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Abstract
Non-coding RNAs are important regulators of differentiation during embryogenesis as well as key players in the fine-tuning 
of transcription and furthermore, they control the post-transcriptional regulation of mRNAs under physiological condi-
tions. Deregulated expression of non-coding RNAs is often identified as one major contribution in a number of pathological 
conditions. Non-coding RNAs are a heterogenous group of RNAs and they represent the majority of nuclear transcripts in 
eukaryotes. An evolutionary highly conserved sub-group of non-coding RNAs is represented by vault RNAs, named since 
firstly discovered as component of the largest known ribonucleoprotein complexes called “vault”. Although they have been 
initially described 30 years ago, vault RNAs are largely unknown and their molecular role is still under investigation. In this 
review we will summarize the known functions of vault RNAs and their involvement in cellular mechanisms.
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Introduction

Non-coding RNAs represent the vast majority of transcrip-
tional product of the human genome [1, 2]. The family of 
non-coding RNAs is composed of 19 different classes; 
among them transfer RNAs (tRNAs), tRNA-derived RNA 
fragments (tRFs), ribosomal RNAs (rRNAs), small nucleo-
lar RNAs (snoRNAs), endogenous small interfering RNAs 
(endo-siRNAs), sno-derived RNAs (sdRNAs), transcription 
initiation RNAs (tiRNAs), miRNA-offset-RNAs (moRNAs), 
circular RNAs (circRNAs), vault RNAs, microRNAs (miR-
NAs), small interfering RNAs (siRNAs), small nuclear 
RNAs (snRNAs), extracellular RNAs (exRNAs), piwi-inter-
acting RNAs (piRNAs), small Cajal body RNAs (scaRNAs), 
transcribed-ultraconserved regions (t-UCRs), long intergenic 
non-coding RNAs (lincRNAs), and long non-coding RNAs 

(lncRNAs) [3–25]. The role and function of tRNAs, rRNAs, 
microRNAs and lncRNAs, in particular, have been well 
examined both under physiological and pathological condi-
tions [26]. In general, non-coding RNAs control all levels 
of genes’ regulation in eukaryotes, including the control of 
chromosome dynamics, splicing, RNA editing, translational 
inhibition and mRNA degradation [26]. Even transcription 
itself may be regulated by non-coding RNAs as outlined in 
several reports [27–29]. This is achieved on one hand, by 
control of chromosome dynamics and modifications and on 
the other hand, by regulation of RNA polymerase II activity. 
Therefore, non-coding RNAs are involved in regulation of 
accessibility of DNA sequences for the transcription machin-
ery, as well as in modulation of the transcription rate of RNA 
polymerase II [30–34]. Furthermore, splicing of pre-mRNA 
transcripts, post-transcriptional regulation of expression rate 
as well as translation of mRNAs in cytoplasm and regu-
lation of mRNA half-life are under control of non-coding 
RNAs [26, 27, 35]. In addition, some non-coding RNAs are 
known to be involved in intercellular communication and 
cell regulation [36, 37]; whereas, others are part of the anti-
viral defence by stimulating immune response and activating 
RNA interference pathway [38, 39].

In contrast, the molecular functions of vault RNAs are 
still not completely clear even after more than 30 years since 
their discovery [40, 41]. With a length between 88 and 140 
nucleotides vault RNAs are longer than miRNAs, but they 
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are still included as members of the short non-coding RNA 
group [41, 42].

In humans, four vault RNAs are encoded on chromosome 
5q31 in two different loci. The VTRNA-1 locus (located 
between zinc-finger matrin-type 2 gene and proto-cadherin 
cluster) contains the genetic information for three vault 
RNAs (vault RNA1-1, vault RNA1-2 and vault RNA1-3) 
and VTRNA-2 locus (located between the genes coding for 
transforming growth factor beta 1 and SMAD family mem-
ber 5) codes for vault RNA2-1 also known as pre-miR-886 
[43–45]. All vault RNA genes are under control of a poly-
merase III type 2 promoter and they contain a box A and 
box B motif normally found in tRNA genes [41, 42]. Nev-
ertheless, the promoters of the two vault RNA loci are not 
identical; therefore, expression patterns of the vault RNA 
genes are different [42]. Furthermore, epigenetic modifica-
tions such as promoter methylation are important regulators 
for vault RNAs expression especially for the VTRNA-2 gene 
[46, 47]. The distant regulatory elements of the VTRNA-1 
promoter are characterized by differential CpG accessibility 
and this might be a hint for a cell-type-specific expression 
of the three vault RNAs under control of this promoter [48]. 
The internal promoter sequences box A and box B present 
in VTRNA-1 and VTRNA-2 enable binding of transcrip-
tion factors TFIIIC and TFIIIB which facilitate polymer-
ase III binding to the transcription starting site [49]. Vault 
RNAs transcription is also under control of cAMP response 
(CRE)- and tetradecanoyl-phorbol acetate response (TRE)-
like elements [41, 42]. These elements represent binding 
sites for the transcription factors CREB and AP-1, respec-
tively, which adapt key cellular processes such as differentia-
tion, proliferation and survival to nutrient, growth factor and 
stress signaling [50, 51]. This could explain the observed 
differential vault RNA transcription rate upon viral infection, 
starvation and cancer [45, 52–54]. Furthermore, the short 
half-life time observed of around 1 h makes vault RNAs suit-
able as signaling molecules that quickly respond to stimuli 
[55, 56].

Vault RNAs were first identified as a component of vault 
particles [40] but most of the vault RNAs (around 95%) are 
not associated with these particles and therefore, vault RNAs 
are most probably also involved in other cellular processes 
and interactions [57, 58] (Fig. 1).

Vault particles

Vault particles are the largest known ribonucleoprotein 
complexes in eukaryotes [59, 60]. Structure and protein 
composition of vaults are highly conserved and present 
in high number (10,000–100,000/cell) in different species 
[43, 61–64]. Therefore, it is very likely that vault particles 
might play fundamental roles in eukaryotic cells [42]. Some 

reports connect the vault particles complex to a plethora of 
mechanisms that include: nuclear-pore complex formation, 
nuclear–cytoplasmic transport, cellular signaling, innate 
immune response, apoptosis resistance, DNA damage repair 
and development of multidrug resistance in cancer cells [43, 
65–72] (Fig. 1).

The main component of vault particles is the major vault 
protein that is sufficient itself for the structural conformation 
characteristic of the vault particles [73–77]. The major vault 
protein has no homology to any other protein known, but it 
is highly conserved among different species (around 90% 
identity between mammalians and around 60% with lower 
organisms) [75, 78]. Interestingly, the major vault protein 
contains two  Ca2+ binding sites at the N-terminal end which 
are necessary for correct folding and particle assembly but 
also to interact with other proteins like PTEN, thus connect-
ing the vault particles to cellular signaling pathways [79]. 
Beside the major vault protein, two other proteins are pre-
sent in the vaults particles; the poly-(adenosine-diphosphate 
ribose) polymerase—a member of the PARP family—and 
the telomerase-associated protein 1 (TEP1) [80–82]. In these 
vault particles, the vault RNAs are associated with the caps 
[43, 57, 75, 83]. The vast majority (around 90%) of vault 
particles in unstressed cells are located in the cytoplasm 
but vault particles are also found to be associated with the 
nuclear membrane. The distribution of vault particles var-
ies in response to external stimuli and rapidly react towards 
extracellular changes with translocation to different subcel-
lular compartments. Furthermore, under pathological condi-
tions like cancer, a higher amount of vault particles are asso-
ciated with the nuclear membrane and up to 5% of them are 
found within the nucleus [68, 84–88]. Based on this obser-
vation and the barrel-like structure of the vault particles, 
the hypothesis exist that vault particles have an important 
role in mediating shuttle processes between cytoplasm and 
nucleus, including nuclear import of tumor-suppressors like 
PTEN, nuclear hormone receptors as well as drug export. 
It is speculated that some of the cargos transported in vault 
particles are bound to the vault RNAs present in these com-
plexes [66, 67, 89–91]. But up to now, the role of vault 
particles as transporter is still under discussion and further 
investigation is urgently needed because most of these stud-
ies used either immunoprecipitation of signaling complexes 
or yeast two hybrid systems, and it cannot be excluded that 
the found interaction with vault particles and vault RNAs 
occurred accidentally and is without any biological sense. A 
verification of vault particles as transporter in humans under 
physiological and/or pathological conditions (e.g., tumor) is 
still missing.
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Studies on vault particles using knock‑out 
mice

The role of major vault protein and vault particles has been 
addressed in relevant mice knock-out models [92–94]. In 
TEP1 knock-out mice vault particles were still present, 
but inside these vault particles, no vault RNAs have been 
found. Therefore, it was concluded that TEP1 is absolutely 
required for a stable association of vault RNAs with the 
vault complex [93]. TEP1 knock-out mice as well as major 
vault protein knock-out mice are viable, healthy and display 
no obvious abnormalities [93, 94]. The major vault protein 
knock-out mice express no vaults particles as expected and 
have been used in different studies to examine the role of 
vault particles [78, 84, 94, 95]. Surprisingly, embryonic 
stem cells and bone marrow cells derived from major vault 
protein knock-out mice showed no change in sensitivity to 
drugs when compared to wild-type mice cells. In addition, 

the activities of the multidrug resistance-related transporters 
P-glycoprotein, multidrug resistance-associated protein and 
breast cancer resistance protein were not altered in vault-
deficient cells ruling out the possibility that these proteins 
compensate for the loss of vaults. Also, the response towards 
doxorubicin treatment was the same in major vault protein 
knock-out and wild-type mice in in vivo experiments [94]. 
These observations lead to the conclusion that at least in 
mice, vaults are not directly involved in drug resistance [78, 
84]. In another study, the major vault protein knock-out mice 
were used to address the role of vaults in regard to dendritic 
cells. Development and function of dendritic cells, derived 
from mononuclear bone marrow cells, appeared normal 
in knock-out mice. In-vivo immunization assays showed 
that neither T-cell-mediated immune response nor T-cell-
dependent humoral response were affected by major vault 
protein knock-out, indicating intact antigen-presenting and 
migration capacities of dendritic cells. Obviously, in mice 

Fig. 1  Vault RNAs are involved in different cellular processes and 
interactions. The vast majority (95%) of vault RNAs are not associ-
ated with the vault ribonucleoprotein complex; they are involved in 
regulation of important cellular pathways like cell death (intrinsic and 

extrinsic apoptosis; autophagy), proliferation, cellular differentiation, 
mRNA regulation and cell–cell communication. Besides this, vault 
RNAs influence the immune reaction and especially in cancer, they 
have an important role in rendering cells resistance to drug treatment
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vault particles are not required for primary dendritic cell 
functions [95]. This observation is in contrast with findings 
in humans where major vault protein and vault particles are 
up-regulated during the development of human dendritic 
cells. Moreover, major vault protein-specific antibodies, pre-
sumably interfering with the function of major vault protein 
or vaults, resulted in reduced expression levels of dendritic 
cell markers, co-stimulatory molecules and decreased capac-
ity to induce T-cell proliferative and interferon-ɣ-releasing 
responses [96]. Recently, the major vault protein was iden-
tified as a suppressor for NF-κB signaling in macrophages 
[97]. Global as well as myeloid-specific major vault protein 
gene knock-out intensified high-fat diet-induced obesity, 
insulin resistance, hepatic steatosis and atherosclerosis in 
mice via NF-κB signaling pathway. Furthermore, increased 
macrophage infiltration and inflammatory responses in 
the microenvironments have been observed [97]. Another 
study used peripheral blood mononuclear cells (PBMCs) 
from major vault protein knock-out mice and evaluated an 
essential role of major vault protein for the induction of early 
antiviral cytokines (like IL-6 and IL-8) in the context of 
double-stranded RNA- or virus-induced pro-inflammatory 
response [98]. In the following sections, we will focus on the 
role of vault particles and vault RNAs in humans.

Vault RNAs, vault particles and drug 
resistance

One of the roles of the vault particles is the contribution 
to mediate drug resistance mechanisms by transporting 
the drugs from their intracellular targets to the extracellu-
lar compartment and also in drug sequestration [78]. In an 
elegant experiment, expression of major vault proteins was 
prevented by a siRNA approach in human bladder cancer 
cells under doxycycline treatment. This resulted in inhibi-
tion of cytosolic doxorubicin sequestration in perinuclear 
lysosomes and enhanced accumulation of the drug in the 
nucleus as well as increased cytotoxicity [99]. Based on 
the fact that nuclear PTEN is involved in the maintenance 
of chromosomal stability [100], its nuclear transportation 
by vaults particles could also play a role in drug resistance 
mechanisms by counteracting drug-induced DNA damage 
[101].

In most cell lines, vault RNA1-1 has the highest expres-
sion level of all vault RNA transcripts [102]. In multidrug-
resistant cells, the level of vault RNA1-1 is not altered but 
expression rate of vault RNA1-3 is raised and an increased 
association of vault RNA1-3 with vaults particles has been 
observed [43, 102]. However, the molecular details behind 
this observation are still not clear. In general, vault RNAs 
bound to the vault particles have the capacity to interact 
with drugs via specific binding sites [103]. For instance, in 

cancer patients who developed resistance to chemotherapy, 
the number of vault particles is increased, in agreement 
with their observed role, in in vitro models [78, 103–105]. 
Another relevant example is given by mitoxantrone resist-
ance in osteosarcoma, glioblastoma and leukemia where 
drug failure is based on direct binding of the drug to 
vtRNA1-1 and vtRNA1-2 [103, 104].

Besides sequestering drugs, vault RNAs are processed 
into several small RNAs (Fig. 1). Among them small-vault 
RNAs, account in a second way for multidrug resistance 
in cancer patients by down-regulating CYP3A4, the key 
enzyme in drug metabolism [106]. Interestingly, the intro-
duction of 5-methyl-cytosine by the RNA methyltransferase 
NSUN2-dependent leads to the cleavage of vault RNAs in a 
Dicer-dependent mechanism; thus, the resulting small-vault 
RNAs regulate their target genes in a miRNA-like fashion 
[106–108].

Furthermore, vault RNAs can induce drug resistance in 
an indirect way by influencing cell proliferation and prevent-
ing cell death as described in the following sections.

Vault RNAs and proliferation

Drug resistance can also arise by the increase in cell pro-
liferation rate [109, 110]. Vault RNAs have been found to 
influence cell proliferation in different ways and in a cell-
type-specific manner without the participation of vault par-
ticles (Fig. 1).

In breast cancer, vault RNA1-1 interacts directly with the 
RNA/DNA-binding protein polypyrimidine tract binding 
splicing factor (PSF) [105]. PSF is an important regulatory 
nuclear protein that acts as a component of spliceosomes via 
the RNA-binding domain and furthermore regulates tran-
scription of genes via the DNA-binding domain; e.g., PSF 
controls the transcription of P450-linked side-chain cleaving 
enzyme (CYP11A1) and regulates this by the steroid path-
way; in addition PSF inhibits transcription of proto-oncogene 
G antigen 6 (GAGE6) [111–113]. Following the binding of 
vault RNA1-1 to PSF RNA-binding domain, the transcrip-
tional repression of GAGE6 via the DNA-binding domain 
is released and transcription of the proto-oncogene proceeds 
[114]. Induced expression of GAGE6 results in increased 
cell proliferation and causes drug resistance [105]. Vault 
RNA2-1 interacts with and blocks the pro-apoptotic inter-
feron-inducible protein kinase R (PKR). PKR is a central 
protein for cellular response to different stress signals such 
as pathogens, starvation, cytokines and irradiation. PKR 
activates different central pathways like JNK, NF-ϰB, PP2A, 
p38 and inhibits the eukaryotic translation initiation factor 
eIF2α by phosphorylation [115]. In normal cells, this inhib-
its further cellular mRNA translation based on AUG initia-
tion codons and in parallel activates the tumor-suppressor 
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PP2A which blocks cell-cycle, as well as proliferation and 
leads ultimately to cell death [55]. In different cancer cells, 
active PKR fails to induce phosphorylation of eIF2α and 
PP2A, so that apoptosis is not triggered but PKR promotes 
still the pro-survival NF-ϰB pathway [116–118]. Therefore, 
the reduced expression levels of vault RNA2-1 found in can-
cer cell lines and cancer patients specimens result in activa-
tion of PKR and subsequent increased cell proliferation as 
well as drug resistance [119]. Consequently, vault RNA2-1 
seems to act as tumor suppressor in contrast to oncogenic 
effects of vault RNA1-1 [46, 47, 120–123].

Vault RNAs and apoptosis

Vault RNA1-1 is involved in inhibiting the intrinsic as 
well as extrinsic apoptosis pathway in several cancer cell 
lines as demonstrated in in vitro experiments [54, 124]. To 
address the role of vault RNAs in apoptotic mechanisms, 
cells have been treated with an autophagy inhibitor and cell 
death induced by serum starvation. Cells with knock-out 
vault RNA1-1 gene were more susceptible to programmed 
cell death; whereas, re-expression of vault RNA1-1 restored 
apoptosis resistance of the cells. The mechanism underly-
ing the blocking of apoptosis seems to be related to a short 
stretch within the central domain of vault RNA1-1 and can-
not be exerted by other vault RNA members. Furthermore, 
it was demonstrated that regulation of programmed cell 
death is independent of vault particles and relay only on 
vault RNA1-1 [54]. The protective effects of vault RNA1-1 
against programmed cell death have been observed after trig-
gering the intrinsic (via staurosporine, etoposide) as well as 
extrinsic (via Fas ligand) apoptosis pathway [54]. Increased 
vault RNA1-1 expression activates the pro-survival PI3K-/
AKT- and ERK1/2 MAPK-signaling pathways and by this 
counteract cell death [124]. In Epstein–Barr virus (EBV)-
infected B-cells, the latent membrane protein 1 (LMP1) 
of EBV up-regulates the NF-ϰB pathway that results in 
increased expression of vault RNA1-1. In this context, vault 
RNA1-1 inhibits the extrinsic and intrinsic apoptotic path-
ways and enables cell proliferation by further activation of 
NF-ϰB pathway and up-regulation of the expression of Bcl-
xL [54].

Vault RNAs and autophagy

Autophagy is besides apoptosis another catabolic pathway 
essential in homeostasis of cells [125]. Both mechanisms 
are interconnected by several molecular nodes and a close 
cross-talk exists [54]. In direct proximity of the VTRNA-1 
locus is the proto-cadherin cluster that encodes for the proto-
cadherin family, which is involved in autophagy [126]. 

Therefore, it seems indicative that also vault RNAs might 
be involved in autophagy [52] (Fig. 1). Autophagic process 
is necessary for cleaning out unnecessary or dysfunctional 
components in cells and recycle nutrients and energy. All 
cargos that cannot be degraded by the ubiquitin–protea-
some system are cleaved via autophagy in the lysosomes 
[127–129]. In contrast to apoptosis that results in cell death 
[130], autophagy in cancer can facilitate tumor cell survival 
in stress conditions (e.g., under hypoxia or starving condi-
tions) by providing energy and nutrients [131]. An estab-
lished marker for the autophagic state of a cell is the intracel-
lular levels of p62 [132]. The selective autophagy receptor 
p62 [133, 134] is of pivotal importance to the autophagic 
process by recognizing cargos for the autophagic process, 
triggering autophagosome formation and exerting a regula-
tory role in autophagy [127, 135–138]. Vault RNA1-1 binds 
directly to p62 preventing its oligomerization, a prerequisite 
for autophagy. This results in inhibition of p62-dependent 
autophagy and aggregate clearance [52, 139]. Another role 
of p62 is the cross-talk between autophagy and apoptosis 
[140, 141] and increased levels of monomeric p62, upon 
autophagy inhibition via vault RNA1-1, could modulate the 
balance between the two catabolic pathways. In addition, 
p62 is involved in the regulation of inflammatory pathways, 
especially the autophagic defence against invading bacteria 
and viruses [142]. Most probably, viruses target p62 by up-
regulation vault RNAs to decrease the autophagic processes 
in parallel with inhibition of interferon responses as outlined 
further below [53].

Vault RNAs, cellular differentiation 
and development

It is well established that the levels of non-coding RNAs, 
including vault RNAs, are highly regulated during devel-
opment and cellular differentiation since they are essen-
tial to these processes [143]. One example is based on the 
above-mentioned NSUN2-dependent 5-methyl-cytosine 
modification of vault RNA1.1 and vault RNA1.3 [107, 
144] which was recently reported to influence cell differ-
entiation [107, 108]. The serine/arginine-rich splicing fac-
tor 2 (SRSF2) binds to the non-methylated form of vault 
RNA1-1 with higher affinity and counteracts the processing 
by NSUN2 [108]. Therefore, the expression level of SRSF2 
and NSUN2 and their binding to vault RNA1-1 orchestrates 
the production of small-vault RNAs. The lack of NSUN2-
mediated methylation of vault RNA1-1 results in reduced 
amount of small-vault RNAs and results in changes in epi-
dermal differentiation program of keratinocytes [107, 108]. 
It is well established also that lack of NSUN2-dependent 
5-methyl-cytosine modification in other non-coding RNAs 
modifies the physiologic situation too; e.g., aberrant 
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5-methyl-cytosine modification of tRNAs impairs the trans-
lation machinery and causes neuro-developmental deficits 
[145, 146].

The regulated expression of a small-vault RNA derived 
from vault RNA2-1 (called small-vault RNA2-1a) has been 
shown to modulate early developmental processes in the 
central nervous system and has an important role in human 
brain development as well as aging. The small-vault RNA2-
1a has the highest expression level early in post-natal devel-
opmental stages and the amount decreases after 1 year with 
low levels being detected at the oldest ages examined [147].

Vault RNA‑derived small RNAs

Another peculiar characteristic of vault RNAs is that they 
can be processed into several small RNAs and the cleav-
age process of vault RNAs is mediated by RNA methyl-
transferase NSUN2. The introduction of 5-methyl-cytosine 
by NSUN2 is a prerequisite for DICER-dependent cleav-
age process of vault RNAs and the resulting small-vault 
RNAs regulate their target genes in a miRNA-like fash-
ion [106–108] as the aforementioned down-regulation of 
CYP3A4 by small RNAs resulting in altered dug metabo-
lism [106] as well as the role of small-vault RNAs for epi-
dermal differentiation program of keratinocytes [107, 108]. 
In both cases, the small-vault RNAs are processed from 
vault RNA1-1. Another example for the role of small-vault-
dependent RNAs was recently reported in prostate cancer. 
Vault RNA2-1 produces two small RNAs (snc886-3p and 
snc886-5p) that are found to be reduced in tumor tissues 
compared to the surrounding normal tissues. Based on PAR-
CLIP (photoactivatable ribonucleoside-enhanced crosslink-
ing and immunoprecipitation) and knock-out experiments of 
microRNA biogenesis enzymes, it was demonstrated that 
vault RNA2-1 cleavage is based on DICER but independent 
of DROSHA and the resulting small-vault RNAs are asso-
ciated with argonaute proteins [148] in a similar process of 
miRNAs biogenesis [149]. As functional proof of action, 
over-expression of snc886-3p in relevant in vitro and in vivo 
systems, resulted in down-regulation of mRNAs contain-
ing complementary sequences to the seed sequence of the 
small-vault RNA in their 3′-UTRs. This led to reduced cell 
cycle progression, increased apoptosis [148, 150] and this 
seems in agreement with the view of vault RNA2-1 as tumor 
suppressor [46, 47, 120–123]. In Parkinson disease, a small-
vault RNA derived from vault RNA2-1 is up-regulated in 
early stages of the disease and this small-vault RNA is most 
probably involved in the process of brain development as 
outlined in detail above [151].

Furthermore, small RNAs derived from vault RNAs and 
associated with the argonaute complex have been identified 
also in breast, prostate, lung and lymphoid tissue [106, 148]. 

These findings support the hypothesis of a cleavage of vault 
RNAs into small RNAs which influence mRNA stability 
and/or regulate translation like miRNAs. However, the main 
role of small-vault RNAs need further investigation and it 
will be of valuable interest if these small RNAs can regu-
late transcription in a tissue and cell-type-specific fashion 
as miRNAs [149].

Furthermore, small-vault RNAs are secreted by cells 
and they are present in high numbers in exosomes (Fig. 1). 
Therefore, small-vault RNAs are most probably also 
involved in cell–cell signaling [106, 107, 152].

Vault RNAs, viral infection and immune 
system

Viral infections induce vault RNA expression [45, 153] 
and this was observed in in vitro models for different virus 
families including γ-herpesviridae (Herpes simplex virus 
1), paramyxovirus (Sendai and Epstein–Barr virus), Kapo-
si’s sarcoma-associated herpes and influenza-A virus [44, 
45, 53, 54]. Most of these viruses are known to reduce the 
autophagic capacity of their host cells that is a consequence 
of high expression levels of vaults RNAs as mentioned above 
[53, 154]. In addition, transcriptional induction of vault 
RNAs upon infection, has been associated with expression 
of latent membrane protein 1 for EBV and non-structural 
protein NS1 of influenza virus, respectively, with the aim 
to prevent cells from apoptosis and suppress PKR-mediated 
innate immunity [53, 54]. Therefore, high expression levels 
of vault RNAs result in an increased viral load. Viruses are 
known to hijack cells and their cellular replication machin-
ery to maximize viral replication while inhibiting cellular 
defence mechanisms [155]. Up-regulation of vault RNA 
levels seems to be a very efficient way to escape targeted 
viral degradation via autophagy and subsequent MHC class 
II antigen presentation [156] and in parallel force the cell 
to enter a pro-proliferative state that counteracts cellular 
suicide programs as well as support rapid virus replication 
[157]. Therefore, it is not surprising that vault RNAs are 
hijacked and used by viruses. This underlines the important 
and central role of vault RNAs in regulating cellular pro-
cesses (Fig. 1).

Another effect of viral infection is the reduction of cel-
lular DUSP11 expression. DUSP11-mediated de-phospho-
rylation of the 5′-end of vault RNAs initiates the degradation 
of these RNAs [158, 159]. Therefore, an infection-dependent 
reduction of DUSP11 levels results in accumulation of vault 
RNAs that in turn trigger an innate immune response via 
retinoic acid-inducible gene-1 (RIG-1) receptors [160]. 
By this, at least one of the anti-viral defence mechanisms 
against RNA virus is activated [161].
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Vault RNAs as diagnostic and prognostic 
markers

In Parkinson disease, down-regulation of miR-7, miR-
34b/c and miR-133b [162–164] as well as up-regulation 
of a small-vault RNA derived from vault RNA2-1 is com-
mon in brain areas that are affected by this disease [147]. 
Increased expression of vault RNA2-1 occurs early in the 
course of disease and could perhaps be used as a diagnos-
tic marker.

Hyper-methylation of vault RNA2-1 gene is corre-
lated with poor prognosis and overall survival in several 
cancers; e.g., gastric, oesophageal, lung, prostate, acute 
myeloid leukemia and myelodysplastic syndrome. There-
fore, vault RNA2-1 could act as tumor suppressor [46, 47, 
120–123, 150] and the expression level of vault RNA2-1 
could be used as a prognostic marker.

In addition, the expression level of the major vault pro-
tein has been correlated with therapy resistance, progno-
sis and overall survival in several blood cancers (acute 
myeloid leukemia, acute lymphoblastic leukemia, adult 
T-cellss leukemia and multiple myeloma) [165–176]. In 
solid tumors, expression level of the major vault protein is 
a good prediction factor for response to chemotherapy in 
bladder cancer [177], melanoma [178] and for determining 
the aggressive phenotype of testicular germ-cell tumors 
[179] and glioblastoma [180].

Conclusion and perspectives

The old simplistic view that non-coding RNAs only play 
functional roles in protein synthesis as integral compo-
nents (rRNA) or reaction substrates (tRNA) of the ribo-
some has dramatically evolved during the last 2 decades 
with emerging concepts linking different classes of non-
coding RNAs to physiology and disease. The non-coding 
RNA group of vault RNAs, which is composed of only 
four members in human, exert an important role within 
the cell. Although until recently not all functions and 
processes have been unveiled in detail, it is already clear 
that vault RNAs add another level of regulation to the 
network of non-coding and coding RNAs. As outlined in 
this review, vault RNAs are involved in transferring extra-
cellular stimuli into signals inside the cell; they regulate 
central signaling pathways and cell–cell communication. 
Furthermore, vault RNAs play a substantial role in immu-
nity response, influencing proliferation, apoptosis and 
autophagy as well as being involved in drug resistance 
mechanisms (Fig. 1). All these functions are under vault 
RNAs regulation either via direct interaction with proteins 

or via post-transcriptional regulation of mRNAs. In par-
ticular, in the context of cancer, vault RNAs appear to have 
a critical role and a better understanding of their biology 
in this disease could offer a new prospect for cancer treat-
ment and prevention of drug resistance.
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