
RESEARCH ARTICLE

NMR analysis of the correlation of metabolic

changes in blood and cerebrospinal fluid in

Alzheimer model male and female mice

Filip Stojanovic1, Mariam Taktek1, Nam Huan Khieu2, Junzhou Huang2, Susan Jiang2,

Kerry Rennie2, Balu Chakravarthy2, Will J. CostainID
2, Miroslava Cuperlovic-CulfID

1*

1 National Research Council of Canada, Digital Technologies Research Centre, Ottawa, Canada, 2 National

Research Council of Canada, Human Health Therapeutics Research Centre, Ottawa, Canada

* miroslava.cuperlovic-culf@nrc-cnrc.gc.ca

Abstract

The development of effective therapies as well as early, molecular diagnosis of Alzheimer’s

disease is impeded by the lack of understanding of the underlying pathological mechanisms.

Metabolomics studies of body fluids as well as brain tissues have shown major changes in

metabolic profiles of Alzheimer’s patients. However, with analysis performed at the late

stages of the disease it is not possible to distinguish causes and consequence. The mouse

model APP/PS1 expresses a mutant amyloid precursor protein resulting in early Amyloid β
(Aβ) accumulation as well as many resulting physiological changes including changes in

metabolic profile and metabolism. Analysis of metabolic profile of cerebrospinal fluid (CSF)

and blood of APP/PS1 mouse model can provide information about metabolic changes in

these body fluids caused by Aβ accumulation. Using our novel method for analysis of corre-

lation and mathematical ranking of significant correlations between metabolites in CSF and

blood, we have explored changes in metabolite correlation and connectedness in APP/PS1

and wild type mice. Metabolites concentration and correlation changes in CSF, blood and

across the blood brain barrier determined in this work are affected by the production of amy-

loid plaque. Metabolite changes observed in the APP/PS1 mouse model are the response

to the mutation causing plaque formation, not the cause for the plaque suggesting that they

are less relevant in the context of early treatment and prevention then the metabolic

changes observed only in humans.

1. Introduction

Alzheimer’s disease (AD) is an age-related, degenerative brain disease characterized by pro-

gressive cognitive impairment and dementia with increasing deficiency in multiple cognitive

domains including memory, executive functions and language [1]. Pathological hallmarks of

AD are neurofibrillary tangles composed of abnormally phosphorylated, conformed and trun-

cated tau, and senile plaques with a core of the altered cleavage of amyloid precursor protein

leading to the deposition of β-amyloid. In addition several other anomalies have been observed
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including mitochondrial malfunction, increased oxidative stress and oxidative and nitrosative

damage to nucleic acids, proteins and lipids; energy metabolism changes; altered composition

of lipids and lipid rafts; autophagy; neuroinflammation, deregulation of purine metabolism

and number of other metabolism pathways, dysregulation of unsaturated fatty acid metabo-

lism, suggesting that metabolic changes are another hallmark of AD [2–7]. With predictions

for a major increase in the number of AD patient’s worldwide and associated major impact in

human cost and suffering as well as economic impact there is a pressing need for better under-

standing of the AD etiology needed for the development of early diagnosis and effective treat-

ment for this disease.

Metabolomics analysis provides information about the perturbations in the metabolome

that reflect changes in genome, transcriptome and proteome caused by physiological as well as

environmental impacts. Number of metabolomics studies have explored and determined sig-

nificant metabolic profile changes in AD patients including measurements in cerebro-spinal-

fluid (CSF), blood or brain tissue [8–10] with many reviews outlining results and problems

[7,11,12]. A major obstacle in metabolomics studies of AD is the inability to discriminate met-

abolic changes that are resulting from brain pathology in AD from the metabolic changes that

are preceding and thus possibly causing observed brain changes leading to AD development.

Additionally, as AD is generally a disease of elderly, many different confounding health condi-

tions are likely making determination of metabolic changes that are directly linked to AD very

difficult. Transgenic amyloid precursor protein/presenilin 1 (APP/PS1) mouse model was cre-

ated to mimic pathological and behavioral changes occurring as part of the AD [13]. The

major goal and utilization of this transgenic model was aimed at testing and analysis of the

drug and biomarkers of AD. An interesting alternative is to utilize this mouse model to deter-

mine changes in metabolic profile and metabolism that are caused by amyloid plaque forma-

tion. Understanding of metabolic changes that are promoted by APP/PS1 mutation would be

valuable in subsequent determination of metabolic changes proceeding and possibly causing

AD pathology. Metabolomics profiling of both cerebrospinal fluid (CSF) and blood allows

analysis of correlation between metabolites in these two environments possibly indicating

changes in the blood brain barrier function in the AD model. In this work we have explored

metabolic changes in blood and CSF of male and female wild-type (WT) and APP/PS1 mice at

two different age points and used different methods for machine and statistical learning as well

as correlation analysis to describe sex-dependent effects of amyloid plaque on metabolic

process.

2. Results and discussion

2.1. Qualitative NMR analysis

NMR metabolomics analysis of wild type (WT) and transgenic mouse model APP/PS1 was

performed using 1D nuclear Overhauser effect spectroscopy (NOESY) pulse sequence for CSF

and blood as well as Carr–Purcell–Meiboom–Gill (CPMG) experiment [14] for analysis of

small molecules in the blood of mice as previously described [15]. In blood samples 1D

NOESY measurements show combination of peaks for lipoproteins and small molecules. In

CPMG measurement signals from the large molecules (lipids and proteins) are suppressed

through relaxation, whereas the small molecules produce signal. This approach essentially

makes large molecules invisible on 1H NMR without any filtration making measurement of

both lipoproteins, with 1D NOESY and small molecule with CPMG, possible from one sample

in quick succession [16].

Due to the small sample sizes and the relatively low sensitivity of NMR measurement, we

have used a pool of samples from 3 mice for each measurement. Mice were sacrificed and CSF
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and blood collected at early phase (2 months of age for both male and female mice) and mid-

life point (7 months for male and 9 months for female mice). At 3 independent groups 3 mice

were measured leading to total of 30 measurements representing samples from 90 mice.

Details of the experimental procedure as well as NMR processing methods are outlined in

Materials and Methods section. NMR spectra for CSF and Blood grouped by age and sex of

mice are shown in Fig 1.

Principal component analysis (PCA) as well as t-distributed stochastic neighbor embedding

(t-SNE) visualization transformation of complete spectra in three sample windows provides

some separation of samples by APP/PS1 v.s. WT or sex. 1D NOESY spectra of blood samples

show the most significant separation by APP/PS1 v.s. WT in PC1 and by sex in PC2 both at

early and late time points (Fig 2). Further analysis of the loading shows that the major contri-

bution to the PC1 sample separation is provided by peaks of lipoproteins, particularly very low

density lipoprotein triglyceride–VLDL and saturated lipid peaks (Fig 2). It is important to

point out that even before the appearance of visual plaques or deposits in the mouse model at 2

months of age there is a clear separation of samples provided by lipids and lipoprotein peaks

in the blood with more significant separation by the disease model then by the sex. Recent

analysis of a longitudinal cohort study in 318 patients presented by Nagga et al. [17] have

shown that increased levels of triglycerides at midlife predict brain Aβ and tau pathology later

in life in cognitively healthy individuals and that certain lipoprotein fractions present a risk

factor for Aβ. Based on the results in mouse model shown here it can be suggested that initial

Fig 1. NMR spectra for wild type (WT) and APP//PS1 mouse model (APP in the figure). Each spectrum shows NMR measurement for the pool of 3 mice.

https://doi.org/10.1371/journal.pone.0250568.g001
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Aβ formation even before any symptoms in fact leads to the observed changes in lipoprotein

fractions as well as triglycerides, possibly suggesting that the observed lipoprotein changes in

patients in the cohort are initiated by the initial Aβ formation process. Additionally, earlier

work has shown that amyloid β-peptide is transported on lipoproteins and albumin [18,19]

possibly explaining observed differences in lipophilic fraction early in the disease

development.

The loading plot (Fig 2) shows that the significance of VLDL and LDL peaks on the PC1

observed separation of WT and APP/PS1 mice separation at later age point increases. This is

in agreement with previously observed relationship between Aβ peptide and triglyceride-rich

lipoproteins including VLDL and LDL [20] suggesting the possibility that the observed

Fig 2. PCA of 1D NOESY spectra of blood showing sample separation (A) and loadings for PC1 and PC2 relative to the average spectra for all samples (B).

Indicated are some representative peaks for cholesterol backbone (-C(18)H3), lipid (-CH3) as well as polyunsaturated fatty acid (= CH-CH2-CH2 =), fatty acids (=

CH-CH2-CH2-) as well as possible peaks from lipoproteins of different sizes–low-density lipoprotein—LDL and high-density lipoprotein–HDL cholesterol and

very low density lipoprotein triglyceride–VLDL. Figures shows different age groups (2, 7 and 9 months), mouse models with APP/PS1 (APP in figure) indicated

with red circle and WT without and sex with female mice specified with x and male mice without.

https://doi.org/10.1371/journal.pone.0250568.g002
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differences in VLDL and LDL are the response to Aβ peptide and its clearance, in agreement

with previous observations linking low-density lipoprotein receptor-related protein-1 (LRP1)

and Aβ peptide clearance [21,22].

Unsupervised analysis of CSF spectral data (1D NOESY) and CPMG spectra of blood does

not provide significant, unsupervised grouping of samples based on the disease model or sex

(not shown).

2.2. Quantitative analysis and selection of major changes

In order to determine significant changes as well as possible relationships between metabolism

and the disease development in APP/PS1 mice we have performed assignment and quantifica-

tion of metabolites from NMR spectra using previously published methods [23–25] as briefly

described in the Material and Methods. List of analyzed metabolites and their 1D standard

spectra obtained from HMDB [26] or BMRB [27] are used for the determination of relative

concentrations in the sample spectra are shown in Fig 3 with details of their selection and pre-

processing described in Materials and Methods.

Quantification method determines the relative concentration for each metabolite indepen-

dently of all the other metabolites using the constrained linear least-squares analysis and find-

ing the best fit for the whole spectral range. By including the whole spectra, rather than only

selected peaks, our methodology is able to provide relative quantification even for metabolites

that have not fully resolved major peaks. The set of quantified metabolites can be divided into

carbohydrate pathway metabolites, amino acids and derivatives, organic acids, and others. All

quantified values for these metabolites, normalized only to the concentration of reference in

CSF and blood in all groups of mice are available upon request. The change over time for each

quantified metabolite in blood and CSF measurements is shown in Fig 4 as bar plot of the log

of ratio of early v.s. late concentration value. It is apparent that changes over time in the blood

and CSF in males and females are for number of metabolites very different. Therefore, finding

a single panel of metabolic biomarkers that would provide high diagnostic sensitivity for dif-

ferent age groups and sex is highly unlikely for both blood and CSF even in these highly con-

trolled animal models.

Based on the rate of change between two time points and in different sample types metabo-

lites can be divided into several behavioral groups (Fig 4). Several metabolites show the same

type of change in male and female mice in WT and APP/PS1 in either blood or CSF. Namely

in blood there is a greater increase in APP/PS1 relative to WT is observed in both male and

female mice for phenylalanine, isoleucine, taurine, homocysteine, acetone, acetate, o-phos-

phoethanolamine, threitol, myoinositol, galactose and pantothenic acid. The larger decrease in

concentration over time in blood of APP/PS1 mice in both male and female groups is apparent

for creatine. In CSF, the concentration in APP/PS1 decreases at a later time (to the point of

more negative change) for ethanol, citrulline, serine, d-serine, valine, isoleucine, cysteine,

gaba, homovanillic acid, citrate, malate, arabitol, lactate. On the other hand concentrations of

ethanolamine, glucose 1-phosphate, glucose, are increasing at later time points faster in APP/

PS1 male and female mice than in WT. Metabolites with statistically the most significant con-

centration difference between WT and APP/PS1 in both sexes at different ages are determined

using ANOVA and are provided in Fig 5.

Previous work has shown change in metabolite profile over time in mouse model of AD

[28,29] suggesting possible differences in metabolism, as well as possibly altered transport of

metabolites across the blood brain barrier. Therefore, it is not surprising that metabolites

showing the most significant concentration difference between APP/PS and WT at young and

older age in blood and CSF are different. It is interesting to point out that several of the
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metabolites shown as significant here have been previously observed as changed in AD both in

patients and animal models. These results will be further explored together with correlation

analysis presented below.

2.3. Correlation analysis of metabolites in CSF and blood

For shared metabolites, defined as metabolites present in both blood and CSF for a group of

mice (male-WT; male-APP/PS1; female-WT; female-APP/PS1), Spearman correlation matri-

ces were calculated between the concentrations of each shared metabolites in blood and each

shared metabolite in CSF (M) and v.v., each shared metabolite in CSF with each shared metab-

olite in blood (MT). For n shared metabolites M is an n x n matrix where Mij corresponds to

the correlation between the jth metabolites in CSF and the ith metabolites in blood. For each

correlation, a significance level of α = 0.05 was used to test the alternative hypothesis that the

Fig 3. Metabolites determined by ASICS [24] and Metabohunter [25] as possible observed in CSF and blood NMR. Shown are complete spectral regions

used for metabolite quantification.

https://doi.org/10.1371/journal.pone.0250568.g003
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correlation was different from 0 with p -values for the Spearman correlations computed as

described in Materials and Methods. Metabolite pairs with statistically significant correlations

were listed for each group of mice. If two metabolites were significantly correlated in one sex’s

WT mice, that same pair and its correlation in the APP/PS1 mice samples was added to the list

of significant correlations for that sex’s APP/PS1 mice, and v.v., ensuring that both APP/PS1

and WT groups of each sex listed the same metabolite pairs for comparisons.

For each group of mice, an adjacency matrix A listing correlation pairs was created, where

Aij is the correlation between metabolite i in blood and metabolite j in CSF if the correlation is

significant and 0 otherwise. We define a directed correlation network for each mouse group

using its adjacency matrix, where each node represents a metabolite and each edge going from

node j to node i represents a correlation between metabolite i in blood and metabolite j in CSF

(and v.v. provided by AT). To summarize the correlations that were statistically different from

each other between the WT and APP/PS1 groups of each sex of mice, the correlation for each

metabolite pair was transformed using the Fisher z-transformation. The difference between

the transformed correlations of the same metabolite pair in APP/PS1 and WT mice was then

Fig 4. Bar plot of the Log of the ratio between early and late time points metabolite concentrations in blood (WT blue/APP/PS1 green) and CSF (WT black/APP/

PS1 red). Female mice values are indicated with dashed lines (second pair on the graph).

https://doi.org/10.1371/journal.pone.0250568.g004
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tested at significance level α = 0.05. CSF and blood metabolite partners with significantly dif-

ferent correlation levels between APP/PS1 and WT mice for male and female are shown in

Table 1.

All significant correlations for 4 groups of animals between all metabolites in CSF and all

metabolites in blood measured using CPMG is shown schematically in Fig 6.

2.4. Ranking of metabolites by correlation significance

We make use of a path counting algorithm to rank the metabolites in our network using newly

developed method described in Materials and Methods. Our approach measures the connect-

edness of each metabolite with its column sum, providing ranking of connections for each

metabolite. Since the first n-columns correspond to metabolites in blood and the last n-col-

umns correspond to metabolites in CSF, we rank the metabolites in blood and CSF using the

first n and the last n columns respectively. We show the differences in blood metabolite rank-

ings between the APP/PS1 and WT mice of each sex in Fig 7.

Increase in the correlation ranking in APP/PS1 for both male and female mice is apparent

in blood based acetate, acetone, gaba, glucose-1-phosphate, glyceric acid, isoleucine, o-phos-

phoetanolamine, serine and to a lesser extent 3-hydroxybutyrate suggesting increased traffic

between CSF and blood of these metabolites or metabolites that are closely related with this

Fig 5. The most significantly differently concentrated metabolites in Blood (A and B) and CSF (C and D) between WT (blue line) and APP/

PS1 (red line) subgroups including both male and female at 2 months old (A and C) and at later time points of 7 months for male and 9 months

for female mice (B and D).

https://doi.org/10.1371/journal.pone.0250568.g005
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group through metabolic processes. Decrease in correlation ranking in APP/PS1 in both male

and female mice is observed for ethanol and glutamine. Number of other metabolites show dif-

ferent changes in connectivity in APP/PS1 between male and female mice. Positive and nega-

tive correlations between metabolites in CSF and blood in WT, APP/PS1, male and female

mice is presented in Table 2. Within CSF based metabolites the most striking is the major

reduction in connectedness for ascorbate in APP/PS1 in both male and female mice suggesting

reduced transfer across the blood brain barrier in APP/PS1 mice.

Several of the metabolites with the statistically significant concentration difference between

2 month old, WT and APP/PS1 mice of both sexes in blood and CSF are shown to be highly

correlated between blood and CSF. Pantothenic acid (vitamin B5) is needed to form coen-

zyme-A and is thus a critical metabolite in synthesize of carbohydrates, proteins and fats. Con-

centration of this metabolite in blood is higher in WT mice at 2 months than in APP/PS1

mice. At the same time its concentration change in blood is strongly correlated with number

of CSF metabolites including glyceric acid, glucose-1-phosphate, pyruvate, creatine, galactose

as well as ascorbate (vitamin C). Interestingly correlation between pantothenic acid and ascor-

bate is positive in APP/PS1 for both male and female mice but in female mice correlation

between blood based pantothenate and CSF based ascorbate is negative (Fig 5).

Relative concentration of acetone in blood at 2 months is significantly lower in APP/PS1

mice and further decreases in this group of mice at a later time. In CSF, levels of acetone are

very low in most cases except for APP/PS1 male mice at a later time point. Concentration

change of acetone in blood is strongly correlated with number of CSF metabolites including

glyceric acid, glucose-1-phosphate, pantothenic acid, creatine, galactose, proline, ketoleucine,

taurine, acetylcholine, ascorbate and threonine.

Table 1. Significantly different correlations between female and male APP/PS1 (APP for brevity) and WT mice.

Female Male

Blood CSF APP WT Blood CSF APP WT

acetate taurine 0.89 -0.43 ethanol acetate -0.94 -0.25

galactose ethanolamine -0.66 0.74 arabitol oxoglutarate 0.49 -0.70

homocysteine ascorbate 0.31 -0.81 creatine creatine 0.94 0.33

methionine valine -0.49 0.81 pantothenicacid creatine 0.94 0.30

Pantothenic acid ascorbate 0.20 -0.88 3hydroxybutyrate lactate 0.94 -0.50

3hydroxybutyrate myoinositol 0.77 -0.81 Homovanillic acid Homovanillic acid 0.89 -0.55

isoleucine acetylcholine 0.94 -0.05 glutamine oxoglutarate -0.94 0.05

acetylcholine ethanolamine 0.94 -0.48

acetylcholine threitol 0.66 -0.79

Glyceric acid ethanol 0.14 -0.95

Glyceric acid ethanolamine 0.94 -0.26

Glyceric acid galactitol 0.89 -0.50

citrulline valine -0.89 0.17

glutamine ethanolamine -0.71 0.90

glutamine galactitol -0.66 0.88

glutamine lactate -0.26 0.90

Homovanillic acid glycine 0.89 -0.07

choline lactate -0.89 0.43

Metabolites that show the most significant differences in concentrations between WT and APP/PS1 (from Fig 4) are underlined. Spearman’s correlation coefficient for

the pair of blood-CSF metabolites is indicated for both APP/PS1 model and WT mice.

https://doi.org/10.1371/journal.pone.0250568.t001
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Although ascorbate (vitamin C) shows larger concentration in blood of AD mice it is

important to keep in mind that its concentration in blood measured here is very low and thus

possibly inaccurate. At the same time concentration of ascorbate in CSF is much higher and

reduces at older APP/PS1 mice in both sexes suggesting its use in higher level of ROS environ-

ment in APP/PS1 mutants. Concentration change of ascorbate in CSF in highly correlated

with number of blood metabolites including many metabolites with significant concentration

difference in WT and AD mice blood including: glyceric acid, pantothenic acid, gaba, acetyl-

choline and threonine. Interestingly, correlation ranking for CSF ascorbate with blood metab-

olites in APP/PS1 mice is reduced possibly due to its utilization as antioxidant or reduced

transport across the blood brain barrier in the disease model. Additionally, correlation

between CSF ascorbate and blood based pantothenic acid and homocysteine goes from

Fig 6. Significant correlations between metabolites in blood (shown in column) and CSF (row) represented in 2x2 representations for WT and APP/

PS1 female and WT and APP/PS1 male.

https://doi.org/10.1371/journal.pone.0250568.g006
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negative to positive (Table 1). Relationship between homocysteine, as a measure of three B

vitamins (folate, vitamin B12 and vitamin B6) and AD has been previously outlined [30] and

our results show that the change in homocysteine as well as change in its relationship to ascor-

bate are result of amyloid plaque development. Furthermore, the relationship between differ-

ent vitamins, including ascorbate, homocysteine and pantothenic acid are affected by the

production of amyloid plaque, suggesting that their observed changes in AD are the response

to plaque formation, not the cause for the plaque.

3. Conclusions

Comparison of the metabolic profiles of CSF and blood at different time points in male and

female mice from the APP/PS1 mouse model has been used to investigate metabolic changes

induced by the production of amyloid plaque. Even at an early, pre-symptomatic stage, there

Fig 7. Ranking of metabolite correlation between blood and CSF with showing ranking of blood based metabolites.

https://doi.org/10.1371/journal.pone.0250568.g007

Table 2. Ranking of the connectedness of CSF metabolites with blood-based metabolites.

Female Male

Metabolite WT Metabolite APP Metabolite WT Metabolite APP

ascorbate 10.6 Glucose 1phosphate 11.6 Glyceric acid 22.9 creatine 33.5

Glucose 1phosphate 8.8 Pantothenic acid 10 creatine 14.6 Glyceric acid 19.8

valine 8.2 valine 9.5 ascorbate 12.8 acetate 6.5

Pantothenic acid 7.9 galactose 9.1 acetate 4 ascorbate 3.3

threonine 6.9 proline 7.9 lactate 2.4 lactate 2.8

galactose 5.7 ascorbate 7.5 Homovanillic acid 1.7 galactitol 2.6

ethanol 5.6 threonine 7.2 galactitol 1.5 oxoglutarate 1.7

alanine 4.8 taurine 7.2 oxoglutarate 1 Homovanillic acid 1.4

pyruvate 3.9 ethanol 4.5

galactitol 3.8 ethanolamine 4.4

acetoacetate 2.1 threitol 1.9

glycine 1.7 lactate 1.8

Underlined are metabolites shown to have significantly different concentration in WT and APP/PS1 (APP in the table) in blood or CSF (Fig 4).

https://doi.org/10.1371/journal.pone.0250568.t002
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are several changes in lipoproteins and metabolites as well as changes in correlation between

metabolites across the blood brain barrier. This analysis shows that several of the previously

observed metabolic differences between AD and healthy subjects, such as differences in the

lipoprotein levels, can be a result of amyloid plaque production rather than the cause for this

hallmark of AD. The novel approach for the analysis of correlation between metabolites in the

CSF and blood has shown changes in the number of significant correlations across the blood

brain barrier for a number of metabolites indicated for their importance in AD, such as ascor-

bate, pantothenic acid, glucose 1-phosphate, glyceric acid and creatine. Change in the correla-

tion level between metabolites in CSF and blood indicates change in the transport of some

metabolites across the blood brain barrier. Elucidating the relationship between amyloid pla-

que formation and the observed metabolic changes is needed in order to confirm that the

observed metabolic changes in this mouse model results from the amyloid plaque. Further

analysis of metabolite correlation between CSF and blood in human AD patients is underway

to explore changes resulting from amyloid plaque formation as well as possible metabolic pre-

cursors to the catastrophic changes in the brain.

4. Materials and methods

Animals and sample collection

Double transgenic AD mice (B6.Cg-Tg) harboring PSEN1dE9 and APPSwe transgenes that

accumulate oligomeric Aβ1–42 aggregates and their corresponding wild type strain C57BL6

that do not were obtained from Jackson Laboratory and maintained at NRC. The animals were

housed in groups of three in a 12 h light-dark cycle at a temperature of 24˚C, a relative humid-

ity of 50 ± 5%, and were allowed free access to food and water. All animal procedures were

approved by the NRC’s Animal Care Committee (NRC Research Ethics Board Secretariat) and

were in compliance with the Canadian Council of Animal Care guidelines.

Mice were anesthetized with isoflurane and placed in a stereotaxic instrument with the

head rotated downward at a 45˚ angle. The body was covered with a pre-warmed blanket to

maintain the body temperature. A midline incision was made with fine scissors between the

ears beginning at the occipital crest and extending caudally about 1.5 cm on the back of the

neck. The subcutaneous tissue and muscles covering the cisterna magna were separated by

blunt dissection. The neck muscles were retracted in order to expose the dura mater. Under a

microscope, the dura mater of the cisterna magna appeared as a glistening with a clear reverse

triangle through which the medulla oblongata, cerebellum, blood vessels, and the CSF space

are clearly visible. The dura mater was blotted dry with a fine cotton swab to facilitate the care-

ful selection of a spot for penetration of a glass capillary while avoiding vessels, thereby pre-

venting blood contamination. The pulled capillary tube (Sutter Instrument, BF120-94-10,

pulled on a Sutter P-97 Flaming micropipette puller with a heat index of 300 and pressure

index of 330) was carefully inserted into the cisterna magna through the dura mater. CSF flo-

wed into the capillary tube following a noticeable change in resistance to insertion. The capil-

lary tube was then carefully removed, and connected to a 1 mL syringe through a 27G butterfly

needle tubing (about 5 cm). The CSF was then injected into a sample vial (Waters,

Ca#186000384c), and the vial was immediately frozen on dry ice and stored at -80˚C until fur-

ther analysis. Following CSF collection, blood (around 500 μL) was collected into a BD Micro-

tainer tube (BD 365967) by heart puncture. Blood was left at room temperature for 15–30 min,

and then centrifuge at 1500 rpm for 10 min. The serum was transferred to a sample vial, imme-

diately frozen on dry ice and stored at -80˚C until further analysis. Euthanasia was performed

by cervical dislocation under deep isoflurane anesthesia.
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CSF samples were prepared for NMR by adding 16 μL 3-(Trimethylsilyl)-1-propanesulfonic

acid-d6 sodium salt (DSS-D6; Chenomix/Sigma-Aldrich, Oakville, ON, Canada) to 30 μL CSF

(pooled from 1–3 animals) and placing in 3 mm NMR tubes (Wilmad1, 7 inch; Sigma-

Aldrich). Serum samples (samples pooled correspondingly to the CSF samples) were prepared

for NMR by combining 16 μL standard with 50 μL serum and placing in a 3 mm NMR tubes

(Wilmad1, 7 inch; Sigma-Aldrich). Buffer was not added to the samples and minor peak

shifts due to small pH changes in the body fluids was corrected computationally.

Experimental analysis

All 1H NMR measurements were performed on a Bruker 600 MHz spectrometer at 298 K.

1D 1H (proton) NMR were measured for all samples using 1D 1H with water suppression

sequence. Blood samples were measured using CPMG and NOESY 1D pulse sequences pro-

vided by Bruker, while the CSF samples were only measured using NOESY 1D sequence. All

spectra were processed using MestReNova 9.1.0 software (Mestrelab Research Solutions) with

specific preprocessing steps including: exponential apodization (exp 1); global phase correc-

tion; and normalization using the reference peak at 0ppm. Spectral regions from 0.5–9.5 ppm

were included in the normalization and analysis with water peak region (4.5–5.2ppm)

removed. Spectra were saved as txt files and imported into Matlab (Matworks Inc) for subse-

quence processing and analysis. The average of the spectral intensity up-field from -3 ppm

and downfield from 12.5 ppm was subtracted from the spectra as a simple baseline correction.

Subsequently the points were binned by taking the average over sections with a width of

0.0008 ppm.

Metabolite assignment was performed using 1D 1H data in comparison to the standard

metabolite spectra provided in databases HMDB [26] and BMRB [27] and NMR search tools

MetaboHunter [25] and ASICS [24]. Additionally, all automated assignments have been con-

firmed based on literature information for metabolites’ measurement in related samples. A

total of 51 metabolites were included in the analyses of both CSF and blood. Standard 1H spec-

tra for assigned metabolites were obtained from the Human Metabolomics Database (www.

hmdb.ca) or Biological Magnetic Resonance Databank (www.bmrb.wisc.edu) and processed

using the same procedure as above with MestReNova 9.1.0 software. Prior to quantification

procedure, the metabolite standard spectra were aligned to the reference peak (trimethysilyl-

propoinate) using peak alignment by fast Fourier transform cross-correlation [31].

A semi-automated method, running under Matlab, for quantification using multivariable

linear regression has been developed and described previously [23]. Our approach finds the

best fit for the complete spectral region for each selected metabolites to the measured 1D sam-

ple spectra. This partial least square regression analysis result was used as the starting point

and the model was constrained to concentrations greater than or equal to zero and re-run

using Levenberg-Marquardt curve fitting using lsqcurvefit method in Matlab. Metabolite con-

centrations across samples were determined using the same standard spectra that were nor-

malized to the total intensity equal to one and sample spectra normalized to the reference.

Therefore, regression analysis provides relative metabolite concentration measures in different

samples. By using the same standard scale based on the reference peak obtained relative con-

centrations allow comparison between samples without the absolute metabolite

concentrations.

Data analysis

Pre-processing including data organization, removal of undesired areas, z-score normaliza-

tion, as well as data presentation was performed with Matlab vR2010 and vR2017a
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(Mathworks). Minor adjustments in peak positions (alignment) between different samples

were performed using Icoshift [32]. Both linear, Principal Component Analysis (PCA) and

non-linear t-Distributed Stochastic Neighbor Embedding (t-SNE) techniques running under

Matlab have been used to visualize high-dimensional spectral and quantified metabolite data

for all three metabolome windows. Principal component analysis (PCA) was performed in

Matlab using routine ppca for probabilistic principal component analysis.

Machine learning and statistical methods running under Matlab and Orange, a component

based data mining software running under Anaconda Python Data Science Platform (https://

anaconda.org/; https://orange.biolab.si/) were used for feature selection in different groups.

Specifically, feature selection was done using Logistic Ridge Regression performing L2 regular-

ization as well as ANOVA ranking as presented in Orange and metabolites selected by both

methods were chosen as significant.

Data processing and analysis

Analysis of correlation between metabolites in CSF and blood. R routine utilizing

ASICS R package was used to identify metabolites in the CSF and blood samples of each of the

four groups of mice we studied including male, female; APP and WT mice at different age

points. Correlation between metabolites measured in both blood and CSF was determined

using Spearman method in R using AS89 algorithm. Spearman correlations were calculated

between the concentrations of each shared metabolite identified in blood and each shared

metabolite identified in CSF. Correlations between each metabolite in blood and each metabo-

lite in CSF was considered if above significant level of 0.05. Statistically different correlations

between metabolites in two sample groups (blood and CSF) between WT and AD groups in

two sexes are determined by transforming the correlation for each metabolite pair using Fisher

z-transformation and then the transformed correlation have been tested at significance level

a = 0.05. The metabolite pairs that were identified as significantly different from each other in

WT and AD groups are summarized in Table 1. Ranking of the correlation significance for

each metabolite in each group (male, female, APP or WT) was done using ranking method

developed in house and described below.

Ranking of metabolites by correlation significance. We make use of a path counting

algorithm to rank the metabolites in our network. For this, we use the absolute value of the

adjacency matrix because we are primarily interested in the ability of a metabolite to affect oth-

ers, which is described by the magnitude of a correlation. Any two metabolites can influence

each other directly as well as indirectly, i.e. through any number of ancillary metabolites.

Therefore, the “true correlation" between any two metabolites is dependent on the “direct" cor-

relation between them and the “indirect" correlations between any multiset of ancillary metab-

olites that connect them. To this end, we will define a matrix M as the following:

M ¼
0 A

AT 0

" #

ð1Þ

where A is the adjacency matrix and 0 is an n x n matrix whose entries are all zero. M is sym-

metric and it has four sections including (clockwise) matrices that describe the correlations

between pairs of metabolites in blood, pairs where the first metabolite is in CSF and the second

is in blood, pairs of metabolites in CSF, and pairs where the first metabolite is in blood and the

second is in CSF. Because we are only interested in correlations between metabolites across the

blood-brain barrier, we set to zero the matrices that describe correlations between pairs of

metabolites in the same biofluid. Following this notation the “indirect" correlation between

metabolites j in blood and i in blood that goes through a metabolite k in CSF for all k is
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calculated as:

Pn
k¼1

AikAjk ¼ ½AA
T�ij ð2Þ

Similarly, the “indirect” correlation between metabolite j in CSF and i in blood through all

metabolites in CSF (k = 1 to n) and all metabolites (l = 1 to n) in blood is:

Pn
k¼1

Pn
l¼1
AikAlkAij ¼ ½AA

TA�ij ð3Þ

Then in matrices:

M2k ¼
ðAATÞ

k
0

0 ðATAÞk

" #

andM2kþ1 ¼
0 ðAATÞ

kA

ðATAÞkAT 0

" #

ð4Þ

jth column sum in M2k describes how connected is metabolite j in blood to all metabolites in

blood through 2k-1 intermediary metabolites. The jth column sum of matrix M2k+1 describes

how connected is metabolite j in blood to all metabolites in CSF through 2k intermediary

metabolites.

To determine the true level of connection for any given metabolite to all identified metabo-

lites, we must compute column sums of the following series, assuming convergence:

T ¼
P1

k¼1
Mk ð5Þ

For this geometric series, convergence is guaranteed if |ρ(M)|<1 where ρ(M) is the greatest

eigenvalue of M in absolute value. Any norm of M acts as an upper bound for all eigenvalues

of M so we can scale the matrix by α so that: |αM|<1. Choosing α>0 and using the Frobenius

norm as the norm leads to: kαMkF = |α|kMkF<1$|α|<kMkF−1 and therefore we can just pick

α = (0.01+kMkF)−1 as it satisfies the inequality. With series now converging for αM we can

find T (Eq 5). As we are looking for a way to rank the metabolites based on how connected

they are to all the others we are interested in the comparison between column sums and not

their raw values and therefore after multiplying M with α:

T ¼
X1

k¼1

ðaMÞk / M
X1

k¼1

ðaMÞk

And

T 0 ¼ M
X1

k¼1

ðaMÞk ¼ MðI � aMÞ� 1

ranks the connectedness of metabolites based on T’ instead of T. We measure the connected-

ness of each metabolite with its column sum in order to rank level of connection for each

metabolite. Since the first n-columns correspond to metabolites in blood and the last n-col-

umns correspond to metabolites in CSF, we rank the metabolites in blood and CSF using the

first n and the last n columns respectively.

Supporting information

S1 Fig. Average value of metabolites with standard deviation determined in CSF samples

determined from 1D NOESY measurements. Shown are values prior to normalization.

(PPTX)
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S2 Fig. Average value of metabolites with standard deviation determined in Blood samples

determined from CPMG experiment. Shown are values prior to normalization.

(PPTX)
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