’ versus ‘‘intervention’’ (incision opening and/or
antibiotics). Scores in the middle, for example in the 20%–
80% probability of infection range, would doubtlessly gen-
erate management algorithms, probably incorporating some
form of re-evaluation, re-imaging, laboratory studies, or ra-
diologic imaging.

Similarly, scalar rather than dichotomous results would af-
fect how surveillance data are interpreted and used. On the one
hand, all surveillance cases could be dichotomized as infection
yes or no (as is the current practice), based on an agreed-upon
risk such as 90%. Alternatively, a mean SSI risk score could be
calculated for each procedure of interest, and institutional

outcomes compared against this standard. This concept is
similar to that underlying the ASEPSIS score [3], which
measures both presence and severity of infection. For example,
for open colectomy, the mean risk of SSI based on a machine
learned algorithm might be 16%, a figure different than the
percentage of patients treated for SSI. The potential advantage
of this approach would be incisions with more severe stigmata
of infection (higher calculated probability of infection) would
be weighted more heavily than infected incisions with rela-
tively minor findings (lower probability of infection). Cur-
rently for surveillance, other than differentiating between
superficial incisional, deep incisional, and organ/space infec-
tions, all SSI no matter the local severity, are counted the same.

FIG. 2. Patient-generated serial post-operative incision images of the same patient at four subsequent time points (A1–
A4) demonstrating the ability to visualize and analyze incisions over time. Color image is available online.

FIG. 1. Examples of incision images demonstrating diverse photographic data on patients who exhibit normal incision
healing, as well as those who experience complications of incision healing. Patients are labeled A–F with numbers
representing sequential images of the same incision over time. Color image is available online.
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Conclusion

Although current surveillance standards inform clinical
practice, gaps exist between accepted national guidelines
[2,3] and how they are applied in the context of care delivery
[17,18]. These challenges persist for a variety of reasons
including lack of consensus around what criteria are both
sufficient and necessary for diagnosing SSI in the clinical
context, and inconsistent interpretation of those criteria that
may vary by the individual applying them [7,8,19-21].
Definitions of SSI are neither agreed upon uniformly nor
reported consistently across research projects [12,16]. Fur-
thermore, currently available mHealth tools for monitoring
SSI have the potential to transform the definition and sur-
veillance methodology of SSI. Patient incision photographic
data and mHealth should be leveraged to address these issues,
increase the breadth and depth of what is known about sur-
gical incision healing, and inform the development of best
practices and standards for the surveillance and clinical di-
agnosis of SSI.
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