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The future fertility of males with cancer may be irreversibly compromised by chemotherapy and/or radiotherapy. Spermatogonial
stem cell transplantation is believed to be a way to restore fertility in men. However, the survival efficiency of transplanted cells is
still low. Eukaryotic translation initiation factor 2 subunit 3 and structural gene Y-linked (Eif2s3y) located on the Y chromosome of
male animals is a coding gene of eIF2γ which mainly functions in translation initiation. Recently, the emerging role of Eif2s3y in
spermatogenesis has been emphasized in several studies. However, the underlying mechanism is still unclear. In addition, how
Eif2s3y functions in large animals remains largely unknown. In this study, we obtained the CDS sequence of the Eif2s3y gene
from the testis of dairy goats and found that this gene was highly expressed in the testis and was evolutionarily conserved
among different species. Interestingly, overexpression of Eif2s3y promoted the proliferation of spermatogonial stem cells of dairy
goats by activating the ERK signaling pathway. In animal experiments, overexpressing Eif2s3y promoted transplanted goat
spermatogonial stem cells and produced more colonies after microinjection into the seminiferous tubules of infertile mice. In
conclusion, our study highlights an undiscovered role of Eif2s3y in dairy goat reproduction. This finding may provide an
important basis for future works regarding male spermatogenic cell restoration and represent a major advance toward surrogate
sires becoming a tool for disseminating and regenerating germplasm in all mammals.

1. Introduction

Spermatogenesis is essential for the continuation of most
species. The reduction of spermatogonial stem cells (SSCs)
can destroy spermatogenesis and leads to male infertility [1,
2]. In addition to maintaining stable spermatogenesis, studies
in mice have shown that a small fraction of undifferentiated
spermatogonia can regenerate spermatogenic lineage after
being isolated from donor tissues and transplanted into the
testis of recipient males lacking endogenous reproductive
lines [3]. These regenerated spermatogonia are often referred
to as spermatogonial stem cells. SSCs are located on the base-
ment membrane of seminiferous tubules, and the delicate

control of SSC self-renewal and differentiation critically
determines sperm production in male animals [2, 4]. There-
fore, a defect in SSC proliferation usually results in reduced
germ cell number or even male infertility [5].

Chemotherapeutic drugs, such as busulfan and cisplatin,
cause male reproductive damage and long-term infertility by
damaging SSCs [6, 7]. In human reproductive medicine,
SSCs can be used to solve infertility caused by spermatogen-
esis and maturation disorders [8]. Spermatogonial stem cell
transplantation (SSCT) has many potential applications and
may have a significant impact on society. Successful sper-
matogenesis has not been achieved following the transplanta-
tion of human testis tissue. However, there have been
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successful cases of animal SSCT, such as mice, dogs, and non-
human primates [9, 10]. Thus, improving the proliferation
ability of SSCs is critical for the rapid restoration of male
reproductive capacity.

Eukaryotic translation initiation factor 2 subunit 3 and
structural gene Y-linked (Eif2s3y) is located on the Y chro-
mosome of male animals and is traditionally considered to
be involved in the formation of the eIF2 polymer to mediate
translation initiation [11, 12]. In recent years, several studies
have shown that Eif2s3y is essential for mouse spermatogen-
esis [13, 14]. In 2014, Yamauchi et al. reported that mouse
progeny could be generated by male germ cells with the Y
chromosome contribution limited to only two genes, Sry
and Eif2s3y [15, 16]. Importantly, Eif2s3y may be the only
Y chromosome gene required to drive mouse spermatogene-
sis. In our previous studies, increased efficiency of haploid
cell induction has been detected in Eif2s3y-overexpressing
(oeEif2s3y) embryonic stem cells (ESCs) [17]. However,
how Eif2s3y improves the efficiency of spermatogenesis is
still unclear.

In the present study, we wanted to explore the role and
regulatory mechanism of Eif2s3y in dairy goats. We obtained
the Eif2s3y gene fragment of dairy goats and found that the
expression level of Eif2s3y in the testis was significantly
higher than that in other tissues. In addition, we found that
Eif2s3y promoted goat SSC proliferation dependent on the
extracellular regulated protein kinases (ERK) signaling path-
way. The SSCT experiment showed that Eif2s3y could
increase the number of SSCs transplanted into busulfan-
treated mice. Our study may provide an efficient approach
for the repair of male spermatogenic cells in large animals
and improve the efficiency of livestock genetic breeding in
the future.

2. Materials and Methods

2.1. Animal Experiments. All animal experiments were per-
formed in accordance with the Guide for the Care and Use
of Laboratory Animals (Ministry of Science and Technology
of the People’s Republic of China, Policy No. 2006 398) and
were approved by the Animal Care and Use Center of the
Northwest A&F University.

Different tissues and testes at different ages (1, 3, 6, 9, 12,
18, and 24 months) of Guanzhong dairy goats were supplied
by Yaoan slaughterhouse in the Yangling Agricultural High-
tech Industrial Demonstration Zone. Three male goats from
each age were used in the testis collection. These tissues were
then used to extract RNA by using RNAiso Plus (#9109,
Takara Bio Inc., Japan).

The male ICR mice used for the infertile mouse model
were purchased from Dashuo Laboratory Animal Limited
Company in Chengdu, China. Twenty 7-week-old male mice
were treated with busulfan (B2635-25G, Sigma-Aldrich by
Merck) at a dose of 30mg/kg for 2 weeks to be rendered
infertile. These busulfan-treated mice were used for sper-
matogonial transplantation [1, 18].

2.2. Cell Culture and Preparation of Dairy Goat SSCs. The
procedures for isolating and purifying SSCs were in accor-

dance with a previous study, and the morphology and func-
tion of SSCs we used have been verified [19–21]. The
procedures for isolating and purifying SSCs are as follows.
Testes from dairy goats of 3 months were aseptically col-
lected. After washing five times with phosphate-buffered
saline (PBS) containing 100U/mL penicillin and 100mg/mL
streptomycin, testes were cut into small pieces by using sterile
scissors. Seminiferous epithelial cells were incubated with an
enzyme cocktail containing 0.1% collagenase IV (Invitrogen)
and 10μg/mL DNase I (Sigma-Aldrich by Merck) at 37°C for
30min, and the cell suspension was blended every 10min at
the same time. The dissociated fragments were then digested
with 0.25% trypsin (Invitrogen) for 15min, followed by neu-
tralization with Dulbecco’s modified Eagle’s medium
(DMEM, Invitrogen, Carlsbad, CA, USA) containing 10%
FBS (Gibco, MA, USA). The cell suspension was then filtered
by 40μm copper meshes to exclude the seminiferous tubules.
Then, the cell suspension was plated in culture dishes and
incubated in an atmosphere composed of 5% CO2 at 37°C
for 2 hours.

Nonadherent SSCs were obtained and removed to a new
dish when the Leydig cells attached to the culture dish. Then,
these cells were purified by the MASC technique to obtain
Thy1-positive cells. Dairy goat SSCs were cultured in a
medium containing DMEM/F12 (Invitrogen) with 1% FBS,
10% KSR (Invitrogen), 0.1mM β-mercaptoethanol (Sigma-
Aldrich by Merck), 1% nonessential amino acids (Invitro-
gen), 1% L-glutamine (Invitrogen), 10 ng/mL basic fibroblast
growth factor (bFGF, Millipore), 10 ng/mL GDNF
(Reproach), 50 ng/mL Gfra1 (Sino Biological, Inc., Beijing,
China), and 20ng/mL epidermal growth factor (EGF, Sino
Biological, Inc.) [22, 23]. These cells were cultured for 12
hours at 37°C, supplemented with 5% CO2 in the air. The
medium was refreshed every day. The dairy goat SSCs were
passaged by TrypLE (Invitrogen).

2.3. Seminiferous Tubule Transplantation. For SSCT, approx-
imately 100μL of a single cell suspension or medium was
injected through the efferent duct into the left testis or right
testis of busulfan-treated mice, respectively. The testis which
was injected with the medium was the control group. The
seminiferous tubule injection protocol was conducted as pre-
viously reported [24, 25]. These testes were collected for anal-
ysis 4 weeks after injection [26].

2.4. Construction of Recombination Plasmid. The primer
sequences for the dairy goat Eif2s3y CDS clone which were
designed according to the published Mus musculus Eif2s3y
mRNA sequence (XM_006531609) were as follows: forward:
5′-AGAATTCTTCGGCAAGATGGCG-3′, reverse: 5′
-AGCGGCCGCCTTCATTCATCATC-3′.

Eif2s3y was amplified from the dairy goat testicular
cDNA by a reverse transcription-polymerase chain reaction.
Then, the specific fragments were cloned into the pCDH-
CMV-MCS-EF1 vector. Nucleotide fragments for knocking
down experiments which were sent to biological companies
for synthesis were as follows: 5′-CCGGGAACAGATACTT
GCATTTGTACTCGAGTACAAATGCAAGTATCTGTT
CTTTTTTG-3′. The specific nucleotide fragments were
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cloned into the CD513B-U6-shEif2s3y vector. The recombi-
nant plasmid pCDH-CMV-Eif2s3y-EF1-puro (oeEif2s3y),
CD513B-U6-shEif2s3y (shEif2s3y), and assistant plasmids
PAX2 and VSVGwere stored in Shaanxi Centre of Stem Cells
Engineering & Technology, Northwest A&F University [27].

2.5. Lentivirus Preparation and Infection. Lentivirus produc-
tion was described previously [28]. Assistant plasmids PAX2
and VSVG were cotransfected with pCDH-CMV-Eif2s3y-
EF1-puro or CD513B-U6-shEif2s3y in HEK293T cells. The
oeEif2s3y or shEif2s3y lentivirus was collected 48 hours later
after substituted. The primary SSCs were infected with lenti-
virus oeEif2s3y or shEif2s3y when the density reached 80%
complementing with polybrene (Sigma-Aldrich by Merck)
to increase transfection efficiency. The infected SSCs were
then cultured with a medium containing 500ng/mL puromy-
cin (Sigma-Aldrich by Merck) for 1 week in order to increase
the proportion of positive cells.

2.6. Ethynyl-Deoxyuridine (EdU) Incorporation Assay. EdU
incorporation assay was performed as per the manufacturer’s
instructions (C10310-1, RiboBio, Guangzhou, China). SSCs
planted in a 48-well plate were incubated with the 50μM
EdU medium for 2 h. Then, the EdU medium was discarded.
Cells were fixed with 4% paraformaldehyde at room temper-
ature for 15min and decolorized in 2mg/mL glycine for
10min. After washing with PBS, cells were permeated by
0.5% Triton X-100 for 10min. The staining buffer was added
and incubated in the dark at room temperature for 30min.
After washing with PBS, the nuclei were visualized by
Hoechst 33342 (Sigma-Aldrich by Merck). The cells were
washed three times and observed under a fluorescence
microscope.

Three culture wells were used in each group. At least
three cell images and 300 cells per well were taken randomly.
The ratio of the number of red fluorescent cells to the num-
ber of blue fluorescent cells is the ratio of positive cells [28].
The proportion of positive cells is positively correlated with
the cell proliferation rate.

2.7. Quantitative Reverse Transcription-Polymerase Chain
Reaction (qRT-PCR) Analysis. The qRT-PCR analysis was
in accordance with a previous report [17]. Tissues and cells
were harvested at the proper time, and total RNAs were
extracted using the TRIzol reagent (RNAiso Plus, #9109,
Takara Bio Inc., Japan). RNA integrity was analyzed by aga-
rose gel electrophoresis, and the concentration was deter-
mined using a NanoDrop 2000 Spectrophotometer
(Thermo Fisher Scientific, USA). Reverse transcription was
performed using the RevertAid First Strand cDNA Synthesis
Kit (Lot 00887496, Thermo Fisher Scientific, Waltham, Mas-
sachusetts, USA). Aliquots of undiluted cDNA were stored at
-20°C and used for RT-PCR and real-time PCR. RT-qPCR
was conducted on a CFX Connect Real-Time System (Bio-
Rad, California, USA) using the SYBR Premix Real-Time
PCR Kit (FP215-01, Tiangen Biotech, Beijing, China) in
accordance with the manufacturer’s instructions. The expres-
sion levels of mRNAs were normalized to GAPDH and β-
actin. The qRT-PCR primers used in this article are listed

in Supplemental Table 1. All primer sequences were
determined through established GenBank sequences. The
PCR efficiency was evaluated and analyzed by agarose gel
electrophoresis.

2.8. Immunofluorescence (IF) Staining. Immunofluorescence
staining of testes and SSCs was conducted as previously
reported [27]. The primary antibodies used in this study are
listed as follows: rabbit anti-eIF2γ (1 : 200; PA5-31177,
Thermo Fisher Scientific, MA, USA), rabbit anti-DDX4
(1 : 200; ab13840, Abcam, Cambridge, UK), mouse anti-
ZBTB16 (1 : 200; sc-28319, Santa Cruz Biotechnology, CA,
USA), rabbit anti-STRA8 (1 : 200; ab49602, Abcam, Cam-
bridge, UK), mouse anti-GFRa1 (1 : 200; sc-271546, Santa
Cruz Biotechnology, CA, USA), rabbit anti-SOX9 (1 : 200;
ab185230, Abcam, Cambridge, UK), and rabbit anti-StAR
(1 : 100; bs-20388R, Bioss, Beijing, China). Secondary anti-
bodies are as follows: Alexa Fluor 488-goat anti-rabbit IgG
(1 : 400; ZF-0511, ZSGB-BIO, Beijing, China) and Alexa
Fluor 568-goat anti-mouse (1 : 400; ZF-0513, ZSGB-BIO,
Beijing, China).

2.9. Population Doubling Time (PDT) Determination. The
PDT of dairy goat SSCs was estimated according to the pro-
tocol described previously [29]. Briefly, cells were serially
subcultured; the initial seeding cell number and the total cell
number cultured 24 h later were all counted, respectively.
PDT was calculated according to the formula PDT = ½log2/ð
log Nt − log N0Þ� × t, whereN0 means the number of seeded
cells, Nt indicates the number of cells after t (h) of culturing,
and t means the duration of cell culturing hours.

2.10. Western Blotting.Western blotting (WB) was estimated
according to a previous article [27]. The antibodies used in
this study are listed as follows: anti-eIF2γ (1 : 500; PA5-
31177, Thermo Fisher Scientific, MA, USA), anti-PCNA
(1 : 500; BM0104, Boster, Wuhan, China), anti-Cyclin D
(1 : 500; WL01435a, Wanlei, Shenyang, China), anti-
GAPDH (1 : 2000; AC002, ABclonal, Wuhan, China), anti-
ZBTB16 (1 : 500; No. D222893, BBI Life, Shanghai, China),
anti-pERK (1 : 2000; #4370, CST, Boston, USA), and anti-
ERK (1 : 2000; #9194, CST, Boston, USA). The results were
detected using a Bio-Rad imaging system (Bio-Rad, Hercules,
CA, USA) and quantified using ImageJ (V1.48d).

2.11. Bioinformatics Analysis. The dairy goat Eif2s3y CDS
was sequenced by Sangon, China. Multiple sequence align-
ment among different species was performed by DNAMAN
software, and the phylogenetic tree was depicted with MEGA
4.1. The amino acid sequences of Eif2s3y proteins in different
species were also analyzed by DNAMAN software. The pro-
tein secondary structure was predicted by DNAStar software.
The domains contained in Eif2s3y protein were predicted by
the SWISS-MODEL Workspace website and RasMol soft-
ware [30].

2.12. ERK Pathway Inhibitor and Activator. To confirm the
function of ERK signaling in Eif2s3y regulation, SSCs were
treated with 1μM ERK pathway inhibitor PD0325901
(APExBIO Technology LLC, A3013, Houston, USA) or
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Figure 1: Continued.
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10μM ERK pathway activator 12-O-tetradecanoylphorbol-
13-acetate (TPA, APExBIO Technology LLC, N2060, Hous-
ton, USA) for 24 h, respectively [31]. PD0325901 effectively
inhibits the phosphorylation of ERK1/2 in multiple cell lines,
while TPA activates the phosphorylation of ERK1/2 [32].
There were three replicates in each group of cells. The diluent
of the reagent is DMSO.

2.13. Statistical Analysis. Relative gene expression was ana-
lyzed by the comparative Ct method (2-ΔΔCt method). To
compare significant differences, a two-tailed Student’s t-test
was used. The results were represented as mean ± SD. All
results were replicated at least 3 times. Statistical analyses
were analyzed by SPSS 20.0 software and GraphPad Prism
software (La Jolla, CA). P values < 0.05 were considered sta-
tistically significant (∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001).

3. Results

3.1. The Expression Pattern of Eif2s3y in Dairy Goats. First,
we performed qRT-PCR to clarify the expression pattern of
Eif2s3y in dairy goats. The results showed that Eif2s3y was
widely expressed in different tissues including the brain, kid-
ney, heart, liver, ovary, spleen, lung, and testis (Figure 1(a)).
Of note, the testis showed the highest expression level of
Eif2s3y (P < 0:01) and this level tended to increase gradually
over time (P < 0:05), and it sustained high levels after sexual
maturity than before (Figure 1(b)). Then, immunofluores-
cence staining was performed to analyze the expression pat-
tern of eIF2γ in the testes of 3- and 24-month-old goats.
The result showed that Eif2s3y could be expressed in SSCs,
Sertoli cells, and Leydig cells (Figure 1(c); Supplemental

Fig. 2A and B). Of note, lots of sperms could be observed in
the testes of 24-month-old goats while not in those of 3-
month-old goats (Figure 1(d); Supplemental Fig. 2C). We
could see from these results that Eif2s3y was highly expressed
in testes and eIF2γ protein mainly existed in the cytoplasm.
The high expression of Eif2s3y in spermatogonia made us
want to study their function in these cells.

3.2. Structure and Bioinformatics Analysis of Eif2s3y in Dairy
Goats. A pair of specific cloning primers for the CDS region
of the dairy goat Eif2s3y gene was designed as described in
Materials and Methods. We further cloned the Eif2s3y gene
of dairy goats by PCR, and three repetitions were made
(Figure 2(a)). The fragments whose sizes were between
1000 bp and 2000 bp were considered to be the goat Eif2s3y
gene. Next, we inserted the gene into the pMD18-T vector
for sequencing analysis, which showed that the size of the
CDS region of the dairy goat Eif2s3y gene was 1413 bp. We
uploaded the sequence information to the National Center
for Biotechnology Information (NCBI) and obtained a for-
mal gene serial number (GenBank: KP326346.1).

Eif2s3y gene sequences of Homo sapiens, Microcebus
murinus, Capra hircus, Bos taurus, Rattus norvegicus, Mus
musculus, Tokudaia osimensis, Loxodonta africana, and
Xenopus tropicalis obtained from NCBI indicated that this
gene was widely expressed in different species (Figure 2(b)).
We analyzed the phylogenetic tree of Eif2s3y and compared
their nucleotide and amino acid sequences (Figure 2(b)).
The results showed a 97.98% similarity for amino acid among
different species and suggested that Eif2s3y was highly con-
served among different species (Figure 2(c)). Then, we pre-
dicted the protein structure of Eif2s3y through SWISS-
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Figure 1: The expression pattern of Eif2s3y in dairy goats. (a) Real-time PCR analysis of Eif2s3y expression levels in different tissues of adult
dairy goats. All results were compared with the testis. (b) Real-time PCR analysis of Eif2s3y expression levels in the testes of dairy goats of
different ages. All results were compared with that of 1-month-old goats. (c) Immunofluorescence staining of eIF2γ in the testes of 3-
month-old dairy goats counterstained with Hoechst 33342. The white arrows indicated typical SSCs. Scale bars, 200 μm (up) and 100 μm
(down). (d) Immunofluorescence staining of eIF2γ in the testes of 24-month-old dairy goats counterstained with Hoechst 33342. The
white arrows indicated typical SSCs, and the red arrows indicated typical sperms. Scale bars, 200 μm (up) and 100 μm (down). Data are
presented as mean ± SD and are represented by three independent repetitions; ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001.
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MODEL Workspace and found an important binding region
comprising four tandem zinc finger domains (Figure 2(e)).
Another prediction gave a schematic map of protein domain

analysis of Eif2γ by NCBI CD-Search (Figures 2(d) and 2(e)).
These results indicated that Eif2s3y was conserved and might
have similar functions in different species.
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Figure 2: Structure and bioinformatics analysis of Eif2s3y. (a) PCR analysis of Eif2s3y in dairy goat testes. Three independent duplications all
had the same size of 1413 bp. (b) Eif2s3y phylogenetic tree in different species constructed by MEGA 4.1 software. (c) Eif2s3y amino acid
sequence alignment of different species analyzed by DNAMAN software. (d) Conserved domains of Capra hircus Eif2s3y CDS were
predicted by NCBI CD-Search. Some important structures were found in conserved domains. (e) Eif2γ protein structural pattern (up) and
four zinc finger domains (down) analyzed by the SWISS-MODEL Workspace website.
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3.3. Overexpression of Eif2s3y Promotes the Proliferation of
Dairy Goat SSCs. The Eif2s3y fragment was inserted into
the pCDH-CMV-MCS-EF1-puro vector, and a recombinant
plasmid pCDH-CMV-Eif2s3y-EF1-puro was successfully
constructed (Figures 3(a) and 3(b)). The pCDH-Eif2s3y and
pCDH lentivirus were collected as described in Materials
andMethods. The morphology and function of primary SSCs
that we used to verify the direct effects of Eif2s3y have been
verified in the past experimental studies [19, 21]. The pri-
mary cells and pure spermatogonia are shown in Supplemen-
tal Figure 1A. We examined the expression of several marker
genes of SSCs by qRT-PCR and IF staining. The expression of
SSCmarker genes Zbtb16,GFRa1, and Stra8was significantly

higher in the pure spermatogonia (Supplemental Figure 1B).
The same conclusion was obtained by immunofluorescence
staining (Supplemental Figure 1C). We successfully
enriched SSCs.

The SSCs were infected with lentivirus pCDH-Eif2s3y or
pCDH. After screening by 500ng/mL puromycin (Sigma) for
one week, oeEif2s3y cells and control cells were established
(Figure 3(c)). Interestingly, the morphology of oeEif2s3y cells
changed and the edge of colonies became unsmooth, showing
a certain extent of differentiation. According to a previous
report, the Eif2s3y defect would block the production of sper-
matogonia and result in infertility in mice [13]. Our results
showed that Eif2s3y promoted the proliferation of goat SSCs,
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Figure 3: Overexpression of Eif2s3y promotes the proliferation of dairy goat SSCs. (a, b) The schematic of lentivirus plasmid pCDH-CMV-
MCS-EF1-puro and pCDH-CMV-Eif2s3y-EF1-puro. (c) Typical images of SSCs transfected with Control-Vector (left) or oeEif2s3y-Vector
(right). Scale bar, 200μm. (d) Proliferation curve of Control and oeEif2s3y SSCs and the results of population doubling time (PDT)
determination. (e) EdU incorporation assay of Control (up) and oeEif2s3y (down) SSCs. Scale bar, 400 μm. (f) The ratio of EdU-positive
cells to total cells. The proportion of positive cells is positively correlated with the cell proliferation rate. (g) RT-PCR analysis of the
expression levels of Eif2s3y, Pcna, Cyclin D, and Zbtb16 in dairy goat SSCs transfected with Control-Vector or oeEif2s3y-Vector. (h)
Western blotting detected the protein expression of ZBTB16, eIF2γ, PCNA, and Cyclin D in Control and oeEif2s3y SSCs. GAPDH was
used as a loading control. (i) Gray intensity analysis of WB results normalized to GAPDH in (h). Data are presented as mean ± SD and
are represented by three independent repetitions; ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001.
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as reflected by the higher proliferation rate of oeEif2s3y cells
in cell number counting (Figure 3(d)). The population dou-
bling time (PDT) of oeEif2s3y cells was significantly reduced
from 34.6 hours to 28.9 hours. The results were further
strengthened by EdU incorporation assay (Figures 3(e) and
3(f)). In accordance with these findings, we found that the
expression levels of proliferation-associated genes (Pcna,
Cyclin D) and self-renewal-associated gene (Zbtb16) were
increased in oeEif2s3y cells (Figure 3(g)). The proportion of
red positive cells was consistent with the cell proliferation
rate. Western blotting was applied to exam the effect of trans-
genic Eif2s3y (Figure 3(h)). In oeEif2s3y SSCs, statistical anal-
ysis showed that the expression of ZBTB16, eIF2γ, Pcna,
Cyclin D was higher than in Control SSCs (Figure 3(i)). Col-
lectively, these data demonstrated that overexpression of
Eif2s3y promoted the proliferation of goat SSCs.

3.4. Eif2s3y Deficiency Reversed the Goat SSC Growth Rate.
Since overexpression of Eif2s3y could promote SSC prolifer-
ation, we wondered whether knockdown of Eif2s3y expres-

sion would inhibit this proliferation. Recombinant plasmid
CD513B-U6-shEif2s3y was successfully constructed
(Figures 4(a) and 4(b)). Seven days after infection with lenti-
virus, RT-PCR analysis confirmed the successful knocking
down of Eif2s3y expression (shEif2s3y) in goat SSCs. The effi-
ciency of the two interfering fragments was 60% or 90%,
respectively (Figure 4(g)). We chose the more efficient U6-
Vector2 for future experiments (Figures 4(c) and 4(e)).

The population doubling time of shControl and
shEif2s3y SSCs was 35.9 or 44.8 hours, respectively
(Figure 4(d)). Then, we evaluated the proliferation rate
by EdU staining; the percentage of EdU-positive shEif2s3y
cells was lower than that of shControl (Figures 4(e) and
4(f)). Compared with the shControl group, the expression
levels of proliferation-associated genes Pcna and Cyclin
D and self-renewal-associated gene Zbtb16 in the shEif2s3y
group were significantly decreased (Figures 4(g) and 4(h)).
Western blotting analysis got the same results
(Figure 4(i)). These experiments showed that Eif2s3y defi-
ciency reversed goat SSC proliferation.
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Figure 4: Depletion of Eif2s3y resulted in proliferation abnormality in goat SSCs. (a, b) The schematic of lentivirus plasmid CD513B-U6-MCS
and CD513B-U6-shEif2s3y. (c) Typical images of shControl (left) and shEif2s3y (right) SSCs. Scale bar, 200μm. (d) Proliferation curve of
shControl and shEif2s3y SSCs and the results of population doubling time (PDT) determination. (e) EdU incorporation assay of shControl
(up) and shEif2s3y (down) SSCs. Scale bar, 400μm. (f) The ratio of EdU-positive cells to total cells. Data are presented as mean ± SD and are
represented by three independent repetitions. (g) RT-PCR analysis of the expression levels of Eif2s3y, Pcna, Cyclin D, and Zbtb16 in
shControl and shEif2s3y SSCs in vitro. (h) Western blotting detected the protein expression of ZBTB16, eIF2γ, PCNA, and Cyclin D in
shControl and shEif2s3y SSCs. GAPDH was used as a loading control. (i) Gray intensity analysis of WB results normalized to GAPDH in (h).
Data are presented as mean ± SD and are represented by three independent repetitions; ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001.
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Figure 5: Eif2s3y promotes the colonization of goat SSCs in SSCT. (a) OeEif2s3y or Control SSCs were injected into the seminiferous tubules
of busulfan-treated mice. The figure here shows two typical pictures of the testis during injection. Scale bars, 1mm and 5mm as indicated. (b)
Morphology of testes and epididymides transfected with oeEif2s3y or Control SSCs. (c) The testicular (left) and epididymis (right)
weight/body mass ratio in two groups. (d) H&E staining of the mouse testis 30 days after injection. Scale bars, 50μm (left) and 20 μm
(right). (e) Statistical plots of the diameter of seminiferous tubules (left) and the thickness of seminiferous epithelia (right) from oeEif2s3y
and Control SSC-transplanted mice. Each group counted at least 30 round seminiferous tubules from 10 mice. (f) H&E staining of the
mouse epididymis 30 days after injection. Scale bars, 50 μm (left) and 20μm (right). (g) Statistical plots of the diameter of epididymis
tubules from oeEif2s3y and Control SSC-transplanted mice. Each group counted at least 30 epididymis tubules from 10 mice. (h) RT-PCR
analysis of the expression of Eif2s3y, Pcna, Zbtb16, and Cyclin D in Testis-Control and Testis-oeEif2s3y. (i) Immunofluorescence staining
of DDX4 (green) in SSC-transplanted testes. The nuclei were stained with Hoechst 33342 (blue). Scale bar, 100 μm. These white arrows
represented typical DDX4-positive germ cells. DDX4 is a representative marker for pan-germ cells. (j) Immunofluorescence staining of
ZBTB16 (green) in SSC-transplanted testes. The nuclei were stained with Hoechst 33342 (blue). Scale bar, 100μm. These white arrows
represented typical ZBTB16-positive spermatogonial stem cells. ZBTB16 is a representative marker for undifferentiated spermatogonia.
Data are presented as mean ± SD and are represented by three independent repetitions; ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001; N.S.
means P ≥ 0:05.
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3.5. Eif2s3y Could Increase the Colonization Rate of Goat
SSCs in SSCT. Spermatogonial stem cell transplantation tech-
nology has been an effective method to study SSCs since 1994
[1, 26, 33]. Some previous research had proved the reliability

of our transplantation technique [17]. To investigate the con-
tribution of Eif2s3y in SSCs, oeEif2s3y SSCs and Control SSCs
were transferred into the seminiferous tubules of twenty
infertile mice treated with busulfan (Figures 5(a) and 6(a)).
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Virus infection
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Figure 6: A schematic diagram illustrating Eif2s3y functions in goat SSCs. (a) Schematic diagram of seminiferous tubule transplantation. (b)
A proposed model for Eif2s3y activating the downstream ERK signaling pathway to regulate proliferation genes in goat SSCs. This finding
may provide an important basis for future works regarding male spermatogenic cell restoration in large animals.
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Testes transplanted with oeEif2s3y SSCs were heavier than
those in the control group (P = 0:014), while the weight of
the epididymis did not change significantly (P = 0:43)
(Figures 5(b) and 5(c)).

H&E staining of the transplanted testes showed that
more germ cells were observed in the Eif2s3y group
(Figure 5(d)). Additionally, the diameter of seminiferous
tubules (P < 0:01) and the thickness (P < 0:001) of seminifer-
ous epithelia were significantly increased in the Eif2s3y group
(Figure 5(e)). However, the diameter of epididymis tubules
was not significant between these two groups (Figures 5(f)
and 5(g)). In addition, RT-PCR analysis showed that Eif2s3y,
Pcna, Zbtb16, and Cyclin D were overexpressed in the

oeEif2s3y group (Figure 5(h)). Importantly, immunofluores-
cence staining showed that the Eif2s3y group had more
DDX4-positive germ cells and more ZBTB16-positive SSCs
in the testes (Figures 5(i) and 5(j)). Thus, overexpression of
Eif2s3y might contribute to improving the survival rate and
proliferation of goat SSCs in SSCT. However, no sperm was
found in either group, which might be caused by different
species (Figure 5(d)).

3.6. Eif2s3y Promotes the Proliferation of SSCs by Activating
the ERK Signaling Pathway. To confirm the proliferation
mechanism of Eif2s3y in goat SSCs, we investigated the
proliferation-related signaling pathways through western
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Figure 7: Eif2s3y promotes SSC proliferation by activating the ERK signaling pathway. Control and oeEif2s3y SSCs were treated with 1μM
ERK pathway inhibitor PD0325901 or 10μM ERK pathway activator TPA for 24 h, respectively. shControl and shEif2s3y SSCs were treated
with 10 μMERK pathway activator TPA for 24 h. DMSOwas used for the control group. (a) EdU incorporation assay of Control and oeEif2s3y
SSCs added with ERK pathway inhibitor PD0325901 or DMSO. Scale bar, 400μm. (b) The percentage of EdU-positive cells to total cells. The
proportion of positive cells is positively correlated with the cell proliferation rate. (c) EdU incorporation assay of shControl and shEif2s3y SSCs
added with ERK pathway activator TPA or DMSO. Scale bar, 400μm. (d) The percentage of EdU-positive cells to total cells. (e) Western
blotting detected the protein expression of eIF2γ, PCNA, Cyclin D, pERK1/2, and ERK1/2 in SSCs treated as indicated. GAPDH was used
as a loading control. (f) Gray intensity analysis of WB results normalized to GAPDH in (e). (g) Western blotting detected the protein
expression of eIF2γ, PCNA, Cyclin D, pERK1/2, and ERK1/2 in SSCs treated as indicated. (h) Gray intensity analysis of WB
results normalized to GAPDH in (g). Data are presented as mean ± SD and are represented by three independent repetitions;
∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001; N.S. means P ≥ 0:05.
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blotting in oeEif2s3y and shEif2s3y SSCs. Our previous study
found that the expression of Eif2s3y increased the phosphor-
ylation level of ERK. Then, SSCs were treated by 1μM ERK
pathway inhibitor PD0325901 [31] or 10μM ERK pathway
activator TPA [32] for 24 hours, respectively. DMSO was
used for the control group. As expected, PD0325901 treat-
ment significantly inhibited the proliferation of oeEif2s3y
SSCs, while TPA treatment efficiently restored the prolifera-
tion of SSCs transplanted with shEif2s3y, as analyzed by
EdU incorporation assay (Figures 7(a)–7(d)).

Western blotting analysis was further conducted to
explore the underlying mechanisms, and we found that the
MEK-ERK signal could directly and indirectly participate in
the proliferation of SSCs. When ERK signaling was activated
by Eif2s3y overexpression or by TPA treatment, the expres-
sion levels of PCNA and Cyclin D were both increased. The
results showed that the ERK signaling blockade, either by
Eif2s3y interference or by PD0325901 treatment, signifi-
cantly inhibited the expression levels of PCNA and Cyclin
D (Figures 7(e) and 7(f)). In comparison, the results showed
that the ERK signaling blockaded, either by Eif2s3y interfer-
ence or by PD0325901 treatment, significantly inhibited the
expression levels of PCNA and Cyclin D, both of which were
essentially needed during cell proliferation (Figures 7(g) and
7(h)). According to the above experimental results, we
hypothesized that Eif2s3y activated the downstream ERK sig-
naling pathway to regulate proliferation genes.

According to the above experimental results, we pro-
posed a mechanism diagram of how Eif2s3y activated the
downstream ERK signaling pathway to promote SSC prolif-
eration and restoration of male spermatogenic cells in goat
testes (Figure 6(b)).

4. Discussion

Eif2s3y is widely expressed in different male animals and rec-
ognized as a translation initiation factor [11, 34]. In recent
studies, we found that Eif2s3y could regulate the proliferation
of goat SSCs. The expression levels of proliferation- and self-
renewal-related genes Cyclin D, Cyclin A, Pcna, and Plzf were
upregulated in oeEif2s3y SSCs and downregulated in
shEif2s3y SSCs (Figures 3(g) and 4(g)). Our results showed
that Eif2s3y played an important role in male reproduction
of dairy goats, and these results were consistent with previous
studies in mice that Eif2s3y played a critical role in male sper-
matogenesis [14, 15, 35]. Importantly, we found a regulatory
pathway of Eif2s3y in male reproduction with ERK signaling
involved. This finding was in line with previous studies
reported by us and other groups that the MEK/ERK signaling
pathway played an important role in cell proliferation, differ-
entiation, and cell cycle progression [36, 37]. However, how
Eif2s3y regulates ERK signaling remains to be further
studied.

SSCT technology is an effective method to identify the
characteristics of SSCs cultured in vitro [1]. We transferred
oeEif2s3y SSCs into the seminiferous tubules of infertile mice
and found that Eif2s3y could enhance the colonization of
germ cells (Figure 5(d)). Moreover, no mature sperm was
observed in the epididymis (Figure 5(e)). The blood-testis

barrier (BTB) made goat SSCs transplanted into mouse testes
survive [5]. However, the species relationship between goats
and mice was so far that mice could not produce goat sperms.
As a contrast, we injected CD513B-U6-shEif2s3y lentivirus
into the seminiferous tubules of wild-type mice and found
that spermatogenesis was blocked and the germ cells in sem-
iniferous tubules were very loose. Another research group
directly knocked out the mouse Eif2s3y gene with TALEN
technology, which led to testicular hypoplasia and male
infertility [13]. More generally, all these results of animal
experiments in vivo indicated that Eif2s3y played an impor-
tant role in spermatogenesis.

Our bioinformatics analysis showed that Eif2s3y was
highly conserved among different species (Figure 2(c)).
Therefore, the interference experiment of mice might also
be applicable to goats. Dairy goat Eif2s3y was located on the
Y chromosome and encoded a 471 amino acid protein which
contained a compact zinc finger domain and an N-terminal
GTP binding domain (Figures 2(d) and 2(e)). In mice,
Eif2s3x was a homologous gene of Eif2s3y and shared 98%
of amino acid sequence identity and almost all of the RNA
binding domains with Eif2s3y [35]. However, recent studies
have found that these two genes might not completely
replace each other. Eif2s3x has been found to play an irre-
placeable role in the early development of organs such as
the brain and pancreas [38–40]. Meanwhile, a recent study
showed that Eif2s3y was more effective in masculinizing mice
during sex growth at 12.5 days of mouse embryonic develop-
ment [41]. However, in dairy goats, it was still unclear
whether a homologous gene of Eif2s3y exists and how they
worked together. Thus, future work is essentially needed to
answer these questions.

In conclusion, our study found a novel role of Eif2s3y in
the male reproduction of dairy goats. This finding might pro-
vide an important basis for the repair of male infertility and
spermatogonial stem cell transplantation toward realizing
the regeneration of germplasm in large animals.
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Supplementary Materials

Supplementary 1. Supplemental Figure 1: isolation and
enrichment of dairy goat spermatogonia. (A) The primary
cells and pure spermatogonia isolated from healthy dairy
goat testes; scale bar = 200 μm. (B) RT-PCR analysis of the
expression of Zbtb16, GFRa1, and Stra8 in primary cells
and pure spermatogonia. Data are presented as mean ± SD
and are represented by three independent repetitions; ∗P <
0:05, ∗∗P < 0:01. (C) Immunofluorescence staining of
ZBTB16 (up), STRA8 (middle), and GFRa1 (down) in pure
spermatogonia. The nuclei were stained with Hoechst
33342 (blue). Scale bar, 200μm. ZBTB16, STRA8, and
GFRa1 are representative markers for SSCs.

Supplementary 2. Supplemental Figure 2: some additional
pictures. (A) Immunofluorescence staining of mouse (up)
and goat (down) testes. Only IgG (1 : 200) was used for the
first antibody, and the fluorescent secondary antibody was
used normally. The nuclei were stained with Hoechst 33342
(blue). Scale bar, 200μm. Species-specific IgG antibody for
immunofluorescence experiments as the parallel negative
antigen control to prove that there was no false positive in
our immunofluorescence staining. (B) Immunofluorescence
staining of SOX9 (up) and StAR (down) in goat testes. The
nuclei were stained with Hoechst 33342 (blue). Scale bar,
100μm. SOX9 is a representative marker for Sertoli cells,
and StAR is a representative marker for Leydig cells. (C)
H&E staining of 3-month-old and 24-month-old goat testes.
Scale bars, 50μm (left) and 20μm (right).

Supplementary 3. Supplemental Figure 3: full unedited
images. (A) Full unedited PCR images of Figure 2(a) data.
(B) Full unedited western blotting images of Figure 7(e) data.
(C) Full unedited western blotting images of Figure 7(g) data.

Supplementary 4. Supplemental Table 1: the sequence and
length of primers used in qRT-PCR amplification.

Supplementary 5. Supplemental File 1: normal distribution
test for experimental data.

Supplementary 6. Supplemental File 2: experimental infor-
mation for qRT-PCR.
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