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Abstract

Background: Artificial intelligence (AI) for ultrasound scanning in regional anaesthesia is a rapidly developing interdis-
ciplinary field. There is a risk that work could be undertaken in parallel by different elements of the community but with
alack of knowledge transfer between disciplines, leading to repetition and diverging methodologies. This scoping review
aimed to identify and map the available literature on the accuracy and utility of Al systems for ultrasound scanning in
regional anaesthesia.

Methods: A literature search was conducted using Medline, Embase, CINAHL, IEEE Xplore, and ACM Digital Library.
Clinical trial registries, a registry of doctoral theses, regulatory authority databases, and websites of learned societies in
the field were searched. Online commercial sources were also reviewed.

Results: In total, 13,014 sources were identified; 116 were included for full-text review. A marked change in Al techniques
was noted in 2016—17, from which point on the predominant technique used was deep learning. Methods of evaluating
accuracy are variable, meaning it is impossible to compare the performance of one model with another. Evaluations of
utility are more comparable, but predominantly gained from the simulation setting with limited clinical data on efficacy
or safety. Study methodology and reporting lack standardisation.

Conclusions: There is a lack of structure to the evaluation of accuracy and utility of Al for ultrasound scanning in regional
anaesthesia, which hinders rigorous appraisal and clinical uptake. A framework for consistent evaluation is needed to
inform model evaluation, allow comparison between approaches/models, and facilitate appropriate clinical adoption.
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Editor’s key points

o Artificial intelligence (Al) for ultrasound scanning in
regional anaesthesia crosses multiple disciplines,
which risks limited knowledge transfer between
specialty silos and unnecessary duplication of work.
This scoping review summarises the available evi-
dence regarding the accuracy and utility of such
technology. The literature shows that a standardised
methodology for evaluation is needed, which can be
adopted for academic, clinical, and regulatory
purposes.

A structured and consistent approach, with cross-
disciplinary collaboration, may enable a full under-
standing of Al systems in regional anaesthesia and
inform clinical uptake.

Ultrasound imaging for regional anaesthesia, first described
in 1989,' is the principal method to guide the targeted de-
livery of local anaesthetic during peripheral nerve blockade
(PNB).%* Abdallah and colleagues® described its use as ‘the
most important advance in regional anaesthesia practice of
the new millennium’ as it has been shown to enhance both
efficacy and safety® through visualisation of the needle tip
and key sono-anatomical structures. It is also used to image
the spine and surrounding tissues ahead of performing cen-
tral neuraxial blockade (CNB; spinal and epidural).” As a dy-
namic imaging modality, the quality of the views obtained
depends on the skill of the operator and the image generated
by the machine.* Whilst ultrasound machines have advanced
considerably since the inception of ultrasound-guided
regional anaesthesia (UGRA), it is unclear whether clini-
cians’ knowledge and skill in utilising this technology has
progressed to a similar extent.

Artificial intelligence (Al) is a field of computer science
which uses techniques that enable computers to undertake
tasks associated with human intelligence.® Recent publica-
tions present the case for Al to aid in the acquisition and
interpretation of optimal ultrasound images for UGRA (PNB
and CNB).°’ However, this is an interdisciplinary field that
draws on contributions from multiple areas, including com-
puter science, engineering, and clinical medicine. As a
consequence, evaluation of Al technologies for the identifica-
tion of anatomical structures on ultrasound in UGRA can be
heterogeneous. For example, proof-of-concept studies in pre-
clinical experimental work’? typically involve different ap-
proaches to early clinically-orientated assessments of
commercially-available systems.” 2

Lack of knowledge transfer between disciplinary silos
risks duplication of work and hindering the development,
evaluation, and adoption of this technology. It is therefore
important to synthesise the available literature into a single
coherent summary, which identifies areas of strength and
deficiency in current evaluation approaches to inform
further work in this nascent and rapidly evolving field.
This scoping review aims to identify and map the available
evidence on the accuracy and utility of AI systems
for anatomical structure identification on ultrasound in
regional anaesthesia.

Methods

The protocol presented in this manuscript was developed us-
ing the guidance provided by the Joanna Briggs Institute (JBI)
and Preferred Reporting Items for Systematic Reviews and
Meta-Analyses—Extension for Scoping Reviews.'>

Prior scoping reviews and registration

When checked at the commencement of this study, on May 4,
2022, no scoping or systematic reviews were registered with
the JBI Database of Systematic Reviews and Implementation
Reports, Cochrane Database of Systematic Reviews, or the
International Prospective Register of Systematic Reviews
(PROSPERO).

The objectives, inclusion criteria, and methods for this
scoping review were specified in advance and documented in a
protocol registered on the medRxiv preprint server for health
sciences before data extraction from the identified sources.®

Scoping review question

The question addressed by this scoping review is, ‘what is the
evidence supporting the use of artificial intelligence for ultrasound
scanning in regional anaesthesia?’ As per published guidance,>'*
it is based on the PCC model, containing ‘population’ [human
ultrasound scans|, ‘concept’ [Al], and ‘context’ [UGRA]
elements.

Inclusion criteria
Population

Sources were included if they pertained to human ultrasound
scanning (living or cadaveric studies). Data from animal and
bench studies were excluded.

Concept

Sources included relate to the accuracy of Al-based anatomical
structure identification on real-time B-mode ultrasound and
the utility of these systems with respect to clinical practice.
For the purposes of this review, a broad definition of utility was
adopted and may refer to anaesthetists’ ultrasound scanning
performance, patient outcomes (PNB efficacy or safety), de-
livery, cost-effectiveness of URGA, or both.

Context

Sources relating to ultrasound scanning in the context of CNB
(e.g. spinal and epidural) and PNBs were included.

Types of sources

All publicly available data (including academic publications,
clinical/specialist society information, and commercial prod-
uct literature) were considered. For sources published in lan-
guages other than English, investigators contacted the author
to request a translated version.

Search strategy
Published academic literature

The search strategy was developed by the lead investigator
(SB), reviewed/modified by the author team, and then



Scoping review of Al for ultrasound in regional anaesthesia |

1051

executed by a medical librarian (NT) in conjunction with the
lead investigator. The strategy was explicitly designed to
consider sources spanning computer science, engineering,
and clinical medicine, to capture the multidisciplinary con-
tributions to this field.

Five databases were searched from inception to April 14,
2023; Medline (OvidSP; 1946 — present), Embase (OvidSP;
1974—present), CINAHL (EBSCO; 1981—present), IEEE
Xplore (IEEE: 1988—present), ACM Digital Library (ACM;
1951—present). An original search was run on Medline and
Embase only on March 3, 2023. This was superseded by the
searches on April 14, 2023. The search was comprised of title/
abstract keywords and subject headings for Al, ultrasonogra-
phy, and anaesthesia. No date or language limits were applied.
References were exported to EndNote 20 (Clarivate, London,
UK) for de-duplication. The search terms and results for all
databases are presented in Supplementary material A.

Other literature

As Al is an area of intense commercial interest, data were also
sought from sources beyond the academic literature to mini-
mise publication bias (Supplementary material A). These re-
sources have variable search function capabilities so, to enable
a consistent approach, these repositories were searched using
the subject headings from the search strategy of this review
and all combinations thereof (‘artificial intelligence; ultra-
sound; anaesthesia’).

Two authors (JSB and MM) jointly searched the Interna-
tional Committee of Medical Journal Editors (ICMJE)-approved
clinical trial registries for eligible studies on May 12, 2023. As
the protocols and data from EudraCT are available via the EU
Clinical Trials Register, the latter was searched in its place. In
addition, the World Health Organization (WHO) clinical trials
registry platform was searched on the same date.

The Ethos online library of doctoral theses was also jointly
searched by two authors (JSB and MM, May 12, 2023), as were
regulatory authority registries and competent authority web-
sites of North America (US Food & Drug Administration;
MAUDE, 510k, De Novo, and Medical Device Recall databases)
and the UK (Medicines and Healthcare products Regulatory
Agency).

To review centralised information in the clinical domain,
two investigators (JSB, July 1, 2022, and JK, July 11, 2023)
reviewed websites of prominent, international learned soci-
eties in regional anaesthesia for material relating to Al in
UGRA: African Society for Regional Anesthesia; American So-
ciety of Regional Anesthesia & Pain Medicine; Asian and
Oceanic Society of Regional Anaesthesia and Pain Medicine;
European Society of Regional Anaesthesia and Pain Therapy;
Latin American Society of Regional Anesthesia; Regional
Anaesthesia UK.

Material from seven commercial organisations with prod-
ucts in the field were retrieved through independent search of
the company websites by two investigators (JSB and MM, May
24—August 13, 2023). The included companies were GE
Healthcare (Chicago, IL, USA), HiCura (Singapore), Intelligent
Ultrasound (Cardiff, UK), Mindray (Shenzhen, China), Rivanna
Medical (Charlottesville, VA, USA), Samsung (Suwon, South
Korea), and SmartAlpha (Ankara, Tukey).

Data extraction
Screening initial results

After removing duplicates, two investigators (JSB and MM)
independently screened returned titles for inclusion in the
study to determine whether they relate to Al, ultrasound, and
regional anaesthesia. If the title was ambiguous, the source
was included at this stage. In the event of disagreement be-
tween the two assessments, a third investigator (JK) reviewed
to adjudicate.

Abstract review

One investigator (JSB) then reviewed the abstract/summary of
all included sources for consideration of full-text review.
Sources were retained if the abstract/summary related to Al,
ultrasound, and regional anaesthesia (on human subjects).

Extraction of results

The full texts of all appropriate sources were reviewed (JSB) to
ensure that each was still deemed suitable, then scrutinised to
extract data on accuracy, utility, or both of the Al systems
evaluated. The extracted data were electronically tabulated
using a standardised data extraction form available in
Supplementary material A. To ensure full scrutiny of each
source, a software engineer (TH) initially reviewed all com-
puter science/engineering papers. The lead investigator (JSB,
clinician) then reviewed the extracted data from these sources
along with the original publication, and assessed the clinically
orientated sources, to aggregate all the information.

As formal assessment of study methodological quality is
not recommended for scoping reviews,’* the investigators did
not predefine what data would pertain to sono-anatomical
structure identification accuracy or utility, or set any mini-
mum outcome/reporting criteria. To maximise data capture,
an inclusive approach was adopted when reviewing study
items. As sources of commercial data may not include meth-
odological reporting, this was not a prerequisite for inclusion.

Data were extracted from the included sources, and then
the reference list for each was manually scrutinised for rele-
vant cited literature (JSB). In addition, Google Scholar (Menlo
Park, CA, USA) was used to identify pertinent citing literature
(JSB). Further sources identified in this way were included for
analysis.

Results
Selection of data sources

Figure 1 shows a flowchart of the search and screening process
which details the number of sources considered at each stage.
Overall, 116 sources were included for analysis; 84 pertaining
to PNB, 30 to CNB, and two that addressed both areas. Where a
source reported or summarised findings published elsewhere
(e.g. review article or book chapter), data from the original
source were used preferentially (n=93; 84 academic publica-
tions and nine commercial sources). Therefore, not all 116
sources have been cited in the manuscript, although addi-
tional sources are cited in Supplementary material B.
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Citations retrieved by database
search (n=12 971)

Duplicates excluded before
screening (n=2787)

}

Titles screened (n=10 184)

Additional sources:
Citing/cited literature (n=31)

Excluded after review of title
- (n=10107)

A

Abstracts screened (n=77)

M Excluded after review
] g of abstract (n=4)

Full text review (n=73)

>

Specialist society websites (n=2)
Commercial systems (n=7)
Publications cited by industry (n=3)

}

Included for full review (n=116)

Fig 1. PRISMA flowchart showing the number of sources considered at each stage of the search and screening process. PRISMA, Preferred

Reporting Items for Systematic Reviews and Meta-Analyses.

Iterative analysis of included sources identified six
recurring themes in the data: Al methodology in use;
output of AI systems; methods of evaluating accuracy;
methods of evaluating utility; standardisation of study
methodology/reporting; information on commercially
available systems.

Artificial intelligence methodology
Artificial intelligence and deep learning from 2016 to 2017

There is a notable change in the Al techniques used around
2016—17. Early approaches, most published before 2016—17,
typically involved steps of feature extraction from the ultra-
sound image, followed by classification of these features, for
both PNB'~?8 and CNB.?’ "’ Around this point, there has been
an increase in published data where the dominant technique
was deep learning for both PNB*'%123873 and cNB,*7/
though there are some exceptions.”* #° A number of sources
do not explicitly state the techniques used; these are typically
clinical case reports or (external) validation studies describing
accuracy or efficacy®* ™ and used alternative terms such as
‘automated’ or ‘intelligent’. However, these sources did iden-
tify the software in question (e.g. SpineNav3D software in the
Accuro device, produced by Rivanna Medical). A full descrip-
tion of the Al, machine learning, and deep learning method-
ologies is provided in Supplementary material B.

Ground truth for model training/development

Ground truth refers to information known to be real and is
used as the reference standard to train and test an Al tech-
nology. When training models in a supervised machine
learning approach, raw data are presented alongside the
ground truth and the model learns data patterns underlying

this interpretation of the data. When evaluating models, the
ground truth is used as a benchmark against which the models
are assessed. It is therefore important to use a ground truth of
the highest calibre to train models to the highest standard and
assess them accurately.

In the available sources, a variety of human image
interpretation was used as the ground truth. This included a

range in the number of humans used in the ground truth from
7,23-25,31,32,34-36,38,46,49,58,60,67,72,77 8,9,19,21,26,30,33,44,
one, two,

51 three,® %635 and up to 15.*® Some sources cited

‘multiple’ humans, used a plural term (e.g. experts), or
simply did not state the number.?~1820,25,27,29,54,62,64,66,69-71
Where multiple humans contributed to the ground truth,
it was often unclear whether a single human assessed
each image (with different humans assessing a different
sample of the image dataset) or whether multiple humans
assessed each image.

In addition to the varying number of humans contributing
to the ground truth in model development, there was variation
in the specialty and experience of those contributing. Sources
described their ground truth human(s) as a volunteer,®* doc-
tor/physician,*®°2635 sonographer,”*°3>¢%7>77 clinical pro-
fessional,”’*® or (regional) anaesthetist®!/~2123,25.26,36,44-46,
49,51,53,54,58,61,62,67,69 The level of expertise of those providing

the ground truth was described as trained,®* experienced,21'
30-34,46,48,52,65 7,8,17—20,25-27,33,35,45,53,58,61,66,67,69,71,77
expert,

professional,®®#>°1%2  specialist,> or the level was un-

stated.?>*>>* However, sources did not typically define what
was required to meet the definition of these levels and there is
no universally recognised definition of ‘expert’ in regional
anaesthesia.

For some sources, it is not clear how the ground

truth for training data was obtained.®!%!%2829,39-43,45,47,50,
55,57,59,60,68,70,7276,78,81-91,93
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Model output
Peripheral nerve blockade

The most common output for models processing PNB
ultrasound images was segmentation (the outline/colour
overlay of features in the image).>'H1219,20,22,23,25,27,36,38-43,
45755,57-60,63-69,71,72,78,79 L egs common outputs included the
use of bounding boxes to identify the location of the
structure,®'182661 attempting to locate the centre of a nerve
and placing expanding circular rings from the centre,?! or
placing name tags over structures in question,”*34>:47:50

Alternative methods proposed to support ultrasound
scanning included ‘enhancing’ the image acquired,’® applying
a ‘scan success’ indicator to the image,”*>*>*/°% or classifying
ultrasound images into the region scanned’®’ or optimal vs
non-optimal views.** Additional functions included creating a
three-dimensional (3D) model of the structure in question,?*%®
path planning for needle insertion,”’ and guidance on probe
movement.?

Central neuraxial blockade

The most common output for models processing CNB ultra-
sound images was classification/identification of vertebral
level, the intervertebral space, or both.303475777,81-91,93 pjq.
tance from the skin to the posterior complex/epidural space
was the second most common output of models applied to
CNB ultrasound.”:8%82-899-93 gther functions included iden-
tifying the optimal needle insertion point,?%*>#1:888991 stryc-
ture identification (via segmentation or bounding boxes),”***
or 3D reconstruction of the spine.”*

Accuracy evaluations
Peripheral nerve blockade

One approach to assessing accuracy of PNB model outputs
involved assessing pixel-wise agreement between the ground
truth and model output data, which was typically used for
models that segment structures in the ultrasound image. The
most common reporting metrics used to assess the overlap
of enclosed areas (e.g. the outline of a blood vessel) were
intersection over union (IoU; Jaccard similarity coefficient)
and the Dice similarity coefficient®17720:23,25,27,28,38,42,46,
49,51755,57-60,62-66,68,69,71,79 The Hausdorff metric/distance was
used to compare the proximity of lines (e.g. a fascial
plane),19:20:5,27,28,42,53,69 yhilst a pixel-wise approach clearly
gives a detailed assessment of the proximity/coverage of one
segmentation to another, there is no established threshold for
this metric at which an Al system gives an ‘acceptable’ output.
Furthermore, it gives little qualitative information on clinical
relevance which is important as it may be more critical to
accurately identify the exact border of a nerve or artery than a
muscle.

An alternative approach takes an overall view of each
whole structure by classifying the frequency of correct
and incorrect prediction using true positive/negative and
false positive/negative, accuracy, F-score, precision, recall,
sensitivity, specificity, and area under the
curve. 1819:39,44,5455,5859,6167,69.72 Boymess and  colleagues®®
used the majority opinion from a panel of three experts to
determine whether an Al structure identification was a true
positive/negative etc; whilst this method would appear to
incorporate clinical context, it is a pooled subjective opinion.

The remaining publications used a frequency classification for
each whole structure and based the decision of correct iden-
tification on a cut-off in the pixel-wise assessment. The defi-
nitions of correct prediction included IoU of >0.5,%1846.65
>25% pixel overlap,”®®” and subjective rating for a range of
IoU values (e.g. 0.41—0.6=fairly good precision; 0.61—0.8=good
precision),*® whilst others did not define the threshold of
effective segmentation.”*>°

Other methods of assessing/reporting accuracy were used
infrequently, including subjective human assessment without
providing data (‘performed as claimed’*° or ‘the identification
of regional anatomy and scanning were successful’*’) and a
subjective 15 Likert scale rating of accuracy.’

It is important to note that ultrasound scans used for the
assessments were collected on different subjects, using
different machines, and in different body regions/structures. A
limited number of accuracy assessments used multiple
structure classes (e.g. nerve, artery, bone) over multiple body
regions,”*%*? whilst some covered multiple structure classes
in a single region (e.g. supraclavicular level brachial plexus or
thoracic paravertebral block).?%?3274446:49,53,58,62,67,78  ther
sources used a single structure class (e.g. nerve) from multiple
regions,®%°* or a single structure in a single region, such as
the median nerve in the forearm,” 2%®%%° the femoral
.artery,28'72 the femoral nerve,*®°° or the sciatic nerve.?%?>48>7
Finally, some studies did not fully define the region/structures

being assessed; often simply naming the ‘brachial
plexus’,>1:°%55:59,60,63,64,66,68 71,79 or not stating the region(s) or
structure(s) at all.*”»*°

Ultimately, studies failed to consistently use the same
metrics to compare segmentation of the same structures on
the same ultrasound scans. This makes it very difficult for
clinicians to effectively compare performance of one model/
approach to others.

Central neuraxial blockade

Assessment of accuracy for CNB models was more aligned
than the approaches for assessing PNB model accuracy, which
involved a greater element of human judgement/interpreta-
tion. The most common method was correlating the distance
from skin to posterior complex/epidural space as predicted by
the model to that observed on manual interpretation of
ultrasound,?4#4889 depth of loss of resistance during needle
insertion,%#2858 or both.?”#%92 All reported good correlation
between human depth assessment and Al depth assessment
on the ultrasound image, and loss of resistance during needle
insertion to be deeper than that calculated on ultrasound (by
human or AlI).

Accuracy in determining the level of the intervertebral
space in view was assessed by five studies. All report >84%
agreement in Al and human identification of vertebral level
based on ultrasound interpretation,>>**”>~"” whereas a single
study reported 70% agreement between palpation and Al-ul-
trasound.”® Similarly, four studies reported >93% accuracy in
Al identification of lumbar ultrasound images showing an
intervertebral space vs a spinous process, though this
approach did not determine which level was in view.?%31733

The ultrasound body regions used for CNB approaches
were more consistent than for PNB. Nineteen sources used
ultrasound scans of the lumbar spine’? 337577,
80,83,84,8685909293  and two utilised the thoracolumbar

spine,”*#? whereas one did not specifically state which region
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was seen (though use of the lumbar region can be deduced as
it is a case report of a patient undergoing total knee
arthroplasty).®®

Ground truth for accuracy assessments

Many studies reported results of testing or internal validation
in which a proportion of the initial dataset was partitioned
from the training data and used to assess models at the end of
training. External validation is the subsequent assessment of
these models, using data collected at a different time point,
location, population, or all. It is used to further evaluate model
performance and assess generalisability to the wider popula-
tion (or different populations). Only one source explicitly
stated it was an external validation study.*

Of the sources reporting accuracy data for PNB models,
seven described external validation studies. The standard
(ground truth) used for these studies was described as a single
‘expert anaesthetist’,”? two ‘regional anaesthesia experts’,°
‘an experienced anaesthetist and a radiologist’,” or ‘three
UGRA experts’.> One study compared Al model performance
to that of 19 ‘experts’.*” It is not stated in/clear from two
sources who was providing the gold standard (ground truth)
for these assessments.*’:*°

Twelve sources for CNB models described external valida-
tion studies of accuracy. The gold standard (ground truth) for
these studies were an anaesthetist,??>0:80.82-848692  (]inj.
cian,®®° ‘provider experienced with freehand ultrasound’,””
or is not stated.®> Their level of expertise was described as
experienced,’*®®% novice and senior/expert,?>%* resident/
fellow/attending,*%%°? or unstated.’”’>#%# The number of
humans contributing to this gold standard (ground truth) was
one, 0758386889293 tyr0 84 or unstated. 255

Utility evaluations
Peripheral nerve blockade

Utility evaluations for PNB models can be broadly divided into
assessments based on subjective opinion (n =10) or on clinical
outcomes (n=4).

In a non-clinical or simulation environment, Bowness and
colleagues'! have published a number of studies in which a
panel of three UGRA experts rated the Al colour overlay on
recorded ultrasound videos (7.87—8.69/10); assessed that it
would be helpful in determining the correct view and identi-
fying anatomical structures of interest in >99% of cases'};
determined the accuracy rate of structure identification to be
93.5%°%; and reduced the risk of unwanted needle-induced
trauma or block failure in 62.9—86.4% of cases.* In other
studies this group has sought feedback from 30 users to
determine use of this system for UGRA experts (teaching) and
non-experts (learning/clinical practice),'’> and assessed 21
UGRA non-experts to demonstrate superior scanning perfor-
mance (on volunteers) with the use of an Al colour overlay on
real-time ultrasound.?’ Cai and colleagues*® demonstrated
higher self-rating and expert assessment scores amongst 40
anaesthetic trainees when performing PNBs after teaching
with an Al-based nerve identification system, whereas Erdem
and colleagues®® describe that 40 anaesthetists reported
reduced chance of complications, increased chance of block
success, and that the system was useful as a training tool in
UGRA. Other studies report that anaesthetists described the
assistive Al technology to be helpful in the identification of
key anatomical structures and in training,** and that all

non-experts in UGRA considered assistive Al to be a desirable
and useful tool.?* Other published subjective opinion includes
a 20—30% reduction in time required for UGRA procedures and
a reduction in needle pass attempts (with no underlying data
provided in this source),”® and a report which proposed that
assistive Al may improve block success, reduce the number of
needle attempts, improve the satisfaction of patient/practi-
tioner, and reduce the volume of local anaesthetic required
(again without providing underlying data).*’

Clinical assessments include a secondary analysis of data
collected during a service evaluation by Bowness and col-
leagues,*! who reported an increase in the delivery of UGRA to
trauma patients when assistive Al for ultrasound scanning
was available. In 28 days before the introduction of the Al
system, 71 PNBs were performed amongst 207 eligible cases,
compared with 93 for 193 eligible cases after (P=0.036)—with
no observed decrease in efficacy or increase in complication
rate.*! Other clinical outcome data for PNB systems report that
UGRA performed with Al-enhanced ultrasound imaging ach-
ieved a quicker performance of UGRA, superior motor block,
and better analgesia in scapula fracture surgery.”® Cai and
colleagues®® report reduced paraesthesia during the first
month of performing sciatic nerve blocks after teaching with
an Al-based nerve identification system, though there was no
difference in the rate of pain during injection, perforation of
blood vessels or block success. Wang and colleagues’® report
reduced postoperative analgesic requirement and cognitive
dysfunction/delirium after Al-assisted lumbosacral plexus
block compared with systemic analgesia for hip arthroplasty
surgery.

The above sources again report evaluations for PNB for
varying body regions. Some studies covered PNB for three or
more body regions, 13974143 whereas one source covered the
supraclavicular and adductor canal blocks,* three covered a
single PNB region (lumbar plexus,’® ‘scapula region nerve
block’,” and the sciatic nerve®®), and two did not state the PNB
region assessed.*’>°

Central neuraxial blockade

Utility evaluations for CNB models can be broadly divided into
assessments based on technical success of the procedure
(n=13) or on clinical outcomes (n=4).

Technical success criteria included reporting needle
insertion attempts or first pass success; three sources reported
fewer attempts/higher success rates,?>°%?! two reported no
statistically significant difference,®®° and three sources sim-
ply reported rate of first pass success using Al assistance
(87.23%, 79.1%, and 92.0%, respectively) without comparison to
no Al assistance.’®%%% Two sources were case reports of
successful epidural catheter insertion in patients living with
obesity.®>® A second criterion for technical success was the
number of needle directs, with three sources reporting fewer
redirects were required with Al assistance.®2°%°! As with
utility evaluations of PNB models, time taken for the proced-
ure/to identify the appropriate view (intervertebral space) was
assessed in a number of sources. This showed variable results,
with some reporting increased time,?”°! no difference,®>*° a
mixed picture,”>®° or reduced time required.”® Two sources
report the time taken for the procedure, but did not provide a
comparison with an alternative technique (28 s and 31 s,
respectively).?%

In clinical outcome studies, no significant difference in
patient satisfaction was associated with use of Al-assisted
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ultrasound scanning for CNB,®” or failed block and adverse
events,”! though a lower incidence of paraesthesia and lower
back pain have been reported elsewhere. %%

As might be expected, the body region used to evaluate Al
assistance for ultrasound scanning in CNB was more consis-
tent than for PNB. Eleven sources report using ultrasound
scans of the lumbar spine®%/>808L8-91.93 and one utilised the
thoracolumbar spine,®? whilst one did not specifically state
which region was seen though use of the lumbar region can be
deduced as it is a case report of a patient undergoing total knee
arthroplasty.®”

Standardisation of study methodology and reporting

An additional limitation to comparing evaluations of this
technologies is that reporting varies considerably; only 32/93
(34.4%) reviewed sources reported demographic data for the
subjects assessed in these studies.’»?!%21,22:29,30,35,37-42,44,
46,52,53,74,75,78,80-85,88,90-93 This is important as demographic
factors such as age (muscle atrophy) and obesity affect the
appearance of anatomical structures on the ultrasound im-
age.”® These descriptions were themselves inconsistent; such
as reporting age and gender, but not BMI,’® or reporting only
mean age/BMI without ranges.”* Importantly, older and obese
patients were underrepresented with only 18/32 (56.3%) sour-
ces reporting demographic data which included subjects aged
>60 yr, BMI >30 kg m ™2, or both, 1%/ ~425280,81,83-86,85,90-92
Models for CNB ultrasound were most commonly assessed
in the obstetric population, with 14 sources reporting data in

this cohort 3 3%37.7581,83,8486,88,90,92.93 pegpite CNB being a
common technique throughout anaesthesia, only four sources
included non-obstetric patients,?%¢>8>°! whilst four utilised
healthy volunteers,?>*>>7” and three sources did not identify
the subject population being scanned.””*7®

Only six sources reported their data according to
recognised reporting standards,*%*>82858892 including the
CONSORT-AL®> CONSORT,”® DECIDE-AL®" and STROBE®
guidelines. Of these, only CONSORT-AI and DECIDE-AI are
Al-specific. As they were published in 2020 and 2022, respec-
tively, time will tell whether future studies are reported in a
more consistent manner and in line with these guidelines.

Finally, it is good practice in the field of Al to make training
and testing/validation data publicly available.”” %! However,
only 15 sources used publicly available data or shared their
data when publishing.48’49’51’55’59761’63766’68’71’74’79

Commercially available systems

Seven Al systems are commercially available to support ul-
trasound scanning in UGRA, five for PNB and two for CNB
(Table 1).

Peripheral nerve blockade

cNerve (GE Healthcare)'? and Smart Nerve (Mindray)'® are

systems incorporated into the manufacturers’ ultrasound ma-
chines, which segment peripheral nerves to produce a (yellow)
colour overlay over them. NerveTrack (Samsung Medison,
Suwon, South Korea)'®% is also integrated into the

Table 1 Commercial systems and accompanying information. Al, artificial intelligence; CNB, central neuraxial blockade; PNB, pe-
ripheral nerve blockade. *Company approached for information on regulatory approval in UK and EU but not provided.

System name Approved as a medical Description Company claims Sources of data on
Manufacturer device performance
cNerve UK/EU (Unknown®) Colour overlay ‘Helps detect and track nerves ~ Commercial'%?
GE Healthcare USA (June 2022) segmentation of in 99% of cases’
(Chicago, IL, USA) interscalene to
supraclavicular-level
brachial plexus, femoral,
and popliteal-level
sciatic nerve
Nerveblox UK/EU (May 2021) Colour overlay of blood No specific claims Commercial’®®
SmartAlpha vessels, bone, muscles, regarding accuracy Academic”*347:>0

(Ankara, Turkey)

NerveTrack
Samsung (Suwon,
South Korea)

ScanNav Anatomy
Peripheral Nerve
Block

Intelligent
Ultrasound
(Cardiff, UK)

UK/EU (February 2021)
USA (May 2021)

UK/EU (April 2021)
USA (October 2022)

nerves, and fascia/serosa
for 12 PNBs

Bounding box around
median and ulnar nerves
in the forearm

Colour overlay of blood
vessels, bone, muscles,
nerves, and fascia/serosa
for 10 PNBs

‘... gives anesthesiologists
extra confidence ... ’

... help anesthesiologists
practice PNB faster.’

... can detect the median and
ulnar nerve with
reasonable accuracy ...’

... efficiency of nerve
detection ... ’ is claimed to
be 4.4/5 with vs 3.8/5
without (P<0.0001)

... reduce scanning time
significantly, from 24.7 s to
8.2s.’

... enhance the accuracy and
standardization of
ultrasound image
interpretation ... ’

... help tip the balance of
safety and confidence in
favour of performing
regional anaesthesia.’

‘

Commercial'®1%*

Commercial*®®
Academic6,11,12,39 41

Continued
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Table 1 Continued

System name
Manufacturer

Approved as a medical
device

Description

Company claims

Sources of data on
performance

Smart Nerve
Mindray (Shenzhen,
China)

Accuro

Rivanna Medical
(Charlottesville,
VA, USA)

uSine
HiCura Medical
(Singapore)

UK/EU (Unknown®)
USA (November 2021)

UK/EU (June 2016)
USA (March 2014)

UK/EU (August 2023)
Singapore (July 2022)

Colour overlay
segmentation of
interscalene to
supraclavicular-level
brachial plexus nerves

Provides guidance for CNB
(spinal and epidural) in
the thoracic and lumbar
regions of the spine
using ‘Al-enabled
SpineNav3D image
recognition’.

Software identifies
intervertebral space on
ultrasound image and
hardware identifies
point of needle insertion
on the skin.

Additional screen labels
spinous processes and
intervertebral spaces on
lumbar ultrasound scan,
and measures epidural
depth

... machine learning
algorithm allows automatic
identification of spinal
landmarks during
ultrasound scan.’

No specific claims

regarding accuracy

‘... automatically recognise

the brachial plexus and
highlight the nerve,
increasing clinical
confidence and reducing
procedure time ... ’

‘Improve the safety, speed,
and efficiency of epidural
and spinal anesthesia.’

... accurately identifies the
epidural location with
success rates exceeding
94%, Accuro gives you
confidence ...’

‘Clinically proven to:

- Increase first attempt

success

- Reduce needle passes

- Reduce placement times

- Significantly increase patient

satisfaction and pain
control’

‘Collectively, these benefits
significantly reduce the cost
of care’

... alerts anaesthetist in real-
time when the right
location and right angle are
reached.’

‘... achieved very high [92%]
first-attempt puncture
success rate.’

... safe and effective and
promotes a reduction of
procedural time, better
clinical outcomes and
improves patient
satisfaction.’

Commercial'®

Commercial*?”-1%¢
AcademiC81 87,89—92

Commercial'®®
Academic®?

manufacturer’s machine, but produces bounding boxes around
the median and ulnar nerves of the forearm. Nerveblox (Smar-
tAlpha)'® and ScanNav Anatomy Peripheral Nerve Block (Intel-
ligent Ultrasound)'® are external devices, which can be
connected to an ultrasound machine to provide an additional
display with an Al-generated colour overlay of key structures for
anumber of PNBs. Numerous studies have been published on the
latter device,'®*°*? all of which are included in this review.

Central neuraxial blockade

Accuro (Rivanna Medical) is a handheld device with an inte-
grated ultrasound machine,'%”"'% whereas uSine (HiCura) is an
external device which is connected to the ultrasound ma-
chine.’® Both systems aim to support identification of the
vertebral level, intervertebral space, and depth to target. The
former system incorporates hardware to mark the patient’s
skin with the optimal needle insertion site.

Conflicts of interests

As in any field, declaring sources of funding and conflicts of
interest is essential to transparent reporting of research. Work

in Al has a potential for commercial value, thus it is particu-
larly pertinent in this setting. Of the 23 academic studies
which directly relate to a commercial product (see Table 1),
10 declare funding for research (or in-kind support),
industry affiliations, or both in the conflict of interests
statement.®1123974186,90792 Twq report these affiliations in
the limitations section of the discussion.>>*°

Discussion

Al in healthcare is an area of intense and growing inter-
est;’'% the worldwide AI healthcare market projected to
reach $200 billion by 2030''! and the number of regulatory
approvals for Al-based medical devices is steadily
increasing.’'? Anaesthesia is a data-rich specialty, with a
heavy reliance on technology, but there are relatively few Al
devices approved for use in this field of medicine compared
with others such as radiology and cardiology.'**

This scoping review has surveyed literature across multiple
disciplines and identified key findings. Firstly, the dominant
technique is deep learning, which is used in virtually all pub-
lications since 2017. In addition, model outputs show consis-
tency; most commonly sono-anatomical structure
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segmentation for PNB or identification of intervertebral space
and depth to target for CNB. Secondly, and conversely,
methods for evaluating accuracy and utility originate in mul-
tiple disciplines and show gross heterogeneity with a notable
lack of clinical data. Thirdly, reporting is inconsistent amongst
academic publications and data on device performance in-
formation from commercial organisations is scarce—often
produced by clinicians in subsequent studies rather than
made available by the companies from their regulatory
approval studies.

It is possible that heterogenous and unstructured research
literature remains a barrier to Al being successfully incorpo-
rated into clinical anaesthetic practice. The uniformity in Al
techniques now used, and consistency in model outputs,
should facilitate further standardisation. This will engender
greater understanding of this technology and support appro-
priate adoption in clinical practice. Despite the rapid growth in
the field, this should provide cause for optimism that appro-
priate structure can be implemented successfully.

However, this is an interdisciplinary field, and the discor-
dant approaches of clinical medicine, technology, and in-
dustry are striking. This is evident in the anatomical
structures that groups/companies chose to identify, how
models are trained (e.g. source of ground truth), how accuracy
is validated (e.g. metric used), and how utility is assessed. In
addition, there is still a paucity of data on patient outcomes
and institutional impact. Standardisation has become a com-
mon feature of UGRA.™* 7 Whilst initial efforts have been

made to address this in A% it has not yet been realised

and the authors believe that this limitation will continue to
impede clinical implementation of AI in UGRA until it is
addressed.

Enthusiasm to share novel findings in this exciting and
fast-moving field is understandable, but differences in
reporting also hinder reliable comparison of models/systems
and limit a true understanding of the state of the art.
Furthermore, as companies are not incentivised to share data
from their regulatory filings, there is variability in approaches
to regulatory approval and a lack of understanding of the
relative performance of approved devices.

We propose that a structured framework be developed for
validating accuracy and clinical utility of AI which assists ul-
trasound scanning in UGRA (Fig. 2). This should include which
sono-anatomical structures systems identify for specific pro-
cedures, a standardised method for both pixel-wise and clin-
ical assessment of accuracy, clearly identified measures of
clinical utility, demonstration of clinical impact, and stand-
ardised reporting,.'?° Clinical bodies should lead the develop-
ment of this framework, to ensure clinically relevant pain
points are addressed, and ensure contribution from technol-
ogy experts, clinical medicine, industry and regulatory bodies,
and patient and public involvement. Developing an open-
access dataset of representative ultrasound scans for all
parties to utilise in validation studies will be a key element to
facilitating standardised evaluation. Industry should be
encouraged to utilise this and publish their data. Standardised

Overseen by the responsible body for advances in anaesthesia
(clinical practice, patient care and safety)
Led by clinician(s) with input of key specialists (e.g. computer science/technology)

Standardisation

Open-source ratified
validation dataset

Diverse subject
ethnographic background
and body habitus

Defined machines/probes
Agreed set of blocks

Agreed structures

Accuracy

Agreed pixel-wise metric(s)
(e.g. Dice similarity
coefficient)

Agree clinical metrics
(including level of assessor
experience/expertise)

Agreed thresholds of
acceptability

Utility

Identify which staff/patient
populations benefit most

Demonstrate benefits in
simulation setting first

Demonstrate benefits and
safety in clinical setting

Open-access reporting according to agreed standard
agreement amongst journals, industry and regulators

Fig 2. Conceptual overview of a structured framework for the validation of accuracy and clinical utility of Al technology which assists
ultrasound scanning in UGRA. Al, artificial intelligence; UGRA, ultrasound-guided regional anaesthesia.
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reporting of these evaluations will further aid dissemination of
knowledge, aided by a non-critical view of declared potential
conflicts of interest.

Ultrasound revolutionised UGRA in an unstructured
manner has led to great progress, but barriers in the field
remain as some techniques to assist with ultrasound image
interpretation remain unvalidated (e.g. hydrolocation).*
Recent initiatives are attempting to retrospectively provide
structure.'?! Al will revolutionise medicine,''° and potentially
UGRA; adopting this technology in a structured manner will
provide the optimal opportunities to harness its full potential.

Conclusions

This scoping review has identified gross heterogeneity and
poor reporting across the literature pertaining to Al for the
identification of anatomical structures on ultrasound in
regional anaesthesia. This is an important barrier to devel-
oping the field and implementing AI technologies within
clinical anaesthetic practice. The situation can only be
improved by clinicians, scientists, and industry working
together to standardise our approach to understanding these
systems, to optimise use in ultrasound-guided regional
anaesthesia.
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