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A B S T R A C T

Background: Clinical management ranges from surveillance or curettage to wide resection for atypical to
higher-grade cartilaginous tumours, respectively. Our aim was to investigate the performance of computed
tomography (CT) radiomics-based machine learning for classification of atypical cartilaginous tumours and
higher-grade chondrosarcomas of long bones.
Methods: One-hundred-twenty patients with histology-proven lesions were retrospectively included. The
training cohort consisted of 84 CT scans from centre 1 (n=55 G1 or atypical cartilaginous tumours; n=29 G2-
G4 chondrosarcomas). The external test cohort consisted of the CT component of 36 positron emission
tomography-CT scans from centre 2 (n=16 G1 or atypical cartilaginous tumours; n=20 G2-G4 chondrosarco-
mas). Bidimensional segmentation was performed on preoperative CT. Radiomic features were extracted.
After dimensionality reduction and class balancing in centre 1, the performance of a machine-learning classi-
fier (LogitBoost) was assessed on the training cohort using 10-fold cross-validation and on the external test
cohort. In centre 2, its performance was compared with preoperative biopsy and an experienced radiologist
using McNemar's test.
Findings: The classifier had 81% (AUC=0.89) and 75% (AUC=0.78) accuracy in identifying the lesions in the
training and external test cohorts, respectively. Specifically, its accuracy in classifying atypical cartilaginous
tumours and higher-grade chondrosarcomas was 84% and 78% in the training cohort, and 81% and 70% in the
external test cohort, respectively. Preoperative biopsy had 64% (AUC=0.66) accuracy (p=0.29). The radiologist
had 81% accuracy (p=0.75).
Interpretation: Machine learning showed good accuracy in classifying atypical and higher-grade cartilaginous
tumours of long bones based on preoperative CT radiomic features.
Funding: ESSR Young Researchers Grant.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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Research in Context

Evidence before this study

To date, radiomic studies have dealt with MRI of cartilaginous
bone lesions with the aim of discriminating among benign
enchondroma, atypical cartilaginous tumour and malignant
chondrosarcoma, predicting local recurrence of chondrosar-
coma and differentiating chondrosarcoma from other entities
such as skull chordoma. Machine learning was used in combi-
nation with radiomics to address some of these issues. Particu-
larly, an adaptive boosting classifier (AdaBoostM1) was a good
predictor of tumour grade based on MRI radiomic features
derived from unenhanced T1-weighted sequences, showing
75% accuracy in the test cohort for classification of atypical car-
tilaginous tumours and chondrosarcomas. This previous study
included 58 patients from the same institution and the
machine-learning classifier was internally tested using a hold-
out set as a test cohort. To our knowledge, no published study
has focused on machine learning and CT radiomics of cartilagi-
nous bone lesions, as done in our study.

Added value of this study

We attempted to differentiate atypical cartilaginous tumours
from chondrosarcomas of long bones, as this is the most rele-
vant clinical question and orientates towards a conservative
approach or aggressive surgery. Our CT radiomics-based
machine-learning classifier (boosted [LogitBoost] linear logistic
regression classifier) achieved 75% accuracy overall, 81% accu-
racy in identifying atypical cartilaginous tumours and 70% accu-
racy in identifying higher-grade chondrosarcomas in the
external test cohort, respectively, with no difference in compar-
ison with an experienced radiologist (p=0.75). These results
agree with those previously reported for tumour grading based
on MRI radiomics. Furthermore, our findings were obtained in
a more than twice larger population and validated in an inde-
pendent test cohort from a second institution, thus ensuring
their generalizability in clinical practice. Finally, although sta-
tistical significance was not reached (p=0.29), the machine-
learning classifier's accuracy was slightly superior compared to
preoperative biopsy. We may speculate that this difference
could become significant in a larger population.

Implications of all the available evidence

Radiomics-based machine learning may potentially aid in pre-
operative tumour characterization by integrating the multidis-
ciplinary approach currently based on clinical, conventional
imaging and histological assessment.
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1. Introduction

Chondrosarcoma accounts for 20 to 30% of primary malignant
bone lesions [1]. Clinical management primarily depends on tumour
grading. Particularly, low-grade (G1) chondrosarcomas of long bones,
recently downgraded from malignant to locally aggressive lesions
and renamed “atypical cartilaginous tumours” [2], are managed with
intralesional curettage or even watchful waiting. Appendicular
higher-grade and axial skeleton chondrosarcomas require wide
resection with free margins [3]. The 10-year overall survival
decreases from 88% for atypical cartilaginous tumour/G1 to 62% and
26% for G2 and G3 chondrosarcoma, respectively [4]. Both imaging
and biopsy integrate clinical information before any treatment is
started [3]. Magnetic resonance imaging (MRI) is the best imaging
modality for local staging [5]. Computed tomography (CT) is used for
biopsy guidance [6] and provides additional information, such as
matrix mineralization and cortex changes [3]. CT and positron emis-
sion tomography-CT (PET-CT) can be both employed for general stag-
ing [3]. Biopsy is considered the reference standard for preoperative
assessment but suffers from the disadvantages of sampling errors [7]
and overlapping histological findings leading to discrepancies even
among expert bone pathologists [8]. Thus, the need for new imaging-
based tools like radiomics is advocated to better characterize cartilag-
inous bone lesions preoperatively [9].

Radiomics includes extraction and analysis of large numbers of
quantitative characteristics, known as radiomic features, from imag-
ing studies [10]. This research field has gained much attention in
oncologic imaging as a potential tool for quantification of tumour
heterogeneity, which is hard to capture with conventional imaging
assessment or sampling biopsies [11]. Most radiomic studies to date
have focused on discriminating tumour grades and types before
treatment, monitoring response to therapy and predicting outcome
[11]. Due to its high-dimensional nature consisting of numerous
radiomic features, radiomics benefits from powerful analytic tools
and artificial intelligence with machine learning perfectly addresses
this issue [12]. Machine learning algorithms can be trained using sub-
sets of radiomic features creating classification models for the diag-
nosis of interest [13�15].

Machine learning has recently shown good accuracy in discrimi-
nating between atypical cartilaginous tumours and higher-grade
bone chondrosarcomas based on unenhanced MRI radiomic features
[16]. The aim of this study is to investigate the diagnostic perfor-
mance of CT radiomics-based machine learning for classification of
atypical cartilaginous tumours and higher-grade chondrosarcomas of
long bones.

2. Methods

2.1. Ethics

Our Institutional Review Board approved this retrospective study
and waived the need for informed consent (Protocol: “AI tumori
MSK”). Our database was anonymized according to the General Data
Protection Regulation for Research Hospitals.

2.2. Study design and inclusion criteria

Information was retrieved through electronic records from the
orthopaedic surgery and pathology departments. Consecutive
patients with an atypical cartilaginous tumour or appendicular chon-
drosarcoma and CT or PET-CT performed over the last 10 years at one
of two tertiary bone tumour centres (centre 1, IRCCS Orthopaedic
Institute Galeazzi in Milan, Italy; centre 2, IRCCS Regina Elena
National Cancer Institute in Rome, Italy) were considered for inclu-
sion. Inclusion criteria were: (i) atypical cartilaginous tumour or con-
ventional G2-G3-G4 (dedifferentiated) chondrosarcoma of long
bones that was surgically treated with intralesional curettage or
resection; (ii) definitive histological diagnosis defined on the basis of
the surgical specimen assessment; (iii) CT (centre 1) or PET-CT (cen-
tre 2) scan performed before biopsy and within 1 month before sur-
gery; and (iv) in centre 2, preoperative biopsy performed within 1
month before surgery. Patients with pathological fractures, secondary
tumours arising from pre-existing cartilaginous lesions, recurrent
tumours or metal devices resulting in beam hardening artifacts were
excluded. A flowchart of patient selection is shown in Fig. 1.

2.3. Study cohorts

One-hundred-twenty patients were retrospectively included. The
training cohort consisted of 84 CT scans by as many patients from



Fig. 1. Flowchart of patient selection. ACT, atypical cartilaginous tumours.

Table 1
Demographics and clinical data. Age is presented as median and interquartile (1st-
3rd) range.

Centre 1 Centre 2

Age 52 (45-65) years 57 (46-69) years
Sex Men: n=30

Women: n=54
Men: n=13

Women: n=23
Lesion location Femur: n=40

Fibula: n=9
Humerus: n=30
Radius: n=1
Tibia: n=4

Femur: n=21
Fibula: n=6
Humerus: n=5
Tibia: n=4

Lesion grading G1: n=55
G2: n=13
G3: n=9
G4 (dedifferentiated): n=7

G1: n=16
G2: n=12
G3: n=3
G4 (dedifferentiated): n=5

Surgery G1/Atypical cartilaginous
tumours
Curettage: n=47
Wide resection: n=8*

G1/Atypical cartilaginous
tumours
Wide resection: n=16*

G2-G4 chondrosarcomas
Curettage + wide resec-
tion: n=5**
Wide resection: n=24

G2-G4 chondrosarcomas
Wide resection: n=20

* Wide resection was performed in n=8 G1/atypical cartilaginous tumours from
centre 1 in case of specific anatomic location (like fibular head) or to prevent the
risk of biopsy sampling errors. It was performed in all cases from centre 2 to pre-
vent the risk of biopsy sampling errors, as per routine procedure.
** Curettage was initially performed in n=5 G2 chondrosarcomas from centre 2,

as preoperative biopsy downgraded the lesions as G1. A second surgery consisting
of wide resection was thus required.
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centre 1 (n=55 G1 or atypical cartilaginous tumours; n=29 G2-G4
chondrosarcomas). The external test cohort was constituted by the
CT component of 36 PET-CT scans by as many patients from centre 2
(n=16 G1 or atypical cartilaginous tumours; n=20 G2-G4 chondrosar-
comas). Patients’ demographics and data regarding lesion location,
grading and surgical treatment are detailed in Table 1. In centre 1, all
examinations were performed using a 64-slice CT unit (Siemens
SOMATOM Emotion, Erlangen, Germany). CT specifications were:
matrix, 512 £ 512; field of view (range), 138-380 mm; slice thick-
ness, 1 mm. In centre 2, all examinations were performed using a 16-
slice PET-CT unit (Siemens Biograph, Erlangen, Germany). PET-CT
specifications were: matrix, 512 £ 512; field of view, 500 mm; slice
thickness, 4 mm. All DICOM images were exported and converted to
the NiFTI format prior to the analysis [17].
2.4. Segmentation

A recently-boarded musculoskeletal radiologist (S.G.) manually
performed contour-focused segmentation using a freely available,
open-source software, ITK-SNAP (v3.6) [18]. In detail, bidimensional
regions of interest were annotated on the axial slice showing the
maximum lesion extension. Unenhanced CT scan or CT scan per-
formed as part of PET-CT protocol was used. According to the intra-
class correlation coefficient (ICC) guidelines by Koo et al. [19], in a
subgroup of 30 patients randomly selected from centre 1, segmenta-
tions were additionally performed independently by two radiology
residents experienced in musculoskeletal and oncologic imaging
(M.A. and A.C.) to meet the requirements of a reliability analysis in
terms of patients and readers involved. All the readers knew the
study would deal with cartilaginous bone lesions, but they were
unaware of tumour grading and disease course, as well as the slice
other readers used for segmentation.
2.5. Feature extraction

Image preprocessing and feature extraction were performed using
PyRadiomics (v3.0.0) [20]. Regarding preprocessing, image



Fig. 2. Radiomics-based machine learning workflow pipeline.
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resampling (to an 1 £ 1 mm in-plane resolution) was performed to
ensure the correct calculation of texture features, following current
guidelines [21]. Grey level normalization and discretization followed.
For the first, after z-score normalization, grey level values were
scaled by a factor of 100. The resulting arrays were shifted by a value
of 300 to avoid negative-valued pixels that could cause issues with
texture analysis. After this process, the final image grey level range is
expected to fall between 0 and 600, excluding outliers. To select the
correct bin width for discretization, an exploratory extraction of first
order parameters (i.e., grey level range) was performed exclusively
on the training set, to avoid any information leak from the external
test cohort. In this step, bin widths 2, 3, 4 and 5 were used to analyse
grey level range of the normalized images. In addition to the original
images, features were also extracted from filtered ones, i.e. after Lap-
lacian of Gaussian (sigma=1, 2, 3, 4, 5) filtering and wavelet decompo-
sition (all combinations of high and low-pass filtering on the x and y
axes). All available first-order (histogram analysis), 2D shape-based
and texture features were extracted, described in detail in the PyRa-
diomics official documentation (https://pyradiomics.readthedocs.io/
en/latest/features.html).
2.6. Machine learning analysis

Radiomic data processing and machine learning analysis were
performed using the Weka data mining platform (v3.8.4), R and sci-
kit-learn Python package [22�24]. A normalization (min-max
range=0-1) scaler was fitted on the training data and applied to both
training and external test cohorts prior to the analysis. Feature selec-
tion was performed exclusively using the training cohort data and
included stability assessment as well as variance and intercorrelation
analyses. The first was performed by obtaining feature ICC with a
two-way random effect, single rater, absolute agreement model. Fea-
tures were considered stable if the ICC 95% confidence interval lower
bound was �0.75. Next, low variance (0.15 threshold) or highly
inter-correlated (Pearson correlation coefficient threshold 0.80) fea-
tures were removed. Finally, features with an information gain ratio
>0.35 were selected.

Given the unbalanced nature of the training dataset, the synthetic
minority oversampling technique (SMOTE) was used to balance this
data by creating new instances from the minority class in centre 1,
thus increasing the number of G2-G4 chondrosarcomas to 55 [25].
The test set underwent no oversampling as it was not employed to
build the classification model but only to assess its performance.
Thereafter, a boosted (LogitBoost) linear logistic regression machine-
learning classifier was trained and validated on the training cohort
using 10-fold cross validation and tested on the external cohort. The
Brier score was obtained, together with calibration curves, for the
external test set in order to evaluate prediction and calibration loss.
Our radiomics-based machine-learning workflow pipeline is shown
in Fig. 2.

2.7. Qualitative imaging assessment

A musculoskeletal radiologist with 12 years of experience in bone
sarcomas (V.A.) read all CT studies from centre 2 blinded to any infor-
mation regarding tumour grading, disease course and radiomics-
based machine learning analysis. G2-G4 chondrosarcomas were dif-
ferentiated from atypical cartilaginous tumours based on the pres-
ence of at least one of the following parameters: medullary cavity
expansion with thinner cortex, cortical breakthrough, aggressive
periosteal reaction, soft-tissue mass [5,26]. Additionally, maximum
lesion diameter was measured.

2.8. Statistical analysis

Continuous data are presented as median and interquartile (1st-
3rd) range. Categorical data are presented as value counts and propor-
tions. Data management was performed using the pandas Python
software package. The “irr” and “stats” R packages were used for ICC
assessment and remaining statistical tests, respectively. In the exter-
nal test cohort, the classifier's performance was compared with pre-
operative biopsy and the radiologist's performance using McNemar's
test. Mann-Whitney and Fisher's tests were used to assess age and
sex differences between the two cohorts. A 2-sided p-value <0.05
indicated statistical significance.

Accuracy measures of the machine-learning classifier perfor-
mance included, among others:

� F-score, i.e. the harmonic average of the precision (i.e. positive
predictive value) and recall (i.e. sensitivity), ranging from 0 to 1
(perfect accuracy)

� Area under the precision-recall curve, i.e. an alternative to the
area under the ROC curve, which is more informative for imbal-
anced classes.

A radiologist with experience in radiomics and artificial intelli-
gence (R.C.) assessed Radiomics Quality Score in the attempt to esti-
mate the methodological rigor of our study, as suggested by Lambin
et al. [27].

2.9. Role of funding source

This research was partially funded by the Young Researchers
Grant awarded by the European Society of Musculoskeletal Radiology
(S.G.). The funding source provided financial support without any

https://pyradiomics.readthedocs.io/en/latest/features.html
https://pyradiomics.readthedocs.io/en/latest/features.html


Fig. 3. Feature dimensionality reduction. A Feature selection process was performed exclusively using the training cohort data and included stability assessment as well as variance
and intercorrelation analyses. The rate of stable features was 30% (n=275), none of which had low variance. Removing all inter-correlated features yielded a dataset of 26 non-colin-
ear features. B The five features with the highest gain ratio were selected and included.
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influence on the study design; on the collection, analysis, and inter-
pretation of data; and on the writing of the report. The corresponding
and senior (last) authors had the final responsibility for the decision
to submit the paper for publication.
3. Results

No difference in patients’ age (p=0.25 [Mann-Whitney test]) and
sex (p>0.99 [Fisher's test]) was found between the training and the



Table 2
Confusion matrix for the training and external test cohorts.

Predicted class

ACT CS

Actual class Training ACT 46 9
CS 12 43

External test ACT 13 3
CS 6 14

ACT, atypical cartilaginous tumour; CS, higher-grade
chondrosarcoma.

Fig. 4. ROC curve showing the classifier performance in the external test cohort.

Fig. 5. Precision-recall curve illustrating the classifier performance for G2-G4 chondro-
sarcoma identification in the external test cohort.
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external test cohorts. In our population, a bin width value of 3 pre-
sented the best results for feature extraction, with an average of 59
bins (§ 30) in the training set. A total of 919 radiomic features were
extracted from each segmentation. The rate of stable features was
30% (n=275), none of which had low variance. Removing all inter-cor-
related features yielded a dataset of 26 non-colinear features. Of
these, the five with the highest gain ratio were selected and included:
Major Axis Length (2D shape-based) derived from the original
images; Contrast (Neighbouring Gray Tone Difference Matrix)
derived from wavelet-transformed images (Low-High pass filter);
Short Run Low Gray Level Emphasis (Gray Level Run Length Matrix)
from LoG-filtered images (sigma=5); Difference Entropy (Gray Level
Co-occurrence Matrix) from the original images; Inverse Difference
Moment (Gray Level Co-occurrence Matrix) derived from LoG-fil-
tered images (sigma=2). Feature dimensionality reduction is shown
in Fig. 3.

The machine learning classifier had 81% (89/110) and 75% (27/36)
accuracy in identifying the cartilaginous bone lesions in the training
and external test cohorts, respectively. Area under the ROC curve
was, respectively, 0.89 and 0.78. In detail, its accuracy in classifying
atypical cartilaginous tumour and higher-grade chondrosarcoma was
84% (46/55) and 78% (43/55) in the training cohort, and 81% (13/16)
and 70% (14/20) in the external test cohort, respectively. Other evalu-
ation metrics are derived from confusion matrix in Table 2 and
reported in Table 3. Fig. 4 shows the ROC curve illustrating the classi-
fier performance in the external test cohort. Fig. 5 shows the preci-
sion-recall curve illustrating the classifier performance for G2-G4
chondrosarcoma identification in the external test cohort. The final
model had a Brier score of 0.25, while Fig. 6 depicts its calibration
curve in the external test cohort. Our Radiomics Quality Score was
47% (Supplementary material).

In patients from centre 2, preoperative biopsy had 64% (23/36 cor-
rect tumour grade provided) accuracy in grading the cartilaginous
bone lesions. Area under the ROC curve was 0.66. Preoperative biopsy
provided an inconclusive result (n=5) or downgraded the lesion (n=8)
in the remaining patients. Biopsy accuracy was slightly lower in com-
parison with the machine-learning classifier's accuracy, although this
difference was not statistically significant (p=0.29 [McNemar's test]).
The experienced radiologist had 81% (29/36 correct diagnosis pro-
vided) accuracy in identifying the cartilaginous bone lesions with no
statistical difference compared to the classifier (p=0.75 [McNemar's
Table 3
Classifier accuracy metrics weighted average and by cl

Cohort Class TP rate FP rate Pre

Training ACT 0.836 0.218 0.7
CS 0.782 0.164 0.8
WA 0.809 0.191 0.8

External test ACT 0.813 0.300 0.6
CS 0.700 0.188 0.8
WA 0.750 0.238 0.7

ACT, atypical cartilaginous tumour; CS, higher-grade
sion-recall curve; ROC, receiver operator curve; TP, tru
test]). The radiologist's accuracy was 75% (4/16) and 85% (17/20) in
classifying atypical cartilaginous tumours and higher-grade chondro-
sarcomas, respectively, as detailed in Table 4.

4. Discussion

The main finding of this study is that we developed a machine-
learning classifier for discrimination between atypical cartilaginous
tumours and higher-grade chondrosarcomas of long bones based on
preoperative CT radiomic features, which achieved good accuracy in
an independent test cohort from an external institution. Its perfor-
mance did not differ in comparison with both an experienced bone
tumour radiologist and preoperative biopsy.

Atypical cartilaginous tumours are locally aggressive lesions of the
extremities, relatively indolent as compared with higher-grade
ass in both the training and external test cohorts.

cision Recall F-score ROC PRC

93 0.836 0.814 0.891 0.876
27 0.782 0.804 0.891 0.915
10 0.809 0.809 0.891 0.895
84 0.813 0.743 0.784 0.661
24 0.700 0.757 0.784 0.857
62 0.750 0.751 0.784 0.770

chondrosarcoma; FP, false positive; PRC, preci-
e positive; WA, weighted average.



Fig. 6. Calibration curve in the external test cohort. The data is divided into bins, with the y-axis representing the distribution of positive cases in each bin while the x-axis the prob-
ability as predicted by the classifier. The closer the resulting calibration curve is to the reference line. the better the model's predictions reflect the actual class distribution in the
dataset.

Table 4
Qualitative imaging assessment performed by the experienced radiologist. Lesion diameter is presented as median and interquartile (1st-3rd) range.
Other variables are presented as proportions.

Class Bone expansion Cortical breakthrough Aggressive periostitis Soft-tissue mass Maximum diameter Correct diagnosis

ACT 1/16 3/16 1/16 0/16 45 (31-54) mm 12/16
CS 13/20 16/20 14/20 13/20 91 (59-124) mm 17/20
Overall 14/36 19/36 15/36 13/36 60 (42-100) mm 29/36

ACT, atypical cartilaginous tumour; CS, higher-grade chondrosarcoma
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tumours, and have a very low metastatic rate [2]. Curettage is the
standard of care [3], but its effectiveness in preventing transforma-
tion into higher-grade chondrosarcoma has not been demonstrated.
Hence, given the similarity to benign enchondroma on both imaging
[28] and histology [8], watchful waiting has been proposed as an
alternative strategy to prevent overtreatment and morbidity associ-
ated with surgery [29�31]. An accurate differentiation from higher-
grade chondrosarcomas requiring wide resection is thus necessary
for treatment planning, and currently based on a multidisciplinary
approach combining clinical presentation with imaging and biopsy
[3]. On imaging, MRI is the method of choice for local staging, while
CT and PET-CT are employed for general staging [3]. Both MRI [5] and
PET-CT based on standard uptake values [32] are accurate in discrimi-
nating between atypical cartilaginous tumours and chondrosarco-
mas. On the other hand, biopsy may erroneously lead to tumour
down-grading in large heterogenous lesions, as only small areas are
sampled [7]. Additionally, low reliability in tumour grading has been
reported even among specialized bone pathologists [8] and the risk
of biopsy-tract contamination also remains a concern. Thus, current
imaging techniques may be further equipped to safely grade cartilagi-
nous bone lesions non-invasively, and radiomics looks promising in
this regard [9].

To date, radiomic studies have dealt with MRI of cartilaginous
bone lesions with the aim of discriminating among benign enchon-
droma, atypical cartilaginous tumour and malignant chondrosar-
coma [16,33,34], predicting local recurrence of chondrosarcoma
[35] and differentiating chondrosarcoma from other entities such as
skull chordoma [36]. Machine learning was used in combination
with radiomics to address some of these issues [16,35,36]. Particu-
larly, machine learning was a good predictor of tumour grade based
on MRI radiomic features derived from unenhanced T1-weighted
sequences, showing 75% accuracy in the test cohort for classification
of atypical cartilaginous tumours and chondrosarcomas [16]. This
previous study included 58 patients from the same institution and
the machine-learning classifier was internally tested using a hold-
out set as a test cohort [16]. To our knowledge, no published study
has focused on machine learning and CT radiomics of cartilaginous
bone lesions, as done in this study. We attempted to differentiate
atypical cartilaginous tumours from chondrosarcomas of long
bones, as this is the most relevant clinical question and orientates
towards a conservative approach or aggressive surgery. Our
machine-learning classifier achieved 75% accuracy overall, 81%
accuracy in identifying atypical cartilaginous tumours and 70% accu-
racy in identifying higher-grade chondrosarcomas in the external
test cohort, respectively, with no difference compared to a dedi-
cated radiologist with 12 years of experience in bone sarcomas
(p=0.75 [McNemar's test]). These results agree with those previ-
ously reported for tumour grading based on MRI radiomics [16].
Furthermore, our findings were obtained in a more than twice larger
population and validated in an independent test cohort from a sec-
ond institution, thus ensuring their generalizability in clinical prac-
tice. Finally, although statistical significance was not reached
(p=0.29 [McNemar's test]), the machine-learning classifier's accu-
racy was slightly superior compared to preoperative biopsy. We
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may speculate that this difference could become significant in a
larger population.

Some limitations of our study need to be taken into account. First,
our study is retrospective, as this design allowed including relatively
large numbers of patients with an uncommon disease, such as chon-
drosarcoma, and imaging data already available. Additionally, a pro-
spective analysis is not strictly needed for radiomic studies [13].
Second, we performed bidimensional segmentation and chose the
image showing the maximum lesion extension. This decision was
taken according to a recent study emphasizing that bidimensional
segmentation yields better performance than volumetric approach
[37], which would also be time-consuming in clinical practice. Third,
feature stability was assessed by 3 readers only in a subgroup of 30
patients randomly selected from the training cohort, as 3 observers
and 30 samples are the minimum numerical requirements for a reli-
ability analysis according to the ICC guidelines by Koo et al. [19].
Fourth, atypical cartilaginous tumours were twice more numerous
than higher-grade chondrosarcomas in the training cohort. However,
an imbalance of 2/3 is acceptable in machine-learning studies [38]
and SMOTE was used to artificially oversample the minority class in
the training cohort [25]. Fifth, the training and external test cohorts
respectively included CT scans and the CT portion of combined PET-
CT scans with different acquisition parameters. Nonetheless, this is a
further point in favour of the reliability of our findings, as the classi-
fier performed well in both cohorts of patients. Sixth, only non-con-
trast CT was used in this study. However, contrast-enhanced CT was
not available in patients from centre 2, as PET-CT was used. It was
available only for a limited number of patients from centre 1, where
preoperative assessment routinely included both CT and contrast-
enhanced MRI; contrast was also administered before CT according
to need, mainly to assess tumour-vessel relationships in case of high-
grade chondrosarcoma. Our findings open the possibility for future
studies to shed light on the value of contrast-enhanced CT radiomics
and machine-learning assessment of cartilaginous bone tumours.

In conclusion, our machine-learning classifier showed good accu-
racy in differentiating atypical cartilaginous tumours from higher-
grade chondrosarcomas of long bones based on radiomic features
derived from preoperative CT scans. Our large population of study
relative to such an uncommon disease, along with the good perfor-
mance achieved in an independent cohort of patients from an exter-
nal institution, supports the generalizability of our findings and their
transferability into clinical practice. Our method may potentially aid
in preoperative tumour characterization by integrating the multidis-
ciplinary approach currently based on clinical, conventional imaging
and histological assessment. Future investigations with prospective
design are warranted to further validate our findings.
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