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The frequency of adaptive evolution acting on common loci in distant lineages remains an outstanding question in
evolutionary biology. We asked whether the immunity factor, Relish, a gene with a history of directional selection in
Drosophila simulans, shows evidence of a similar selective history in other Drosophila species. We found only weak evidence of
recurrent adaptive protein evolution at the Relish locus in three sister species pairs, suggesting that this key component of the
insect immune system has an idiosyncratic evolutionary history in Drosophila.
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INTRODUCTION
Convergent phenotypic evolution, which results from similar

selection pressures in independent lineages, is a common, undisputed

property of animal and plant evolution. The frequency of convergent

adaptive molecular evolution, however, remains an open question.

Convergent adaptive molecular variants may include both amino

acid polymorphism [1–6] and amino acid divergence [7–9]. The

relatively few examples of such convergent changes are based largely

on molecular and functional analysis of proteins with well-defined

structures and functions; consequently, the inference of convergent

adaptive polymorphism or divergence allows plausible arguments to

be made regarding the phenotypic adaptive effects of particular

mutations in different lineages. Most gene products are not

understood sufficiently well to use such an approach.

An alternative, statistical approach is to use molecular population

genetic data to ask whether directional selection is repeatable over

evolutionary time. For example, the McDonald-Kreitman test [10],

which uses contrasts of polymorphic and fixed variants to test the

neutral model of molecular evolution, requires no knowledge of

protein structure or specific functions of residues or domains. This

allows one to ask the general question of whether a gene with

a history of recurrent adaptive protein evolution in one species is

likely to have a similar selective history in other species; that is, is

directional selection idiosyncratic or predictable? For example, the

Drosophila seminal fluid protein gene Acp26Aa was first inferred to

have a history of recurrent adaptive protein evolution in the

melanogaster subgroup [11]. Acp26Aa was later shown to be under such

selection in the obscura group of Drosophila [12], which diverged from

the melanogaster subgroup tens of millions of years ago.

The Drosophila innate immune system transcription factor, Relish,

is a potentially interesting gene for addressing the question of

predictable versus idiosyncratic directional selection. Previous

studies demonstrate that the innate immune system, a highly

conserved pathway from insects to humans, is vulnerable to

signaling disruption by both bacterial and viral pathogens.

Moreover, Relish activation and/or signaling repeatedly emerges

as a pathogen target. In a vertebrate system, Neish et al. [13]

demonstrate that Yersina bacteria disrupts phosphorylation of the

human Relish homolog, NF-kB. In an insect system (Drosophila

melanogaster), Lindmark et al. [14] and Thoetkiattikul et al. [15]

demonstrate Relish signaling disruption by various bacteria and

a polydnavirus, respectively.

Compromised immune response in the presence of these

pathogens, combined with documented Relish-pathogen interac-

tions, makes this locus a likely target for repeated host-pathogen

evolutionary interactions in distantly related taxa. Nevertheless,

population genetic data for the Relish locus provided strong

evidence of adaptive divergence in D. simulans, but no evidence of

adaptive divergence in D. melanogaster [16]. Similarly, the termite

Relish locus appears to be rapidly evolving in a subset of lineages

[17]. Although Relish likely contributes to immune function in all

species examined, the evolutionary dynamics associated with this

locus are dramatically different across lineages. To further

investigate the repeatability of directional selection at this locus in

Drosophila, we characterized the evolutionary forces acting on Relish

across three highly diverged sister species-pairs, D. mojavensis/D.

arizonae, D. yakuba/D. teissieri, and D. pseudoobscura/D. miranda.

RESULTS AND DISCUSSION
Levels of synonymous and nonsynonymous polymorphism at Relish

(Table 1) were consistent with previous descriptions Drosophila

mojavensis/D. arizonae [18], whereas lower than expected levels of

variation were estimated for D. yakuba [19] and D. pseudoobscura [20].

Levels of Relish synonymous divergence in these species pairs were

typical of those estimated at other genes. Levels of non-synonymous

divergence (scaled to synonymous divergence), however, were highly

heterogeneous across species, suggesting the protein evolutionary

rates vary due to heterogeneous selection regimes (Table 1).

We used the McDonald-Kreitman test to determine whether

synonymous and non-synonymous variation at Relish supports the

hypothesis of adaptive protein evolution. All three species pairs

failed to reject the null hypothesis of neutral evolution (Table 2).

The D. simulans/D. melanogaster species pair is the only one

associated with evidence of adaptive protein evolution at Relish

[16].
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Low levels of polymorphism at Relish in D. yakuba and D.

pseudoobscura could be due to recent, strong directional selection at

Relish or at linked sites. We used the HKA test [21] to determine

whether the polymorphism-to-divergence ratios at Relish were

unusual compared to those from the putatively neutral loci Xdh in

D. yakuba/D. teissieri, (J. Comeron pers. comm.) and Adh in D.

pseudoobscura/D. miranda [22]. Only the D. yakuba/D. teissieri data

rejected the null (x2 = 6.39, p = 0.01), which is consistent with

linked selection in this region of the D. yakuba genome. The Relish

gene is near the middle of chromosome arm 3R in D. yakuba (D.

yakuba genome assembly, v2), which suggests that this result is not

due to sampling a large region of reduced polymorphism near

centromeres and telomeres [23]. Further analysis of the regions

flanking Relish is necessary to determine the extent of reduced

polymorphism in this genomic region.

The Relish population genetic data from three, distantly related,

Drosophila species pairs generally supports the idea that Relish

evolution in the D. melanogaster/D. simulans pair is highly unusual.

Previous analyses of D. melanogaster/D. simulans suggest that

evidence of strong directional selection at Relish is most likely

a D. simulans-lineage phenomenon [16]. This finding raises the

interesting question of what D. simulans-specific biological or

historical attributes caused the highly unusual history of a key

component of the insect immune system.

METHODS
Population samples of Relish were sequenced from inbred lines of

D. yakuba (P. Andolfatto), D. tessieri (M. Long), D. mojavensis (W.

Etges and Tucson Stock Center), D. arizonae (W. Etges), D.

pseudobscura (M. Noor), D. miranda (Tucson Stock Center). Most

data were obtained by direct sequencing. For the few lines with

residual heterozygosity, PCR products were cloned in PCR-4

vector (Topo TA cloning kit, Invitrogen) and individual colonies

were sequenced. Population genetic estimators and tests statistics

were calculated in DnaSP v.4.0 (Rozas et al. 2003). Sequence data

for this paper have been submitted to Genbank under accession

numbers EF494515-EF494539.
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Table 1. Polymorphism and divergence for all species
examined as well as previously published estimates for D.
melanogaster and D. simulans.
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Polymorphism

Species # lines #sites p (syn.) p (nonsyn.)

D. melanogaster 6 2801 0.036 0.022
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D. miranda 1 2191 n/a n/a

Divergence

Species Pair Ks* Ka* Ka/Ks

D. mel/D. sim 0.099 0.052 0.53

D. yak/D. teiss 0.088 0.0044 0.05

D. moj/D. ariz 0.062 0.0064 0.10

D. pseudo/D. mir 0.057 0.017 0.30

*Ka and Ks refer to the nonsynonymous and synonymous substitution rates,
respectively.

doi:10.1371/journal.pone.0000442.t001
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Table 2. McDonald-Kreitman tests of Relish variation for four
species pairs.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Synonymous Nonsynonymous

Species Fixed Polymorphic Fixed Polymorphic G (p-value)

D. yak/D. teiss 28 50 5 7 0.15 (0.70)

D. pse/D. mir 24 7 24 3 1.37 (0.24)

D. moj/D. ariz 14 44 7 13 0.86 (0.35)

aD. mel/D. sim 40 41 89 10 37.5 (,1024)

a[16]
doi:10.1371/journal.pone.0000442.t002..
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