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This work presents a method for solving an Adaptive Susceptible-Infected-Removed (A-
SIR) epidemic model with time-dependent transmission and removal rates. Available
COVID-19 data as of March 2021 are used for identifying the rates from an inverse prob-
lem. The estimated rates are used to solve the adaptive SIR system for the spread of the
infectious disease. This method simultaneously solves the problem for the time-dependent
rates and the unknown functions of the A-SIR system. Presented results show the spread of
COVID-19 in the World, Argentina, Brazil, Colombia, Dominican Republic, and Honduras.
Comparisons of the reported affected by the disease individuals from the available real
data and the values obtained with the A-SIR model demonstrate how well the model
simulates the dynamic of the infectious disease.

© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The spread of epidemic diseases has attracted attention for centuries, due to the importance of predicting their dynamics
(Allman & Rhodes, 2003; Anderson & May 1991; Bauch et al., 2003; Bellomo & Preziosi, 1995; Diekmann & Heesterbeek,
2000). For example, Daniel Bernoulli analyzed smallpox morbidity in 1766, according to (Hethcote, 2000). Common infec-
tious diseases include measles, malaria, varicella, HIV, Ebola, and SARS. There is no vaccination for some of the infectious
diseases; however, there exist preventive practices for many of them, see (Kabir, Kuga, & Tanimo, 2019). The purpose of the
developed mathematical models is to predict the future of the epidemic spread. Simulation results assist governments in
making decisions on how to deal with the disease (Jin & Jia, 2020). It must be noted that mathematical models have limi-
tations because theywork under certain assumptions. For example, the reported COVID-19 epidemic data does not include all
infectious cases. Decisions on governmental restrictions and vaccinations cannot sometimes be known and predicted.

The SIR (SusceptibleseInfectedeRecovered) model origins can be traced back to the work of Kermack and McKendrick
(Kermack&McKendrick,1927) in 1921. This theory attempts to explain the rapid rise and fall in the number of infected people
with a contagious illness in a closed population over time. This model is the basis of all current modeling of the dynamics and
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evolution of infectious diseases (Azam et al., 2020; Murray, 1993; Smith & Moore, 2004; Takeuchi, Iwasa, & Sato, 2007;
Tanimoto, 2015, 2018; Tarantola, 2005).

There exist other models considering additional events and features, such as latent period, vaccine effect, reinfection, non-
constant population, etc. For example, the SEIR (E stands for exposed) model is successfully used for COVID-19 dynamics
prediction in (Kabir & Tanimo, 2020). Other models include SIUR (U stands for unreported cases), but not limited to, used in
Liu and collaborators (Liu, Magal, Seydi, & Webb, 2020, Liu, Magal, & Webb, 2021). This model is used for predicting the
number of reported and unreported cases for the COVID-19 epidemics in several countries. There is a number of recent
publications on COVID-19 aiming to provide insight and understanding the trends of the disease (Ajbar, Alqahtani, &
Boumaza, 2021; Griette, Magal, & Seydi, 2020; Griette & Magal, 2021; Kucharski, Russell, & Diamond, 2020; Li et al., 2020;
Lin et al., 2020; Lobo et al., 2020; Nishiura, Linton, & Akhmetzhanov, 2020; Pereira, Schimit, & Bezerra, 2021; Roosa et al.,
2020; Shereen, Khan, Kazmi, Bashir, & Siddique, 2020; Wacker & Schlüter, 2020).

The SIR model is a highly nonlinear dynamical system, particularly so in the case of COVID-19, due to its diverse char-
acteristics. The rates of transmission and removal in the case of the COVID-19 depend on the evolution of the epidemic disease
over time, see (Acedo, Morano, Santonja, & Villanueva, 2016; Liu, Wei, & Zhang, 2019). Every new epidemics must be studied
and mathematical models constructed to answer important questions on handling the disease (Coronel, Huancas, &
Sepúlveda, 2019). A method for the identification of the time-dependent transmission rate is proposed and used by other
researchers, see the recent work (Demongeot, Griette, & Magal, 2020).

Recovering coefficients and other parameters in differential equations from overposed data is an example of inverse
problem. In general, a problem is inverse if the values of some model parameter(s) must be obtained from the observed data.
The definition of inverse problem involving differential equation(s), according to (Bellomo & Preziosi, 1995), is: “An initial-
boundary-value problem is inverse if some information on the initial and/or boundary conditions needed for solution or/
and on the parameters that characterize themodel are missing and are replaced by suitable information on the solution of the
mathematical problem.”

Part of the inverse problems are so-called parameter identification problems: adjusting the parameters to reproduce
measured data. Since the number of infected and recovered persons always include random errors, a method for smoothing
the data in order to evade the instability provoked by the pollution of the data was introduced in (Marinov, Marinova,
Omojola, & Jackson, 2014) and later modified in (Marinov & Marinova, 2020). The idea of the method is to replace the
incorrect problem with a well-posed problem for minimization of quadratic functional of the original equations. This way of
identifying the unknown coefficients employs the values of infected and recovered persons, avoiding any statistical methods
or artificial assumption about parameters of the model.

The present work utilizes a novel inverse problem approach to the time-dependent transmission and removal rates
identification in the A-SIR (Adaptive SIR) model. The spread of the epidemics can be predicted by using the estimated
parameter values to solve the A-SIR system and obtain the dynamics of the infectious disease spread. If conditions change,
then the predictions may no longer be accurate; hence, adjustments will be required. We apply the method for the A-SIR
model to investigate the COVID-19 epidemic for countries in Latin America. This gives insight into how well the method
simulates the spread.
2. The A-SIR model for the spread of an infectious disease

The SIR model for the spread of an infectious disease was proposed by Kermack and McKendrick (Kermack&McKendrick,
1927). SIR stands for Susceptible, Infectious and Recovered. Numbers in each group are functions of time denoted by: S(t) e
susceptiblewho can catch the disease, I(t)e infectiveswho have the disease and can transmit it, and R(t)e removed individuals
who have either had the disease, or are recovered, immune or isolated until recovered. The SIR model assumes that the
removed individuals are no longer susceptible nor infectious. The total population N¼ S(t)þ I(t)þ R(t) is considered constant
in the classical model.

Specific details on the SIR model can be found in (Murray, 1993) where the classical model assumes that the rates are
constants. The rate of change of S(t) is � bS(t)I(t), where b > 0. The infectious individuals leave I(t) with rate g and they move
directly into the R(t) group. The number of cases for recovered from COVID-19 individuals who are re-infected at the present
moment is very limited and the rate cannot be estimated; thus, this possibility in not taken into account.

However, in the case of a pandemic, the ratesmay vary in time. Multiple factors may cause the rates to change over time. In
the case of COVID-19, examples include social distancing, restrictions imposed by governments, and preventive treatments. In
this work, the model considers time-dependent rates, namely b ¼ b(t) and g ¼ g(t). The adaptive SIR model for the
Susceptible-Infected-Removed (Marinov&Marinova, 2020; dos Santos, Almeida,& deMoura, 2021), called here A-SIRmodel.
A-SIR is a variation of the SIR model, consisting of the following three equations:

dSðtÞ
dt

¼ �bðtÞSðtÞIðtÞ (1)

dIðtÞ

dt

¼ bðtÞSðtÞIðtÞ � gðtÞIðtÞ (2)
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dRðtÞ
dt

¼ gðtÞIðtÞ: (3)

Fig. 1 shows the diagram for the A-SIR model, corresponding to the system of equations (1)e(3).

A fundamental question is under what circumstances an epidemic occurs. This happens when the rate of change IðtÞ

dt of the
class I(t) is positive, i.e., the right-hand side of equation (2) satisfies b(t)S(t)I(t) � g(t)I(t) > 0, which is equivalent to

ReðtÞ ¼ bðtÞSðtÞ
gðtÞ >1: (4)
The parameter Re(t) is called effective reproduction number (or effective reproduction rate or ratio) for a given disease. An
epidemic occurs if an infective individual introduced into a population of susceptible individuals S(t) infects on average more
than one other person. When the fraction of the population that is immune increases (because of vaccination or because of
recovering from the disease) so that Re(t) < 1, then herd immunity takes place and the number of new cases in the population
decreases to zero.

Another important characteristic is the basic reproduction number (ratio, rate) R0(t), which is the ratio of the rates b(t) and
g(t) over time multiplied by the size of the total population N:

R0ðtÞ ¼
bðtÞ N
gðtÞ , (5)
Normally, the basic reproduction number R0 is a constant. However, in the case of COVID-19, it depends on other factors,
such as restrictions introduced by governments and societal behaviour. For this reason, we consider the basic reproduction
number as a function of time.

The initial-value problem consisting of the system (1)e(3), with coefficients b(t) and g(t) known, along with initial
conditions derived from the given data, constitutes the direct problem. The inverse problem consists of determining the
coefficients from the available data.

3. The inverse problem for the time-dependent rates and unknown functions

Let us assume that the values of S(t) and I(t) are known from the available data at two time moments, namely an initial
time moment t ¼ TI and a final time moment t ¼ TF,

SðTIÞ ¼ SI ; IðTIÞ ¼ II ; (6)

SðTF Þ ¼ SF ; IðTF Þ ¼ IF : (7)
The original SIRmodel assumes that the transmission and removal rates are constants. Equations (1) and (2), and the initial
conditions (6) allow the determination of I(t) and S(t), if the coefficients b and g are known constants. In this case, the terminal
conditions (7) may not be satisfied exactly, because the problem becomes overdetermined. A method for solving the inverse
problem for the classical SIR model is presented in (Marinov et al., 2014), where it is assumed that the problem is correctly
posed according to Tikhonov (Tikhonov & Arsenin, 1974).

The inverse problem approach to solving the adaptive SIR model (A-SIR) considers the time-dependent transmission and
removal rates as piece-wise constant (step) functions of time

bðtÞ ¼ bk and gðtÞ ¼ gk for tk�1 < t < tk: (8)
A dataset of values at given time moments t1, t2, …is assumed to be available: D ¼ {(S(tk), I(tk)), k ¼ 1, 2, …}.
Then, the constants bk and gk can be estimated by solving the inverse sub-problems (1), (2), (6), (7) given that SI ¼ S(tk�1),

SF ¼ S(tk), II ¼ I(tk�1), and IF ¼ I(tk), for k ¼ 2, 3, …
If bk and gk are constant and unknown, the general solution of the system (1), (2) depends on four constants e two

constants from the integration and two constants from the unknown coefficients. There are four equations in (6) and (7);
hence, the problem for identifying simultaneously the coefficients bk, gk, and the functions S(t) and I(t) is well-posed under
the assumption that a solution exists. A preliminary version of the algorithm for solving this inverse problem using early
COVID-19 data is given in (Marinov & Marinova, 2020).
Fig. 1. The A-SIR epidemic model.
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The described algorithm is applicable to a dataset D that includes exact values of all infectious individuals, which is far
from being the case in the COVID-19 epidemic. Available data contains random noise and errors, which cause strong oscil-
lations in the obtained solution of the formulated above inverse problem, seen also in the results of our simulations.
Therefore, an algorithm must address these inaccuracies. Next section is devoted to presenting a method for solving the
inverse problem for time-dependent rates and unknown functions, which handles data inaccuracies.

4. Solving the inverse problem

The solution method described here permits the recovery of time-varying coefficients, which takes into account the non-
autonomous nature of an epidemic. In other words, the population adapts to the presence of the disease and the global
behaviour of the epidemic, which is changing over time.

4.1. Minimization problem using data values at two time moments

First, we start with the sub-problem using available data values at two time moments. Since we are concerned with the
numerical solution of the system (1)e(3), we seek approximations of the functions S(t), I(t), and R(t) at the discrete set of
points {t0, t1,…, tn} in the interval [TI, TF], where TI is the initial time moment, TF is the final time moment, and n > 1, see Fig. 2.

The time step is defined to be t ¼ TF�TI
n�1 , and the equidistant nodes are given by tk ¼ TI þ kt, k ¼ 0, 1, …, n.

Since the inverse problem is non-linear, estimating the values Sk and Ik requires iterations. Let S
̄

k and I
̄

k denote values from
a previous iteration, and Ŝk ¼ ðS

̄

k�1 þ S
̄

kÞ=2, Îk ¼ ðI
̄

k�1 þI
̄

kÞ=2 for k ¼ 1, 2, …, n.
Now consider the second order discretization of equations (1) and (2) on the regular grid corresponding to Fig. 2:

Sk ¼ Sk�1 � tbŜkÎk; Ik ¼ Ik�1 þ tðbŜkÎk � ĝIkÞ: (9)
Note that equation (9) also involve the unknown rates b and g on the right-hand side, which can be determined from the
available data. Therefore, the problem is inverse and requires a special treatment.

Next, we describe our approach to solving the inverse problem. Let εk and dk be the residuals of equation (9), namely

εk ¼ Sk � Sk�1 þ tbŜkÎk; dk ¼ Ik � Ik�1 � tðbŜkÎk � ĝIkÞ:
A solution of the inverse problem is given by the set of values minimizing function

Fðb;g; S1;…; Sn; I1;…; InÞ ¼
Xn

k¼1
ðε2k þ d2kÞ: (10)
Assuming approximate values of b and g are known, the necessary conditions for minimization of the function F with
respect to its arguments Sk and Ik yield the following linear difference equations

Sk�1 � 2Sk þ Skþ1 ¼ tbðŜkÎk � Ŝkþ1 Îkþ1Þ; (11)

Ik�1 � 2Ik þ Ikþ1 ¼ tð�bŜkÎk þ bŜkþ1 Îkþ1 þ ĝIk � ĝIkþ1Þ; (12)

for k ¼ 1, …, n � 1. After adding initial and terminal conditions (6) and (7) to equations (11) and (12), the obtained linear
system of 2(n þ 1) equations for the unknowns (S0, S1, …, Sn) and (I0, I1, …, In) becomes well-posed. This way of linearization
allows using a matrix with constant elements on the left-hand side of the system of equations; thus, producing an efficient
iterative process of approximating the solution.

Now assuming Sk and Ik are known, we derive explicit formulas for the rates b and g from the necessary conditions for
minimization of the function F in equation (10) with respect to b and g:

b ¼ �2a02a10 � a01a11
�a211 þ 4a02a20

; g ¼ �a10a11 � 2a01a20
a211 � 4a02a20

; (13)
where
Fig. 2. The grid of equidistant points tk ¼ TI þ kt, k ¼ 0, 1, …, n.
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a10 ¼ �
Xn

k¼1
2̂IkŜkðIk � Ik�1 � Sk þ Sk�1Þt; a01 ¼

Xn

k¼1
2̂IkðIk � Ik�1Þt;

a20 ¼
Xn

k¼1
2̂I

2
k Ŝ

2
kt

2; a11 ¼ �
Xn

k¼1
2̂I

2
k Ŝkt

2; a02 ¼
Xn

k¼1
Î
2
kt

2:
Details on the derivation of equations (11)e(13) are given in (Marinov & Marinova, 2020).

4.2. Minimization problem using the entire dataset

Let the number of infectious individuals at some time moments n1, n2, …, nm be known and given by

IðnlÞ ¼ sl; (14)

for l ¼ 1, 2, …, m. The values of the coefficients b and g are considered unknown.
Assume that for every 1 � l � m, there exists an index kl, such that nl ¼ tkl , i.e., the set of time moments {n1, n2, …, nm}, is a

subset of the set of nodes {t0, t1,…, tn}. Let ck denote a value sl such that: if there exists k2 {1,…, n} with tk¼ nl, 1� l�m, then
ck ¼ sl and mk > 0; otherwise ck ¼ 0 and mk ¼ 0, where mk is the weight of the residual of equation (14) in the function J.

Similarly to Subsection 4.1, a solution is obtained as a result of minimization of a function. The function is chosen to be

Jðb;g; S1;…; Sn; I1;…; InÞ ¼
Xn

k¼1

h
ε
2
k þ d2k þ mkðIkl � slÞ2

i

¼
Xn

k¼1
ðSk � Sk�1 þ tbŜkÎkÞ2 þ

Xn

k¼1
ðIk � Ik�1 � tðbŜkÎk � ĝIkÞÞ2

þ
Xn

k¼1
mkðIk � ckÞ2;

(15)

where εk and dk are the residuals of equation (9).
The necessary conditions forminimizations of the functionJwith respect to Sk and Ik (k¼ 1, 2,…, n� 1) give the equations

Sk�1 � 2Sk þ Skþ1 ¼ tbðŜkÎk � Ŝkþ1 Îkþ1Þ; (16)

I � ð2þ m ÞI þ I ¼ tð�bŜ Î þ bŜ Î þ ĝI � ĝI Þ � m c : (17)
k�1 k k kþ1 k k kþ1 kþ1 k kþ1 k k
After adding the initial and terminal conditions (6), (7), the linear system (16), (17) for the unknowns (S0, S1,…, Sn) and (I0,
I1, …, In) becomes well-posed. The equations for b and g in this case are identical to equation (13).

4.3. Time-dependent parameters b, g, and Re

Equation (14) is the dataset with the number of infected individuals for every day for a period ofm days. The set is divided
into subsets of fixed length of P days, as shown in Fig. 3. In order to approximate the time-dependent transmission and
removal rates bk and gk, Algorithm 1 is applied to every sub-interval [k � P þ 1, k], k ¼ P, P þ 1, …, m. After computing the
values of bk and gk, the effective reproduction rate Re,k ¼ bkSk/gk is evaluated on every sub-interval.

Algorithm 1 shows the iterative procedure for solving the system (16), (17), (6), (7) along with obtaining the values of the
transmission and removal rates from equation (13).

Algorithm 1. Iterative algorithm for solving the inverse problem.
Fig. 3. The subsets of fixed length of P days for identifying b(t) and g(t).
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5. A-SIR simulations using COVID-19 data over nine month period

Obtained numerical results from the simulations using available reported data for the COVID-19 pandemic over nine
month period are reported here. We consider the World and selected countries in Latin America.

For visualizing purposes, several parameters are monitored and analyzed for better understanding of the infectious dis-
ease dynamics. Analysis includes:

e Transmission rate b(t) and removal rate g(t) are identified by solving using the inverse problem approach described in
Section 4. They are calculated with P ¼ 7, 10, and 14 day intervals over at least nine month period.
Fig. 4. Estimated rates bN, g, Re, and the corresponding infectives for the World.
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Table 1
Transmission rate bN, removal rate g, and reproduction rate Re for March 11, 2021 (World).

days bN g Re

7 0.0188256 0.018 5147 1.001296 4
10 0.0191726 0.018 8515 1.001537 7
14 0.0184895 0.018 7628 0.970419 4

Fig. 5. Estimated rates bN, g, Re, and the corresponding infectives (Brazil).

Table 2
Transmission rate bN, removal rate g, and reproduction rate Re for March 11, 2021 (Brazil).

days bN g Re

7 0.0741 0.045899 3 1.5301279
10 0.0721 0.052908 5 1.2914299
14 0.0717 0.049530 3 1.3717887

T.T. Marinov, R.S. Marinova Infectious Disease Modelling 7 (2022) 134e148
e Reproduction rate Re(t)¼ b(t)S(t)/g(t), which represents the expected number of secondary infections produced by a single
primary infected person. The effective reproduction rate Re(t) is an important indicator of the fraction of the population
that gets sick.

e Simulated infectious cases I(t) using the A-SIR system. After estimating b(t) and g(t) by solving the inverse problem, we
find the numerical solution of the direct problem (1)e(3) with proper initial conditions. In all calculations, we use second
order RungeeKutta method, a type of predictor-corrector method. These simulations allow comparing the predicted
values and the real data to test how well the method performs.
140



Fig. 6. Estimated rates bN, g, Re, and the corresponding infectives (Argentina).

T.T. Marinov, R.S. Marinova Infectious Disease Modelling 7 (2022) 134e148
The time step t is chosen to be t ¼ 0.01 for obtaining the numerical solution of the direct problem by RungeeKutta
method. The time-dependent parameters b, g, and Re are computed with t ¼ 1/40 and m ¼ t. The experiments with
different values of e0 show that its optimal value is 10�8.

We chose the World and five Latin American countries in order to investigate the performance of the A-SIR model applied
to an epidemic such as COVID-19. Brazil has the largest population and is the most affected country in Latin America;
Argentina and Colombia are comparable in terms of population size although they have different climate and area; Dominican
Republic andHonduras have smaller population size of approximately 10million compared to Brazil, Argentina, and Colombia.

The simulations for COVID-19 epidemic are based on available data as of March 12, 2021, reported at (Worldometer, 2020).
The reasonwe consider a period ending in March is because the vaccinations were relatively low in these countries until that
date. It must be also noted that the available COVID-19 epidemic data does not include all infectious casesd this is outside the
scope of this research.

5.1. The world

The dynamic of an epidemic in the World is important while studying this problem in a specific region. Fig. 4(a) presents
the obtained values for the transmission rate bmultiplied by the total population N, Fig. 4(b) e the removal rate g, Fig. 4(c) e
the reproduction rate Re as functions of time, calculated over 7, 10, and 14 day intervals. The numerically obtained values for
bN, g, and Re for the last day are given in Table 1. Fig. 4(d) shows the results for the infectives against the available data. The
reproduction rate Re had never been smaller than one until late January 2021. As seen in Fig. 4(d), the number of infected
individuals worldwide was increasing until late January, when I(t) started to decrease.

5.2. Brazil

Fig. 5(a)e(d) show the numerically computed values of the time-dependent values of bN, g, Re, and I for Brazil. The values
of bN, g, and Re for the last day, March 11, 2021, are given in Table 2. Brazil's reproduction rate has been increasing near the end
of the period, being above one during the last few weeks.
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Table 3
Transmission rate bN, removal rate g, and reproduction rate Re for March 11, 2021 (Argentina).

days bN g Re

7 0.0407199 0.039 1513 0.990351 0
10 0.0420083 0.038 7259 1.032909 1
14 0.0406791 0.038 2816 1.011835 5

Fig. 7. Estimated rates bN, g, Re, and the corresponding infectives (Colombia).

Table 4
Transmission rate bN, removal rate g, and reproduction rate Re for March 11, 2021 (Colombia).

days bN g Re

7 0.0875966 0.100 1947 0.835023 0
10 0.0882407 0.100 9886 0.834550 5
14 0.0870847 0.094 0223 0.884641 3

T.T. Marinov, R.S. Marinova Infectious Disease Modelling 7 (2022) 134e148
5.3. Argentina

Fig. 6(a)e(d) present the estimated values for the time-dependent bN, g, Re, and the corresponding infectives for
Argentina, calculated over 7, 10, and 14 day intervals. Table 3 gives the specific values of bN, g, and Re on the last day of the
period, March 11, 2021. Argentina's reproduction rate is close to one. This means that every sick individual is infecting one
other individual.
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Fig. 8. Estimated rates bN, g, Re, and the corresponding infectives (Dominican Republic).

T.T. Marinov, R.S. Marinova Infectious Disease Modelling 7 (2022) 134e148
5.4. Colombia

The numerical results for the time-dependent parameters bN, g, and Re as functions of time for Columbia are presented in
Fig. 7(a)e(c). The corresponding estimated infectives compared with the reported data are given in Fig. 7(d). Table 4 gives the
values of bN, g, and Re for the last day of the considered period March 11, 2021. The effective reproduction rate oscillates
around Re ¼ 0.85, meaning that the number of infectives I(t) is decreasing, as demonstrated in Fig. 7(d).
5.5. Dominican Republic

The Dominican Republic reproduction rate Re had been decreasing during the last weeks of the considered time period, as
seen in Fig. 8(c). Fig. 8(a) and (b) display the obtained numerical values of the parameters b(t)N and g(t), respectively. The
transmission rate is decreasing while slightly oscillating. Table 5 gives the estimated values of bN, g, and Re for the last day of
the considered period. Fig. 8(d) shows the number of infectives, also based on 7,10, and 14 day intervals for approximating the
rates b and g.
5.6. Honduras

The obtained numerical results for Honduras are presented in Fig. 9(a)e(d). The parameters bN and Re are decreasing
during the last weeks of the time period. The results based on 7, 10, and 14 day period are relatively consistent for Honduras.
Table 6 presents the estimated values of bN, g, and Re for the last day of the 7, 10, 14 day time period. Clearly, although
decreasing, the reproduction rate for Honduras is quite high in early March 2021, about 2.0. Fig. 9(d) shows the infectives I(t),
again based on the last 7, 10, and 14 day time period used to estimate the transmission rate bN and the removal rate g.
Honduras has to further decrease their transmission rate in order to be able to slow down the COVID-19.
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Table 5
Transmission rate bN, removal rate g, and reproduction rate R0 for March 11, 2021 (Dominican Republic).

days bN g Re

7 0.0114620 0.018 7783 0.596605 5
10 0.0125543 0.020 0937 0.610681 5
14 0.0121489 0.019 9064 0.596520 6

Fig. 9. Estimated rates bN, g, Re, and the corresponding infectives (Honduras).

Table 6
Transmission rate b, removal rate g, and reproduction rate Re for March 11, 2021 (Honduras).

days bN g Re

7 0.0040340 0.001 8561 2.135197 3
10 0.0047111 0.002 1141 2.189243 5
14 0.0054727 0.002 7009 1.990600 2
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6. Comparison of real data and A-SIR and SIR predictions

This section presents simulations of the A-SIR model with time-varying coefficients and the classical SIR model with
constant coefficients over a six week period (February 1, 2021eMarch 12, 2021), see Figs.10e15. The figures on the left display
the results with the A-SIR model, while the figures on the right show projected values of infectives obtained by solving the
classical SIR system. Both simulations solve the system (1)e(3) of equations using a second order RungeeKutta method. The
difference lies in the fact that the A-SIRmodel uses the estimated time-dependent rates, whereas the SIRmodel uses constant
rates estimated as of February 1, 2021. The predicted values along with the real data for the same period, are presented in Figs.
10e15 for the World, Brazil, Argentina, Colombia, Dominican Republic, and Honduras.
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Fig. 10. Results from adaptive (left) and classical (right) SIR simulations compared with the real data for the last 41 days for the World.

Fig. 11. Results from time dependent (left) and classical (right) SIR simulations compared with the real data for the last 41 days for Brazil.

Fig. 12. Results from adaptive (left) and classical (right) SIR simulations and real data for the last 41 days for Argentina.
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The results show that the estimated coefficients in the A-SIR equations provide a reasonable description of the COVID-19
epidemic on the level of a country-wide distribution. Since the general trend is for a slow decrease of the effective repro-
duction rate Re(t) in time, the real data is similar or slightly lower compared to the corresponding values obtained from the
simulations.

The predictions for all countries are good. The reported values for Brazil oscillate while following the trend until February
22, 2021, and then they start to increase. There are oscillations in the reported data of Argentina, see Fig. 12. The A-SIR nu-
merical results follow the trend of the data. The situation is similar with the results for Colombia, as shown in Fig. 13. The
Dominican Republic experiences a slow-down in the reported infected cases during the last days of the six week period
compared to the predicted values of the classical SIR model with coefficients estimated from February 1, Fig. 14. If the rates
were taken from a later day (say, after February 7, 2021), then the predicted values would follow the real data. The A-SIR
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Fig. 13. Results from adaptive (left) and classical (right) SIR simulations compared with the real data for the last 41 days for Colombia.

Fig. 14. Results from adaptive (left) and classical (right) SIR simulations compared with the real data for the last 41 days for the Dominican Republic.

Fig. 15. Results from adaptive (left) and classical (right) SIR simulations compared with the real data for the last 41 days for Honduras.
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results for Honduras follow the trend closely, which the SIR projections are good at first and start to deviate after February 10,
2021 according to Fig. 15.
7. Conclusions

This work investigates the performance of a method for an epidemic based on an inverse problem approach for estimating
the time-dependent transmission and removal rates in the A-SIR epidemic model. The inverse problem is solved by defining a
minimization problem using the entire dataset for the examined population, with COVID-19 data available as of March 2021.
The numerical results show that the rates used for finding the projected values of the infected cases using the adaptive SIR
model are reasonably accurate. It is well-known that the classical SIR model possesses certain limitations in case of a long
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term infectious disease. Additionally, the assumption that the reported data include all the cases is a limitation, because it is
not exactly true for COVID-19. Although the produced results are convincing, the match is not exact and the errors naturally
increase over time. Small changes in the data (including errors) should not affect the results significantly.

Declaration of competing interest

No conflict of interests.

References

Acedo, L., Morano, J., Santonja, F., & Villanueva, R. (2016). A deterministic model for highly contagious diseases: The case of varicella. Physica A, 450,
278e286. https://doi.org/10.1016/j.physa.2015.12.153

Ajbar, A., Alqahtani, R., & Boumaza, M. (2021). Dynamics of an SIR-based COVID-19 model with linear incidence rate, nonlinear removal rate, and public
awareness. Frontiers in Physics, 9, Article 634251. https://doi.org/10.3389/fphy.2021.634251

Allman, E., & Rhodes, J. (2003). Mathematical models in biology: An introduction. New York: Cambridge UP.
Anderson, R., & May, R. M. (1991). Infectious diseases of humans. Oxford UK: Oxford University Press.
Azam, S., Macías-Díaz, J., Ahmed, N., Khan, I., Iqbal, M. S., Rafiq, M., et al. (2020). Numerical modeling and theoretical analysis of a nonlinear advection-

reaction epidemic system. The Lancet Infectious Diceases, 193, Article 105429. https://doi.org/10.1016/S1473-3099(20)30303-0
Bauch, C., & Earn, D. (2003). Interepidemic intervals in forced and unforced SEIR models. In E. S. Ruan, G. S. Wolkowicz, & J. Wu (Eds.), Dynamical systems and

their applications in biology (pp. 33e43). New York: American Mathematical Society.
Bellomo, N., & Preziosi, L. (1995). Modelling mathematical methods and scientific computation. CRC Press Inc.
Coronel, A., Huancas, F., & Sepúlveda, M. (2019). A note on the existence and stability of an inverse problem for a SIS model. Computers & Mathematics with

Applications, 77, 3186e3194. https://doi.org/10.1016/j.camwa.2019.01.031
Demongeot, J., Griette, Q., & Magal, P. (2020). SI epidemic model applied to COVID-19 data in Mainland China. Royal Society Open Science, 7. https://doi.org/

10.1098/rsos.201878
Diekmann, O., & Heesterbeek, J. A. (2000). Mathematical epidemiology of infectious diseases: Model building, analysis and interpretation. Incorporated, New

York: John Wiley & Sons.
dos Santos, I., Almeida, G., & de Moura, F. (2021). Adaptive SIR model for propagation of SARS-CoV-2 in Brazil. Physica A: Statistical Mechanics and Its

Applications, 569, Article 125773. https://doi.org/10.1016/j.physa.2021.125773
Griette, Q., & Magal, P. (2021). Clarifying predictions for COVID-19 from testing data: The example of New York State. Infectious Disease Modelling, 6,

273e283. https://doi.org/10.1016/j.idm.2020.12.011
Griette, Q., Magal, P., & Seydi, O. (2020). Unreported cases for age dependent COVID-19 outbreak in Japan. Biology, 9, 132. https://doi.org/10.1016/j.jtbi.2020.

110501
Hethcote, H. (2000). The mathematics of infectious diseases. SIAM Review, 42, 599e653. https://doi.org/10.1137/S0036144500371907
Jin, X., & Jia, J. (2020). Qualitative study of a stochastic SIRS epidemic model with information intervention. Physica A, 547, Article 123866. https://doi.org/10.

1016/j.physa.2019.123866
Kabir, K. A., Kuga, K., & Tanimo, J. (2019). Analysis of SIR epidemic model with information spreading of awareness. Chaos, Solitons & Fractals, 119, 118e125.

https://doi.org/10.1016/j.chaos.2018.12.017
Kabir, K. A., & Tanimo, J. (2020). Evolutionary game theory modelling to represent the behavioral dynamics of economic shutdowns and shield immunity in

the COVID-19 pandemic. Royal Society Open Science, 7, Article 201095. https://doi.org/10.1098/rsos.201095
Kermack, W., & McKendrick, A. (1927). A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A, 115, 700e721. https://doi.org/10.

1098/rspa.1927.0118
Lin, Y., Duan, Q., Zhou, Y., Yuan, T., Li, P., Fitzpatrick, T., et al. (2020). Spread and impact of COVID-19 in China: A systematic review and synthesis of

predictions from transmission-dynamic models. Frontiers of Medicine, 7, 321. URL: https://www.frontiersin.org/article/10.3389/fmed.2020.00321.
Liu, L., Wei, X., & Zhang, N. (2019). Global stability of a network-based sirs epidemic model with nonmonotone incidence rate. Physica A: Statistical Me-

chanics and Its Applications, 515, 587e599. https://doi.org/10.1016/j.physa.2018.09.152
Liu, Z., Magal, P., Seydi, O., & Webb, G. (2020). Predicting the cumulative number of cases for the COVID-19 epidemic in China from early data. Mathematical

Biosciences and Engineering, 17, 3040e3051. https://doi.org/10.3934/mbe.2020172
Kucharski, A., Russell, T., Diamond, C., et al. (2020). Early dynamics of transmission and control of COVID-19: A mathematical modelling study. The Lancet

Infectious Diseases, 20, 512e5013. https://doi.org/10.1016/S1473-3099(20)30144-4
Li, Y., Wang, B., Peng, R., Zhou, C., Zhan, Y., Liu, Z., et al. (2020). Mathematical modeling and epidemic prediction of COVID-19 and its significance to epidemic

prevention and control measures. Ann Infect Dis Epidemiol, 5, 1052.
Liu, Z., Magal, P., & Webb, G. (2021). Predicting the number of reported and unreported cases for the COVID-19 epidemics in China, South Korea, Italy,

France, Germany and United Kingdom. Journal of Theoretical Biology, 509, Article 110501. https://doi.org/10.3390/biology9060132
Lobo, A., dos Santos, A. C., Rocha, M., Pinheiro, R., Bremm, J., Mac�ario, E., et al. (2020). COVID-19 epidemic in Brazil: Where are we at? International Journal of

Infectious Diseaces, 97, 382e385. https://doi.org/10.1016/j.ijid.2020.06.044
Marinov, T., & Marinova, R. (2020). Dynamics of covid-19 using inverse problem for coefficient identification in sir epidemic models. Chaos, Solitons &

Fractals X, 5, Article 100041. https://doi.org/10.1016/j.csfx.2020.100041
Marinov, T., Marinova, R., Omojola, J., & Jackson, M. (2014). Inverse problem for coefficient identification in SIR epidemic models. Computers & Mathematics

with Applications, 67, 2218e2227. https://doi.org/10.1016/j.camwa.2014.02.002
Murray, J. (1993). In Mathematical biology. I. An introduction/J.D. Murray (3rd ed.). New York: Springer.
Nishiura, H., Linton, N., & Akhmetzhanov, A. (2020). Serial interval of novel coronavirus (COVID-19) infections. International Journal of Infectious Diseases, 93,

284e286. https://doi.org/10.1016/j.ijid.2020.02.060
Pereira, F., Schimit, P., & Bezerra, F. (2021). A deep learning based surrogate model for the parameter identification problem in probabilistic cellular au-

tomaton epidemic models. Computer Methods and Programs in Biomedicine, 205, Article 106078. URL: https://www.sciencedirect.com/science/article/pii/
S016926072100153X.

Roosa, K., Lee, Y., Luo, R., Kirpich, A., Rothenberg, R., Hyman, J., et al. (2020). Real-time forecasts of the COVID-19 epidemic in China from february 5th to
february 24th, 2020. Infectious Disease Modelling, 5, 256e263. https://doi.org/10.1016/j.idm.2020.02.002

Shereen, M., Khan, S., Kazmi, A., Bashir, N., & Siddique, R. (2020). COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses.
Journal of Advanced Research, 24, 91e98. https://doi.org/10.1016/j.jare.2020.03.005

Smith, D., & Moore, L. (2004). The SIR model for spread of disease. Convergence.
Takeuchi, Y., Iwasa, Y., & Sato, K. (2007). Mathematics for life science and medicine. Springer, Verlag Berlin Heidelberg.
147

https://doi.org/10.1016/j.physa.2015.12.153
https://doi.org/10.3389/fphy.2021.634251
http://refhub.elsevier.com/S2468-0427(21)00082-8/sref3
http://refhub.elsevier.com/S2468-0427(21)00082-8/sref4
https://doi.org/10.1016/S1473-3099(20)30303-0
http://refhub.elsevier.com/S2468-0427(21)00082-8/sref6
http://refhub.elsevier.com/S2468-0427(21)00082-8/sref6
http://refhub.elsevier.com/S2468-0427(21)00082-8/sref6
http://refhub.elsevier.com/S2468-0427(21)00082-8/sref7
https://doi.org/10.1016/j.camwa.2019.01.031
https://doi.org/10.1098/rsos.201878
https://doi.org/10.1098/rsos.201878
http://refhub.elsevier.com/S2468-0427(21)00082-8/sref10
http://refhub.elsevier.com/S2468-0427(21)00082-8/sref10
http://refhub.elsevier.com/S2468-0427(21)00082-8/sref10
https://doi.org/10.1016/j.physa.2021.125773
https://doi.org/10.1016/j.idm.2020.12.011
https://doi.org/10.1016/j.jtbi.2020.110501
https://doi.org/10.1016/j.jtbi.2020.110501
https://doi.org/10.1137/S0036144500371907
https://doi.org/10.1016/j.physa.2019.123866
https://doi.org/10.1016/j.physa.2019.123866
https://doi.org/10.1016/j.chaos.2018.12.017
https://doi.org/10.1098/rsos.201095
https://doi.org/10.1098/rspa.1927.0118
https://doi.org/10.1098/rspa.1927.0118
https://www.frontiersin.org/article/10.3389/fmed.2020.00321
https://doi.org/10.1016/j.physa.2018.09.152
https://doi.org/10.3934/mbe.2020172
https://doi.org/10.1016/S1473-3099(20)30144-4
http://refhub.elsevier.com/S2468-0427(21)00082-8/sref23
http://refhub.elsevier.com/S2468-0427(21)00082-8/sref23
https://doi.org/10.3390/biology9060132
https://doi.org/10.1016/j.ijid.2020.06.044
https://doi.org/10.1016/j.csfx.2020.100041
https://doi.org/10.1016/j.camwa.2014.02.002
http://refhub.elsevier.com/S2468-0427(21)00082-8/sref27
https://doi.org/10.1016/j.ijid.2020.02.060
https://www.sciencedirect.com/science/article/pii/S016926072100153X
https://www.sciencedirect.com/science/article/pii/S016926072100153X
https://doi.org/10.1016/j.idm.2020.02.002
https://doi.org/10.1016/j.jare.2020.03.005
http://refhub.elsevier.com/S2468-0427(21)00082-8/sref33
http://refhub.elsevier.com/S2468-0427(21)00082-8/sref34


T.T. Marinov, R.S. Marinova Infectious Disease Modelling 7 (2022) 134e148
Tanimoto, J. (2015). Fundamentals of evolutionary game theory and its applications. Japan: Springer.
Tanimoto, J. (2018). Evolutionary games with sociophysics. Springer Nature, Singapure Pte Ltd.
Tarantola, A. (2005). Inverse problem theory and methods for model parameter estimation. Paris: SIAM.
Tikhonov, A., & Arsenin, V. (1974). Methods for solving incorrect problems. Moscow: Nauka.
Wacker, B., & Schlüter, J. (2020). Time-continuous and time-discrete SIR models revisited: Theory and applications. Advances in Difference Equations, 2020,

556. https://doi.org/10.1186/s13662-020-02995-1
Worldometer. (2020). COVID-19 coronavirus pandemic. https://www.worldometers.info/coronavirus/.
148

http://refhub.elsevier.com/S2468-0427(21)00082-8/sref35
http://refhub.elsevier.com/S2468-0427(21)00082-8/sref36
http://refhub.elsevier.com/S2468-0427(21)00082-8/sref37
http://refhub.elsevier.com/S2468-0427(21)00082-8/sref38
https://doi.org/10.1186/s13662-020-02995-1
https://www.worldometers.info/coronavirus/

	Inverse problem for adaptive SIR model: Application to COVID-19 in Latin America
	1. Introduction
	2. The A-SIR model for the spread of an infectious disease
	3. The inverse problem for the time-dependent rates and unknown functions
	4. Solving the inverse problem
	4.1. Minimization problem using data values at two time moments
	4.2. Minimization problem using the entire dataset
	4.3. Time-dependent parameters β, γ, and Re

	5. A-SIR simulations using COVID-19 data over nine month period
	5.1. The world
	5.2. Brazil
	5.3. Argentina
	5.4. Colombia
	5.5. Dominican Republic
	5.6. Honduras

	6. Comparison of real data and A-SIR and SIR predictions
	7. Conclusions
	Declaration of competing interest
	References


