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Abstract

Non-coding RNAs are important regulators of differentiation during embryogenesis as well as key players in the fine-tuning
of transcription and furthermore, they control the post-transcriptional regulation of mRNAs under physiological condi-
tions. Deregulated expression of non-coding RNAs is often identified as one major contribution in a number of pathological
conditions. Non-coding RNAs are a heterogenous group of RNAs and they represent the majority of nuclear transcripts in
eukaryotes. An evolutionary highly conserved sub-group of non-coding RNAs is represented by vault RNAs, named since
firstly discovered as component of the largest known ribonucleoprotein complexes called “vault”. Although they have been
initially described 30 years ago, vault RNAs are largely unknown and their molecular role is still under investigation. In this

review we will summarize the known functions of vault RNAs and their involvement in cellular mechanisms.
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Introduction

Non-coding RNAs represent the vast majority of transcrip-
tional product of the human genome [1, 2]. The family of
non-coding RNAs is composed of 19 different classes;
among them transfer RNAs (tRNAs), tRNA-derived RNA
fragments (tRFs), ribosomal RNAs (rRNAs), small nucleo-
lar RNAs (snoRNAs), endogenous small interfering RNAs
(endo-siRNAs), sno-derived RNAs (sdRNAs), transcription
initiation RNAS (tiRNAs), miRNA-offset-RNAs (moRNAS),
circular RNAs (circRNAs), vault RNAs, microRNAs (miR-
NAs), small interfering RNAs (siRNAs), small nuclear
RNAs (snRNAs), extracellular RNAs (exRNAs), piwi-inter-
acting RNAs (piRNAs), small Cajal body RNAs (scaRNAs),
transcribed-ultraconserved regions (t-UCRs), long intergenic
non-coding RNAs (lincRNAs), and long non-coding RNAs
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(IncRNAs) [3-25]. The role and function of tRNAs, rRNAs,
microRNAs and IncRNAs, in particular, have been well
examined both under physiological and pathological condi-
tions [26]. In general, non-coding RNAs control all levels
of genes’ regulation in eukaryotes, including the control of
chromosome dynamics, splicing, RNA editing, translational
inhibition and mRNA degradation [26]. Even transcription
itself may be regulated by non-coding RNAs as outlined in
several reports [27-29]. This is achieved on one hand, by
control of chromosome dynamics and modifications and on
the other hand, by regulation of RNA polymerase II activity.
Therefore, non-coding RNAs are involved in regulation of
accessibility of DNA sequences for the transcription machin-
ery, as well as in modulation of the transcription rate of RNA
polymerase II [30-34]. Furthermore, splicing of pre-mRNA
transcripts, post-transcriptional regulation of expression rate
as well as translation of mRNAs in cytoplasm and regu-
lation of mRNA half-life are under control of non-coding
RNAs [26, 27, 35]. In addition, some non-coding RNAs are
known to be involved in intercellular communication and
cell regulation [36, 37]; whereas, others are part of the anti-
viral defence by stimulating immune response and activating
RNA interference pathway [38, 39].

In contrast, the molecular functions of vault RNAs are
still not completely clear even after more than 30 years since
their discovery [40, 41]. With a length between 88 and 140
nucleotides vault RNAs are longer than miRNAs, but they
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are still included as members of the short non-coding RNA
group [41, 42].

In humans, four vault RNAs are encoded on chromosome
5q31 in two different loci. The VTRNA-1 locus (located
between zinc-finger matrin-type 2 gene and proto-cadherin
cluster) contains the genetic information for three vault
RNAs (vault RNA1-1, vault RNA1-2 and vault RNA1-3)
and VTRNA-2 locus (located between the genes coding for
transforming growth factor beta 1 and SMAD family mem-
ber 5) codes for vault RNA2-1 also known as pre-miR-886
[43—-45]. All vault RNA genes are under control of a poly-
merase III type 2 promoter and they contain a box A and
box B motif normally found in tRNA genes [41, 42]. Nev-
ertheless, the promoters of the two vault RNA loci are not
identical; therefore, expression patterns of the vault RNA
genes are different [42]. Furthermore, epigenetic modifica-
tions such as promoter methylation are important regulators
for vault RNAs expression especially for the VTRNA-2 gene
[46, 47]. The distant regulatory elements of the VTRNA-1
promoter are characterized by differential CpG accessibility
and this might be a hint for a cell-type-specific expression
of the three vault RNAs under control of this promoter [48].
The internal promoter sequences box A and box B present
in VTRNA-1 and VTRNA-2 enable binding of transcrip-
tion factors TFIIIC and TFIIIB which facilitate polymer-
ase III binding to the transcription starting site [49]. Vault
RNAs transcription is also under control of cAMP response
(CRE)- and tetradecanoyl-phorbol acetate response (TRE)-
like elements [41, 42]. These elements represent binding
sites for the transcription factors CREB and AP-1, respec-
tively, which adapt key cellular processes such as differentia-
tion, proliferation and survival to nutrient, growth factor and
stress signaling [50, 51]. This could explain the observed
differential vault RNA transcription rate upon viral infection,
starvation and cancer [45, 52-54]. Furthermore, the short
half-life time observed of around 1 h makes vault RNAs suit-
able as signaling molecules that quickly respond to stimuli
[55, 56].

Vault RNAs were first identified as a component of vault
particles [40] but most of the vault RNAs (around 95%) are
not associated with these particles and therefore, vault RNAs
are most probably also involved in other cellular processes
and interactions [57, 58] (Fig. 1).

Vault particles

Vault particles are the largest known ribonucleoprotein
complexes in eukaryotes [59, 60]. Structure and protein
composition of vaults are highly conserved and present
in high number (10,000-100,000/cell) in different species
[43, 61-64]. Therefore, it is very likely that vault particles
might play fundamental roles in eukaryotic cells [42]. Some
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reports connect the vault particles complex to a plethora of
mechanisms that include: nuclear-pore complex formation,
nuclear—cytoplasmic transport, cellular signaling, innate
immune response, apoptosis resistance, DNA damage repair
and development of multidrug resistance in cancer cells [43,
65-72] (Fig. 1).

The main component of vault particles is the major vault
protein that is sufficient itself for the structural conformation
characteristic of the vault particles [73—77]. The major vault
protein has no homology to any other protein known, but it
is highly conserved among different species (around 90%
identity between mammalians and around 60% with lower
organisms) [75, 78]. Interestingly, the major vault protein
contains two Ca** binding sites at the N-terminal end which
are necessary for correct folding and particle assembly but
also to interact with other proteins like PTEN, thus connect-
ing the vault particles to cellular signaling pathways [79].
Beside the major vault protein, two other proteins are pre-
sent in the vaults particles; the poly-(adenosine-diphosphate
ribose) polymerase—a member of the PARP family—and
the telomerase-associated protein 1 (TEP1) [80-82]. In these
vault particles, the vault RNAs are associated with the caps
[43, 57, 75, 83]. The vast majority (around 90%) of vault
particles in unstressed cells are located in the cytoplasm
but vault particles are also found to be associated with the
nuclear membrane. The distribution of vault particles var-
ies in response to external stimuli and rapidly react towards
extracellular changes with translocation to different subcel-
lular compartments. Furthermore, under pathological condi-
tions like cancer, a higher amount of vault particles are asso-
ciated with the nuclear membrane and up to 5% of them are
found within the nucleus [68, 84—88]. Based on this obser-
vation and the barrel-like structure of the vault particles,
the hypothesis exist that vault particles have an important
role in mediating shuttle processes between cytoplasm and
nucleus, including nuclear import of tumor-suppressors like
PTEN, nuclear hormone receptors as well as drug export.
It is speculated that some of the cargos transported in vault
particles are bound to the vault RNAs present in these com-
plexes [66, 67, 89-91]. But up to now, the role of vault
particles as transporter is still under discussion and further
investigation is urgently needed because most of these stud-
ies used either immunoprecipitation of signaling complexes
or yeast two hybrid systems, and it cannot be excluded that
the found interaction with vault particles and vault RNAs
occurred accidentally and is without any biological sense. A
verification of vault particles as transporter in humans under
physiological and/or pathological conditions (e.g., tumor) is
still missing.
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Fig.1 Vault RNAs are involved in different cellular processes and
interactions. The vast majority (95%) of vault RNAs are not associ-
ated with the vault ribonucleoprotein complex; they are involved in
regulation of important cellular pathways like cell death (intrinsic and

Studies on vault particles using knock-out
mice

The role of major vault protein and vault particles has been
addressed in relevant mice knock-out models [92-94]. In
TEP1 knock-out mice vault particles were still present,
but inside these vault particles, no vault RNAs have been
found. Therefore, it was concluded that TEP1 is absolutely
required for a stable association of vault RNAs with the
vault complex [93]. TEP1 knock-out mice as well as major
vault protein knock-out mice are viable, healthy and display
no obvious abnormalities [93, 94]. The major vault protein
knock-out mice express no vaults particles as expected and
have been used in different studies to examine the role of
vault particles [78, 84, 94, 95]. Surprisingly, embryonic
stem cells and bone marrow cells derived from major vault
protein knock-out mice showed no change in sensitivity to
drugs when compared to wild-type mice cells. In addition,

extrinsic apoptosis; autophagy), proliferation, cellular differentiation,
mRNA regulation and cell-cell communication. Besides this, vault
RNAs influence the immune reaction and especially in cancer, they
have an important role in rendering cells resistance to drug treatment

the activities of the multidrug resistance-related transporters
P-glycoprotein, multidrug resistance-associated protein and
breast cancer resistance protein were not altered in vault-
deficient cells ruling out the possibility that these proteins
compensate for the loss of vaults. Also, the response towards
doxorubicin treatment was the same in major vault protein
knock-out and wild-type mice in in vivo experiments [94].
These observations lead to the conclusion that at least in
mice, vaults are not directly involved in drug resistance [78,
84]. In another study, the major vault protein knock-out mice
were used to address the role of vaults in regard to dendritic
cells. Development and function of dendritic cells, derived
from mononuclear bone marrow cells, appeared normal
in knock-out mice. In-vivo immunization assays showed
that neither T-cell-mediated immune response nor T-cell-
dependent humoral response were affected by major vault
protein knock-out, indicating intact antigen-presenting and
migration capacities of dendritic cells. Obviously, in mice
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vault particles are not required for primary dendritic cell
functions [95]. This observation is in contrast with findings
in humans where major vault protein and vault particles are
up-regulated during the development of human dendritic
cells. Moreover, major vault protein-specific antibodies, pre-
sumably interfering with the function of major vault protein
or vaults, resulted in reduced expression levels of dendritic
cell markers, co-stimulatory molecules and decreased capac-
ity to induce T-cell proliferative and interferon-y-releasing
responses [96]. Recently, the major vault protein was iden-
tified as a suppressor for NF-kB signaling in macrophages
[97]. Global as well as myeloid-specific major vault protein
gene knock-out intensified high-fat diet-induced obesity,
insulin resistance, hepatic steatosis and atherosclerosis in
mice via NF-kB signaling pathway. Furthermore, increased
macrophage infiltration and inflammatory responses in
the microenvironments have been observed [97]. Another
study used peripheral blood mononuclear cells (PBMCs)
from major vault protein knock-out mice and evaluated an
essential role of major vault protein for the induction of early
antiviral cytokines (like IL-6 and IL-8) in the context of
double-stranded RNA- or virus-induced pro-inflammatory
response [98]. In the following sections, we will focus on the
role of vault particles and vault RNAs in humans.

Vault RNAs, vault particles and drug
resistance

One of the roles of the vault particles is the contribution
to mediate drug resistance mechanisms by transporting
the drugs from their intracellular targets to the extracellu-
lar compartment and also in drug sequestration [78]. In an
elegant experiment, expression of major vault proteins was
prevented by a siRNA approach in human bladder cancer
cells under doxycycline treatment. This resulted in inhibi-
tion of cytosolic doxorubicin sequestration in perinuclear
lysosomes and enhanced accumulation of the drug in the
nucleus as well as increased cytotoxicity [99]. Based on
the fact that nuclear PTEN is involved in the maintenance
of chromosomal stability [100], its nuclear transportation
by vaults particles could also play a role in drug resistance
mechanisms by counteracting drug-induced DNA damage
[101].

In most cell lines, vault RNA1-1 has the highest expres-
sion level of all vault RNA transcripts [102]. In multidrug-
resistant cells, the level of vault RNA1-1 is not altered but
expression rate of vault RNA1-3 is raised and an increased
association of vault RNA1-3 with vaults particles has been
observed [43, 102]. However, the molecular details behind
this observation are still not clear. In general, vault RNAs
bound to the vault particles have the capacity to interact
with drugs via specific binding sites [103]. For instance, in
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cancer patients who developed resistance to chemotherapy,
the number of vault particles is increased, in agreement
with their observed role, in in vitro models [78, 103—-105].
Another relevant example is given by mitoxantrone resist-
ance in osteosarcoma, glioblastoma and leukemia where
drug failure is based on direct binding of the drug to
vtRNA1-1 and vtRNA1-2 [103, 104].

Besides sequestering drugs, vault RNAs are processed
into several small RNAs (Fig. 1). Among them small-vault
RNAs, account in a second way for multidrug resistance
in cancer patients by down-regulating CYP3A4, the key
enzyme in drug metabolism [106]. Interestingly, the intro-
duction of 5-methyl-cytosine by the RNA methyltransferase
NSUN?2-dependent leads to the cleavage of vault RNAs in a
Dicer-dependent mechanism; thus, the resulting small-vault
RNAs regulate their target genes in a miRNA-like fashion
[106-108].

Furthermore, vault RNAs can induce drug resistance in
an indirect way by influencing cell proliferation and prevent-
ing cell death as described in the following sections.

Vault RNAs and proliferation

Drug resistance can also arise by the increase in cell pro-
liferation rate [109, 110]. Vault RNAs have been found to
influence cell proliferation in different ways and in a cell-
type-specific manner without the participation of vault par-
ticles (Fig. 1).

In breast cancer, vault RNA1-1 interacts directly with the
RNA/DNA-binding protein polypyrimidine tract binding
splicing factor (PSF) [105]. PSF is an important regulatory
nuclear protein that acts as a component of spliceosomes via
the RNA-binding domain and furthermore regulates tran-
scription of genes via the DNA-binding domain; e.g., PSF
controls the transcription of P450-linked side-chain cleaving
enzyme (CYP11A1) and regulates this by the steroid path-
way; in addition PSF inhibits transcription of proto-oncogene
G antigen 6 (GAGE®6) [111-113]. Following the binding of
vault RNA1-1 to PSF RNA-binding domain, the transcrip-
tional repression of GAGEG6 via the DNA-binding domain
is released and transcription of the proto-oncogene proceeds
[114]. Induced expression of GAGES6 results in increased
cell proliferation and causes drug resistance [105]. Vault
RNAZ2-1 interacts with and blocks the pro-apoptotic inter-
feron-inducible protein kinase R (PKR). PKR is a central
protein for cellular response to different stress signals such
as pathogens, starvation, cytokines and irradiation. PKR
activates different central pathways like INK, NF-xB, PP2A,
p38 and inhibits the eukaryotic translation initiation factor
elF2a by phosphorylation [115]. In normal cells, this inhib-
its further cellular mRNA translation based on AUG initia-
tion codons and in parallel activates the tumor-suppressor
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PP2A which blocks cell-cycle, as well as proliferation and
leads ultimately to cell death [55]. In different cancer cells,
active PKR fails to induce phosphorylation of eIF2a and
PP2A, so that apoptosis is not triggered but PKR promotes
still the pro-survival NF-xB pathway [116-118]. Therefore,
the reduced expression levels of vault RNA2-1 found in can-
cer cell lines and cancer patients specimens result in activa-
tion of PKR and subsequent increased cell proliferation as
well as drug resistance [119]. Consequently, vault RNA2-1
seems to act as tumor suppressor in contrast to oncogenic
effects of vault RNA1-1 [46, 47, 120-123].

Vault RNAs and apoptosis

Vault RNA1-1 is involved in inhibiting the intrinsic as
well as extrinsic apoptosis pathway in several cancer cell
lines as demonstrated in in vitro experiments [54, 124]. To
address the role of vault RNAs in apoptotic mechanisms,
cells have been treated with an autophagy inhibitor and cell
death induced by serum starvation. Cells with knock-out
vault RNAI-1 gene were more susceptible to programmed
cell death; whereas, re-expression of vault RNA1-1 restored
apoptosis resistance of the cells. The mechanism underly-
ing the blocking of apoptosis seems to be related to a short
stretch within the central domain of vault RNA1-1 and can-
not be exerted by other vault RNA members. Furthermore,
it was demonstrated that regulation of programmed cell
death is independent of vault particles and relay only on
vault RNA1-1 [54]. The protective effects of vault RNA1-1
against programmed cell death have been observed after trig-
gering the intrinsic (via staurosporine, etoposide) as well as
extrinsic (via Fas ligand) apoptosis pathway [54]. Increased
vault RNA1-1 expression activates the pro-survival PI3K-/
AKT- and ERK1/2 MAPK-signaling pathways and by this
counteract cell death [124]. In Epstein—Barr virus (EBV)-
infected B-cells, the latent membrane protein 1 (LMP1)
of EBV up-regulates the NF-xB pathway that results in
increased expression of vault RNA1-1. In this context, vault
RNAI1-1 inhibits the extrinsic and intrinsic apoptotic path-
ways and enables cell proliferation by further activation of
NF-xB pathway and up-regulation of the expression of Bcl-
xL [54].

Vault RNAs and autophagy

Autophagy is besides apoptosis another catabolic pathway
essential in homeostasis of cells [125]. Both mechanisms
are interconnected by several molecular nodes and a close
cross-talk exists [54]. In direct proximity of the VTRNA-1
locus is the proto-cadherin cluster that encodes for the proto-
cadherin family, which is involved in autophagy [126].

Therefore, it seems indicative that also vault RNAs might
be involved in autophagy [52] (Fig. 1). Autophagic process
is necessary for cleaning out unnecessary or dysfunctional
components in cells and recycle nutrients and energy. All
cargos that cannot be degraded by the ubiquitin—protea-
some system are cleaved via autophagy in the lysosomes
[127-129]. In contrast to apoptosis that results in cell death
[130], autophagy in cancer can facilitate tumor cell survival
in stress conditions (e.g., under hypoxia or starving condi-
tions) by providing energy and nutrients [131]. An estab-
lished marker for the autophagic state of a cell is the intracel-
lular levels of p62 [132]. The selective autophagy receptor
p62 [133, 134] is of pivotal importance to the autophagic
process by recognizing cargos for the autophagic process,
triggering autophagosome formation and exerting a regula-
tory role in autophagy [127, 135-138]. Vault RNA1-1 binds
directly to p62 preventing its oligomerization, a prerequisite
for autophagy. This results in inhibition of p62-dependent
autophagy and aggregate clearance [52, 139]. Another role
of p62 is the cross-talk between autophagy and apoptosis
[140, 141] and increased levels of monomeric p62, upon
autophagy inhibition via vault RNA1-1, could modulate the
balance between the two catabolic pathways. In addition,
p62 is involved in the regulation of inflammatory pathways,
especially the autophagic defence against invading bacteria
and viruses [142]. Most probably, viruses target p62 by up-
regulation vault RNAs to decrease the autophagic processes
in parallel with inhibition of interferon responses as outlined
further below [53].

Vault RNAs, cellular differentiation
and development

It is well established that the levels of non-coding RNAs,
including vault RNAs, are highly regulated during devel-
opment and cellular differentiation since they are essen-
tial to these processes [143]. One example is based on the
above-mentioned NSUN2-dependent 5-methyl-cytosine
modification of vault RNA1.1 and vault RNA1.3 [107,
144] which was recently reported to influence cell differ-
entiation [107, 108]. The serine/arginine-rich splicing fac-
tor 2 (SRSF2) binds to the non-methylated form of vault
RNAI1-1 with higher affinity and counteracts the processing
by NSUNZ2 [108]. Therefore, the expression level of SRSF2
and NSUN?2 and their binding to vault RNA1-1 orchestrates
the production of small-vault RNAs. The lack of NSUN2-
mediated methylation of vault RNA1-1 results in reduced
amount of small-vault RNAs and results in changes in epi-
dermal differentiation program of keratinocytes [107, 108].
It is well established also that lack of NSUN2-dependent
5-methyl-cytosine modification in other non-coding RNAs
modifies the physiologic situation too; e.g., aberrant
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5-methyl-cytosine modification of tRNAs impairs the trans-
lation machinery and causes neuro-developmental deficits
[145, 146].

The regulated expression of a small-vault RNA derived
from vault RNA2-1 (called small-vault RNA2-1a) has been
shown to modulate early developmental processes in the
central nervous system and has an important role in human
brain development as well as aging. The small-vault RNA2-
1a has the highest expression level early in post-natal devel-
opmental stages and the amount decreases after 1 year with
low levels being detected at the oldest ages examined [147].

Vault RNA-derived small RNAs

Another peculiar characteristic of vault RNAs is that they
can be processed into several small RNAs and the cleav-
age process of vault RNAs is mediated by RNA methyl-
transferase NSUN2. The introduction of 5-methyl-cytosine
by NSUN?2 is a prerequisite for DICER-dependent cleav-
age process of vault RNAs and the resulting small-vault
RNAs regulate their target genes in a miRNA-like fash-
ion [106—108] as the aforementioned down-regulation of
CYP3A4 by small RNAs resulting in altered dug metabo-
lism [106] as well as the role of small-vault RNAs for epi-
dermal differentiation program of keratinocytes [107, 108].
In both cases, the small-vault RNAs are processed from
vault RNA1-1. Another example for the role of small-vault-
dependent RNAs was recently reported in prostate cancer.
Vault RNA2-1 produces two small RNAs (snc886-3p and
snc886-5p) that are found to be reduced in tumor tissues
compared to the surrounding normal tissues. Based on PAR-
CLIP (photoactivatable ribonucleoside-enhanced crosslink-
ing and immunoprecipitation) and knock-out experiments of
microRNA biogenesis enzymes, it was demonstrated that
vault RNA2-1 cleavage is based on DICER but independent
of DROSHA and the resulting small-vault RNAs are asso-
ciated with argonaute proteins [148] in a similar process of
miRNAs biogenesis [149]. As functional proof of action,
over-expression of snc886-3p in relevant in vitro and in vivo
systems, resulted in down-regulation of mRNAs contain-
ing complementary sequences to the seed sequence of the
small-vault RNA in their 3'-UTRs. This led to reduced cell
cycle progression, increased apoptosis [148, 150] and this
seems in agreement with the view of vault RNA2-1 as tumor
suppressor [46, 47, 120-123]. In Parkinson disease, a small-
vault RNA derived from vault RNA2-1 is up-regulated in
early stages of the disease and this small-vault RNA is most
probably involved in the process of brain development as
outlined in detail above [151].

Furthermore, small RNAs derived from vault RNAs and
associated with the argonaute complex have been identified
also in breast, prostate, lung and lymphoid tissue [106, 148].
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These findings support the hypothesis of a cleavage of vault
RNAs into small RNAs which influence mRNA stability
and/or regulate translation like miRNAs. However, the main
role of small-vault RNAs need further investigation and it
will be of valuable interest if these small RNAs can regu-
late transcription in a tissue and cell-type-specific fashion
as miRNAs [149].

Furthermore, small-vault RNAs are secreted by cells
and they are present in high numbers in exosomes (Fig. 1).
Therefore, small-vault RNAs are most probably also
involved in cell—cell signaling [106, 107, 152].

Vault RNAs, viral infection and immune
system

Viral infections induce vault RNA expression [45, 153]
and this was observed in in vitro models for different virus
families including y-herpesviridae (Herpes simplex virus
1), paramyxovirus (Sendai and Epstein—Barr virus), Kapo-
si’s sarcoma-associated herpes and influenza-A virus [44,
45, 53, 54]. Most of these viruses are known to reduce the
autophagic capacity of their host cells that is a consequence
of high expression levels of vaults RNAs as mentioned above
[53, 154]. In addition, transcriptional induction of vault
RNAs upon infection, has been associated with expression
of latent membrane protein 1 for EBV and non-structural
protein NS1 of influenza virus, respectively, with the aim
to prevent cells from apoptosis and suppress PKR-mediated
innate immunity [53, 54]. Therefore, high expression levels
of vault RNAs result in an increased viral load. Viruses are
known to hijack cells and their cellular replication machin-
ery to maximize viral replication while inhibiting cellular
defence mechanisms [155]. Up-regulation of vault RNA
levels seems to be a very efficient way to escape targeted
viral degradation via autophagy and subsequent MHC class
IT antigen presentation [156] and in parallel force the cell
to enter a pro-proliferative state that counteracts cellular
suicide programs as well as support rapid virus replication
[157]. Therefore, it is not surprising that vault RNAs are
hijacked and used by viruses. This underlines the important
and central role of vault RNAs in regulating cellular pro-
cesses (Fig. 1).

Another effect of viral infection is the reduction of cel-
lular DUSP11 expression. DUSP11-mediated de-phospho-
rylation of the 5'-end of vault RNAs initiates the degradation
of these RNAs [158, 159]. Therefore, an infection-dependent
reduction of DUSP11 levels results in accumulation of vault
RNAs that in turn trigger an innate immune response via
retinoic acid-inducible gene-1 (RIG-1) receptors [160].
By this, at least one of the anti-viral defence mechanisms
against RNA virus is activated [161].
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Vault RNAs as diagnostic and prognostic
markers

In Parkinson disease, down-regulation of miR-7, miR-
34b/c and miR-133b [162-164] as well as up-regulation
of a small-vault RNA derived from vault RNA2-1 is com-
mon in brain areas that are affected by this disease [147].
Increased expression of vault RNA2-1 occurs early in the
course of disease and could perhaps be used as a diagnos-
tic marker.

Hyper-methylation of vault RNA2-1 gene is corre-
lated with poor prognosis and overall survival in several
cancers; e.g., gastric, oesophageal, lung, prostate, acute
myeloid leukemia and myelodysplastic syndrome. There-
fore, vault RNA2-1 could act as tumor suppressor [46, 47,
120-123, 150] and the expression level of vault RNA2-1
could be used as a prognostic marker.

In addition, the expression level of the major vault pro-
tein has been correlated with therapy resistance, progno-
sis and overall survival in several blood cancers (acute
myeloid leukemia, acute lymphoblastic leukemia, adult
T-cellss leukemia and multiple myeloma) [165-176]. In
solid tumors, expression level of the major vault protein is
a good prediction factor for response to chemotherapy in
bladder cancer [177], melanoma [178] and for determining
the aggressive phenotype of testicular germ-cell tumors
[179] and glioblastoma [180].

Conclusion and perspectives

The old simplistic view that non-coding RNAs only play
functional roles in protein synthesis as integral compo-
nents (rRNA) or reaction substrates (tRNA) of the ribo-
some has dramatically evolved during the last 2 decades
with emerging concepts linking different classes of non-
coding RNAs to physiology and disease. The non-coding
RNA group of vault RNAs, which is composed of only
four members in human, exert an important role within
the cell. Although until recently not all functions and
processes have been unveiled in detail, it is already clear
that vault RNAs add another level of regulation to the
network of non-coding and coding RNAs. As outlined in
this review, vault RNAs are involved in transferring extra-
cellular stimuli into signals inside the cell; they regulate
central signaling pathways and cell-cell communication.
Furthermore, vault RNAs play a substantial role in immu-
nity response, influencing proliferation, apoptosis and
autophagy as well as being involved in drug resistance
mechanisms (Fig. 1). All these functions are under vault
RNAs regulation either via direct interaction with proteins

or via post-transcriptional regulation of mRNAs. In par-
ticular, in the context of cancer, vault RNAs appear to have
a critical role and a better understanding of their biology
in this disease could offer a new prospect for cancer treat-
ment and prevention of drug resistance.
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