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Abstract

Background: Artificial intelligence (AI) for ultrasound scanning in regional anaesthesia is a rapidly developing interdis-

ciplinary field. There is a risk that work could be undertaken in parallel by different elements of the community but with

a lack of knowledge transfer between disciplines, leading to repetition and diverging methodologies. This scoping review

aimed to identify and map the available literature on the accuracy and utility of AI systems for ultrasound scanning in

regional anaesthesia.

Methods: A literature search was conducted using Medline, Embase, CINAHL, IEEE Xplore, and ACM Digital Library.

Clinical trial registries, a registry of doctoral theses, regulatory authority databases, and websites of learned societies in

the field were searched. Online commercial sources were also reviewed.

Results: In total, 13,014 sources were identified; 116 were included for full-text review. A marked change in AI techniques

was noted in 2016e17, from which point on the predominant technique used was deep learning. Methods of evaluating

accuracy are variable, meaning it is impossible to compare the performance of one model with another. Evaluations of

utility are more comparable, but predominantly gained from the simulation setting with limited clinical data on efficacy

or safety. Study methodology and reporting lack standardisation.

Conclusions: There is a lack of structure to the evaluation of accuracy and utility of AI for ultrasound scanning in regional

anaesthesia, which hinders rigorous appraisal and clinical uptake. A framework for consistent evaluation is needed to

inform model evaluation, allow comparison between approaches/models, and facilitate appropriate clinical adoption.
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Editor’s key points

� Artificial intelligence (AI) for ultrasound scanning in

regional anaesthesia crosses multiple disciplines,

which risks limited knowledge transfer between

specialty silos and unnecessary duplication of work.

� This scoping review summarises the available evi-

dence regarding the accuracy and utility of such

technology. The literature shows that a standardised

methodology for evaluation is needed, which can be

adopted for academic, clinical, and regulatory

purposes.

� A structured and consistent approach, with cross-

disciplinary collaboration, may enable a full under-

standing of AI systems in regional anaesthesia and

inform clinical uptake.
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Ultrasound imaging for regional anaesthesia, first described

in 1989,1 is the principal method to guide the targeted de-

livery of local anaesthetic during peripheral nerve blockade

(PNB).2,3 Abdallah and colleagues4 described its use as ‘the

most important advance in regional anaesthesia practice of

the new millennium’ as it has been shown to enhance both

efficacy and safety3 through visualisation of the needle tip

and key sono-anatomical structures. It is also used to image

the spine and surrounding tissues ahead of performing cen-

tral neuraxial blockade (CNB; spinal and epidural).5 As a dy-

namic imaging modality, the quality of the views obtained

depends on the skill of the operator and the image generated

by themachine.4Whilst ultrasoundmachines have advanced

considerably since the inception of ultrasound-guided

regional anaesthesia (UGRA), it is unclear whether clini-

cians’ knowledge and skill in utilising this technology has

progressed to a similar extent.6

Artificial intelligence (AI) is a field of computer science

which uses techniques that enable computers to undertake

tasks associated with human intelligence.6 Recent publica-

tions present the case for AI to aid in the acquisition and

interpretation of optimal ultrasound images for UGRA (PNB

and CNB).6,7 However, this is an interdisciplinary field that

draws on contributions from multiple areas, including com-

puter science, engineering, and clinical medicine. As a

consequence, evaluation of AI technologies for the identifica-

tion of anatomical structures on ultrasound in UGRA can be

heterogeneous. For example, proof-of-concept studies in pre-

clinical experimental work7,8 typically involve different ap-

proaches to early clinically-orientated assessments of

commercially-available systems.9e12

Lack of knowledge transfer between disciplinary silos

risks duplication of work and hindering the development,

evaluation, and adoption of this technology. It is therefore

important to synthesise the available literature into a single

coherent summary, which identifies areas of strength and

deficiency in current evaluation approaches to inform

further work in this nascent and rapidly evolving field.

This scoping review aims to identify and map the available

evidence on the accuracy and utility of AI systems

for anatomical structure identification on ultrasound in

regional anaesthesia.
Methods

The protocol presented in this manuscript was developed us-

ing the guidance provided by the Joanna Briggs Institute (JBI)

and Preferred Reporting Items for Systematic Reviews and

Meta-AnalysesdExtension for Scoping Reviews.13e15
Prior scoping reviews and registration

When checked at the commencement of this study, on May 4,

2022, no scoping or systematic reviews were registered with

the JBI Database of Systematic Reviews and Implementation

Reports, Cochrane Database of Systematic Reviews, or the

International Prospective Register of Systematic Reviews

(PROSPERO).

The objectives, inclusion criteria, and methods for this

scoping reviewwere specified in advance and documented in a

protocol registered on the medRxiv preprint server for health

sciences before data extraction from the identified sources.16
Scoping review question

The question addressed by this scoping review is, ‘what is the

evidence supporting the use of artificial intelligence for ultrasound

scanning in regional anaesthesia?’As per published guidance,13,14

it is based on the PCC model, containing ‘population’ [human

ultrasound scans], ‘concept’ [AI], and ‘context’ [UGRA]

elements.
Inclusion criteria

Population

Sources were included if they pertained to human ultrasound

scanning (living or cadaveric studies). Data from animal and

bench studies were excluded.
Concept

Sources included relate to the accuracy of AI-based anatomical

structure identification on real-time B-mode ultrasound and

the utility of these systems with respect to clinical practice.

For the purposes of this review, a broad definition of utility was

adopted and may refer to anaesthetists’ ultrasound scanning

performance, patient outcomes (PNB efficacy or safety), de-

livery, cost-effectiveness of URGA, or both.
Context

Sources relating to ultrasound scanning in the context of CNB

(e.g. spinal and epidural) and PNBs were included.
Types of sources

All publicly available data (including academic publications,

clinical/specialist society information, and commercial prod-

uct literature) were considered. For sources published in lan-

guages other than English, investigators contacted the author

to request a translated version.
Search strategy

Published academic literature

The search strategy was developed by the lead investigator

(JSB), reviewed/modified by the author team, and then
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executed by a medical librarian (NT) in conjunction with the

lead investigator. The strategy was explicitly designed to

consider sources spanning computer science, engineering,

and clinical medicine, to capture the multidisciplinary con-

tributions to this field.

Five databases were searched from inception to April 14,

2023; Medline (OvidSP; 1946 e present), Embase (OvidSP;

1974epresent), CINAHL (EBSCO; 1981epresent), IEEE

Xplore (IEEE: 1988epresent), ACM Digital Library (ACM;

1951epresent). An original search was run on Medline and

Embase only on March 3, 2023. This was superseded by the

searches on April 14, 2023. The search was comprised of title/

abstract keywords and subject headings for AI, ultrasonogra-

phy, and anaesthesia. No date or language limits were applied.

References were exported to EndNote 20 (Clarivate, London,

UK) for de-duplication. The search terms and results for all

databases are presented in Supplementary material A.

Other literature

As AI is an area of intense commercial interest, data were also

sought from sources beyond the academic literature to mini-

mise publication bias (Supplementary material A). These re-

sources have variable search function capabilities so, to enable

a consistent approach, these repositories were searched using

the subject headings from the search strategy of this review

and all combinations thereof (‘artificial intelligence; ultra-

sound; anaesthesia’).

Two authors (JSB and MM) jointly searched the Interna-

tional Committee of Medical Journal Editors (ICMJE)-approved

clinical trial registries for eligible studies on May 12, 2023. As

the protocols and data from EudraCT are available via the EU

Clinical Trials Register, the latter was searched in its place. In

addition, the World Health Organization (WHO) clinical trials

registry platform was searched on the same date.

The Ethos online library of doctoral theses was also jointly

searched by two authors (JSB and MM, May 12, 2023), as were

regulatory authority registries and competent authority web-

sites of North America (US Food & Drug Administration;

MAUDE, 510k, De Novo, and Medical Device Recall databases)

and the UK (Medicines and Healthcare products Regulatory

Agency).

To review centralised information in the clinical domain,

two investigators (JSB, July 1, 2022, and JK, July 11, 2023)

reviewed websites of prominent, international learned soci-

eties in regional anaesthesia for material relating to AI in

UGRA: African Society for Regional Anesthesia; American So-

ciety of Regional Anesthesia & Pain Medicine; Asian and

Oceanic Society of Regional Anaesthesia and Pain Medicine;

European Society of Regional Anaesthesia and Pain Therapy;

Latin American Society of Regional Anesthesia; Regional

Anaesthesia UK.

Material from seven commercial organisations with prod-

ucts in the field were retrieved through independent search of

the company websites by two investigators (JSB and MM, May

24eAugust 13, 2023). The included companies were GE

Healthcare (Chicago, IL, USA), HiCura (Singapore), Intelligent

Ultrasound (Cardiff, UK), Mindray (Shenzhen, China), Rivanna

Medical (Charlottesville, VA, USA), Samsung (Suwon, South

Korea), and SmartAlpha (Ankara, Tukey).
Data extraction

Screening initial results

After removing duplicates, two investigators (JSB and MM)

independently screened returned titles for inclusion in the

study to determine whether they relate to AI, ultrasound, and

regional anaesthesia. If the title was ambiguous, the source

was included at this stage. In the event of disagreement be-

tween the two assessments, a third investigator (JK) reviewed

to adjudicate.
Abstract review

One investigator (JSB) then reviewed the abstract/summary of

all included sources for consideration of full-text review.

Sources were retained if the abstract/summary related to AI,

ultrasound, and regional anaesthesia (on human subjects).
Extraction of results

The full texts of all appropriate sources were reviewed (JSB) to

ensure that each was still deemed suitable, then scrutinised to

extract data on accuracy, utility, or both of the AI systems

evaluated. The extracted data were electronically tabulated

using a standardised data extraction form available in

Supplementary material A. To ensure full scrutiny of each

source, a software engineer (TH) initially reviewed all com-

puter science/engineering papers. The lead investigator (JSB,

clinician) then reviewed the extracted data from these sources

along with the original publication, and assessed the clinically

orientated sources, to aggregate all the information.

As formal assessment of study methodological quality is

not recommended for scoping reviews,14 the investigators did

not predefine what data would pertain to sono-anatomical

structure identification accuracy or utility, or set any mini-

mum outcome/reporting criteria. To maximise data capture,

an inclusive approach was adopted when reviewing study

items. As sources of commercial data may not include meth-

odological reporting, this was not a prerequisite for inclusion.

Data were extracted from the included sources, and then

the reference list for each was manually scrutinised for rele-

vant cited literature (JSB). In addition, Google Scholar (Menlo

Park, CA, USA) was used to identify pertinent citing literature

(JSB). Further sources identified in this way were included for

analysis.
Results

Selection of data sources

Figure 1 shows a flowchart of the search and screening process

which details the number of sources considered at each stage.

Overall, 116 sources were included for analysis; 84 pertaining

to PNB, 30 to CNB, and two that addressed both areas. Where a

source reported or summarised findings published elsewhere

(e.g. review article or book chapter), data from the original

source were used preferentially (n¼93; 84 academic publica-

tions and nine commercial sources). Therefore, not all 116

sources have been cited in the manuscript, although addi-

tional sources are cited in Supplementary material B.



Citations retrieved by database
search (n=12 971)

Titles screened (n=10 184)

Abstracts screened (n=77)

Full text review (n=73)

Included for full review (n=116)

Duplicates excluded before
screening (n=2787)

Excluded after review of title
(n=10 107)

Excluded after review
of abstract (n=4)

Additional sources:
Citing/cited literature (n=31)

Specialist society websites (n=2)
Commercial systems (n=7)

Publications cited by industry (n=3)

Fig 1. PRISMA flowchart showing the number of sources considered at each stage of the search and screening process. PRISMA, Preferred

Reporting Items for Systematic Reviews and Meta-Analyses.
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Iterative analysis of included sources identified six

recurring themes in the data: AI methodology in use;

output of AI systems; methods of evaluating accuracy;

methods of evaluating utility; standardisation of study

methodology/reporting; information on commercially

available systems.
Artificial intelligence methodology

Artificial intelligence and deep learning from 2016 to 2017

There is a notable change in the AI techniques used around

2016e17. Early approaches, most published before 2016e17,

typically involved steps of feature extraction from the ultra-

sound image, followed by classification of these features, for

both PNB17e28 and CNB.29e37 Around this point, there has been

an increase in published data where the dominant technique

was deep learning for both PNB9,11,12,38e73 and CNB,7,74e77

though there are some exceptions.78e80 A number of sources

do not explicitly state the techniques used; these are typically

clinical case reports or (external) validation studies describing

accuracy or efficacy81e93 and used alternative terms such as

‘automated’ or ‘intelligent’. However, these sources did iden-

tify the software in question (e.g. SpineNav3D software in the

Accuro device, produced by Rivanna Medical). A full descrip-

tion of the AI, machine learning, and deep learning method-

ologies is provided in Supplementary material B.
Ground truth for model training/development

Ground truth refers to information known to be real and is

used as the reference standard to train and test an AI tech-

nology. When training models in a supervised machine

learning approach, raw data are presented alongside the

ground truth and the model learns data patterns underlying
this interpretation of the data. When evaluating models, the

ground truth is used as a benchmark against which themodels

are assessed. It is therefore important to use a ground truth of

the highest calibre to train models to the highest standard and

assess them accurately.

In the available sources, a variety of human image

interpretation was used as the ground truth. This included a

range in the number of humans used in the ground truth from

one,7,23e25,31,32,34e36,38,46,49,58,60,67,72,77 two,8,9,19,21,26,30,33,44,

61 three,51e53,63,65 and up to 15.48 Some sources cited

‘multiple’ humans, used a plural term (e.g. experts), or

simply did not state the number.17,18,20,25,27,29,54,62,64,66,69e71

Where multiple humans contributed to the ground truth,

it was often unclear whether a single human assessed

each image (with different humans assessing a different

sample of the image dataset) or whether multiple humans

assessed each image.

In addition to the varying number of humans contributing

to the ground truth inmodel development, there was variation

in the specialty and experience of those contributing. Sources

described their ground truth human(s) as a volunteer,64 doc-

tor/physician,48,52,63,65 sonographer,7,30e35,60,75,77 clinical pro-

fessional,27,38 or (regional) anaesthetist.8,17e21,23,25,26,36,44e46,

49,51,53,54,58,61,62,67,69 The level of expertise of those providing

the ground truth was described as trained,64 experienced,21,

30e34,46,48,52,65 expert,7,8,17e20,25e27,33,35,45,53,58,61,66,67,69,71,77

professional,38,49,51,62 specialist,63 or the level was un-

stated.23,36,54 However, sources did not typically define what

was required to meet the definition of these levels and there is

no universally recognised definition of ‘expert’ in regional

anaesthesia.

For some sources, it is not clear how the ground

truth for training data was obtained.9,11,12,28,29,39e43,45,47,50,

55,57,59,60,68,70,72e76,78,81e91,93
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Model output

Peripheral nerve blockade

The most common output for models processing PNB

ultrasound images was segmentation (the outline/colour

overlay of features in the image).9,11,12,19,20,22,23,25,27,36,38e43,

45e55,57e60,63e69,71,72,78,79 Less common outputs included the

use of bounding boxes to identify the location of the

structure,8,17,18,26,61 attempting to locate the centre of a nerve

and placing expanding circular rings from the centre,21 or

placing name tags over structures in question.9,43,45,47,50

Alternative methods proposed to support ultrasound

scanning included ‘enhancing’ the image acquired,56 applying

a ‘scan success’ indicator to the image,9,43,45,47,50 or classifying

ultrasound images into the region scanned70,73 or optimal vs

non-optimal views.44 Additional functions included creating a

three-dimensional (3D) model of the structure in question,24,28

path planning for needle insertion,20 and guidance on probe

movement.22
Central neuraxial blockade

The most common output for models processing CNB ultra-

sound images was classification/identification of vertebral

level, the intervertebral space, or both.30e34,75e77,81e91,93 Dis-

tance from the skin to the posterior complex/epidural space

was the second most common output of models applied to

CNB ultrasound.7,80,82e88,90e93 Other functions included iden-

tifying the optimal needle insertion point,29,35,81,88,89,91 struc-

ture identification (via segmentation or bounding boxes),7,35,37

or 3D reconstruction of the spine.74
Accuracy evaluations

Peripheral nerve blockade

One approach to assessing accuracy of PNB model outputs

involved assessing pixel-wise agreement between the ground

truth and model output data, which was typically used for

models that segment structures in the ultrasound image. The

most common reporting metrics used to assess the overlap

of enclosed areas (e.g. the outline of a blood vessel) were

intersection over union (IoU; Jaccard similarity coefficient)

and the Dice similarity coefficient.8,17e20,23,25,27,28,38,42,46,

49,51e55,57e60,62e66,68,69,71,79 The Hausdorff metric/distance was

used to compare the proximity of lines (e.g. a fascial

plane).19,20,25,27,28,42,53,69 Whilst a pixel-wise approach clearly

gives a detailed assessment of the proximity/coverage of one

segmentation to another, there is no established threshold for

this metric at which an AI system gives an ‘acceptable’ output.

Furthermore, it gives little qualitative information on clinical

relevance which is important as it may be more critical to

accurately identify the exact border of a nerve or artery than a

muscle.

An alternative approach takes an overall view of each

whole structure by classifying the frequency of correct

and incorrect prediction using true positive/negative and

false positive/negative, accuracy, F-score, precision, recall,

sensitivity, specificity, and area under the

curve.18,19,39,44,54,55,58,59,61,67,69,72 Bowness and colleagues39

used the majority opinion from a panel of three experts to

determine whether an AI structure identification was a true

positive/negative etc; whilst this method would appear to

incorporate clinical context, it is a pooled subjective opinion.
The remaining publications used a frequency classification for

each whole structure and based the decision of correct iden-

tification on a cut-off in the pixel-wise assessment. The defi-

nitions of correct prediction included IoU of >0.5,8,17,18,46,65

�25% pixel overlap,58,67 and subjective rating for a range of

IoU values (e.g. 0.41e0.6¼fairly good precision; 0.61e0.8¼good

precision),38 whilst others did not define the threshold of

effective segmentation.54,55

Other methods of assessing/reporting accuracy were used

infrequently, including subjective human assessment without

providing data (‘performed as claimed’50 or ‘the identification

of regional anatomy and scanning were successful’47) and a

subjective 1e5 Likert scale rating of accuracy.9

It is important to note that ultrasound scans used for the

assessments were collected on different subjects, using

differentmachines, and in different body regions/structures. A

limited number of accuracy assessments used multiple

structure classes (e.g. nerve, artery, bone) over multiple body

regions,9,39,42 whilst some covered multiple structure classes

in a single region (e.g. supraclavicular level brachial plexus or

thoracic paravertebral block).22,23,27,44,46,49,53,58,62,67,78 Other

sources used a single structure class (e.g. nerve) frommultiple

regions,8,36,54 or a single structure in a single region, such as

the median nerve in the forearm,17e20,61,69 the femoral

artery,28,72 the femoral nerve,38,65 or the sciatic nerve.21,25,48,57

Finally, some studies did not fully define the region/structures

being assessed; often simply naming the ‘brachial

plexus’,51,52,55,59,60,63,64,66,68,71,79 or not stating the region(s) or

structure(s) at all.47,50

Ultimately, studies failed to consistently use the same

metrics to compare segmentation of the same structures on

the same ultrasound scans. This makes it very difficult for

clinicians to effectively compare performance of one model/

approach to others.
Central neuraxial blockade

Assessment of accuracy for CNB models was more aligned

than the approaches for assessing PNBmodel accuracy, which

involved a greater element of human judgement/interpreta-

tion. The most common method was correlating the distance

from skin to posterior complex/epidural space as predicted by

the model to that observed on manual interpretation of

ultrasound,32,34,84,88,93 depth of loss of resistance during needle

insertion,80,82,85,86 or both.37,83,92 All reported good correlation

between human depth assessment and AI depth assessment

on the ultrasound image, and loss of resistance during needle

insertion to be deeper than that calculated on ultrasound (by

human or AI).

Accuracy in determining the level of the intervertebral

space in view was assessed by five studies. All report �84%

agreement in AI and human identification of vertebral level

based on ultrasound interpretation,30,34,75e77 whereas a single

study reported 70% agreement between palpation and AI-ul-

trasound.75 Similarly, four studies reported �93% accuracy in

AI identification of lumbar ultrasound images showing an

intervertebral space vs a spinous process, though this

approach did not determine which level was in view.29,31e33

The ultrasound body regions used for CNB approaches

were more consistent than for PNB. Nineteen sources used

ultrasound scans of the lumbar spine7,29e35,37,75e77,

80,83,84,86,88,90,92,93 and two utilised the thoracolumbar

spine,74,82 whereas one did not specifically state which region
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was seen (though use of the lumbar region can be deduced as

it is a case report of a patient undergoing total knee

arthroplasty).85
Ground truth for accuracy assessments

Many studies reported results of testing or internal validation

in which a proportion of the initial dataset was partitioned

from the training data and used to assess models at the end of

training. External validation is the subsequent assessment of

these models, using data collected at a different time point,

location, population, or all. It is used to further evaluate model

performance and assess generalisability to the wider popula-

tion (or different populations). Only one source explicitly

stated it was an external validation study.39

Of the sources reporting accuracy data for PNB models,

seven described external validation studies. The standard

(ground truth) used for these studies was described as a single

‘expert anaesthetist’,22 two ‘regional anaesthesia experts’,20

‘an experienced anaesthetist and a radiologist’,9 or ‘three

UGRA experts’.39 One study compared AI model performance

to that of 19 ‘experts’.42 It is not stated in/clear from two

sources who was providing the gold standard (ground truth)

for these assessments.47,50

Twelve sources for CNB models described external valida-

tion studies of accuracy. The gold standard (ground truth) for

these studies were an anaesthetist,29,30,80,82e84,86,92 clini-

cian,88,93 ‘provider experienced with freehand ultrasound’,75

or is not stated.85 Their level of expertise was described as

experienced,30,88,93 novice and senior/expert,82,84 resident/

fellow/attending,83,86,92 or unstated.29,75,80,85 The number of

humans contributing to this gold standard (ground truth) was

one,30,75,83,86,88,92,93 two,84 or unstated.29,85
Utility evaluations

Peripheral nerve blockade

Utility evaluations for PNB models can be broadly divided into

assessments based on subjective opinion (n ¼10) or on clinical

outcomes (n¼4).

In a non-clinical or simulation environment, Bowness and

colleagues11 have published a number of studies in which a

panel of three UGRA experts rated the AI colour overlay on

recorded ultrasound videos (7.87e8.69/10); assessed that it

would be helpful in determining the correct view and identi-

fying anatomical structures of interest in >99% of cases11;

determined the accuracy rate of structure identification to be

93.5%39; and reduced the risk of unwanted needle-induced

trauma or block failure in 62.9e86.4% of cases.39 In other

studies this group has sought feedback from 30 users to

determine use of this system for UGRA experts (teaching) and

non-experts (learning/clinical practice),12 and assessed 21

UGRA non-experts to demonstrate superior scanning perfor-

mance (on volunteers) with the use of an AI colour overlay on

real-time ultrasound.40 Cai and colleagues48 demonstrated

higher self-rating and expert assessment scores amongst 40

anaesthetic trainees when performing PNBs after teaching

with an AI-based nerve identification system, whereas Erdem

and colleagues43 describe that 40 anaesthetists reported

reduced chance of complications, increased chance of block

success, and that the system was useful as a training tool in

UGRA. Other studies report that anaesthetists described the

assistive AI technology to be helpful in the identification of

key anatomical structures and in training,45 and that all
non-experts in UGRA considered assistive AI to be a desirable

and useful tool.24 Other published subjective opinion includes

a 20e30% reduction in time required for UGRA procedures and

a reduction in needle pass attempts (with no underlying data

provided in this source),50 and a report which proposed that

assistive AI may improve block success, reduce the number of

needle attempts, improve the satisfaction of patient/practi-

tioner, and reduce the volume of local anaesthetic required

(again without providing underlying data).47

Clinical assessments include a secondary analysis of data

collected during a service evaluation by Bowness and col-

leagues,41 who reported an increase in the delivery of UGRA to

trauma patients when assistive AI for ultrasound scanning

was available. In 28 days before the introduction of the AI

system, 71 PNBs were performed amongst 207 eligible cases,

compared with 93 for 193 eligible cases after (P¼0.036)dwith

no observed decrease in efficacy or increase in complication

rate.41 Other clinical outcome data for PNB systems report that

UGRA performed with AI-enhanced ultrasound imaging ach-

ieved a quicker performance of UGRA, superior motor block,

and better analgesia in scapula fracture surgery.56 Cai and

colleagues48 report reduced paraesthesia during the first

month of performing sciatic nerve blocks after teaching with

an AI-based nerve identification system, though there was no

difference in the rate of pain during injection, perforation of

blood vessels or block success. Wang and colleagues78 report

reduced postoperative analgesic requirement and cognitive

dysfunction/delirium after AI-assisted lumbosacral plexus

block compared with systemic analgesia for hip arthroplasty

surgery.

The above sources again report evaluations for PNB for

varying body regions. Some studies covered PNB for three or

more body regions,11,12,39e41,43 whereas one source covered the

supraclavicular and adductor canal blocks,45 three covered a

single PNB region (lumbar plexus,78 ‘scapula region nerve

block’,56 and the sciatic nerve48), and two did not state the PNB

region assessed.47,50
Central neuraxial blockade

Utility evaluations for CNB models can be broadly divided into

assessments based on technical success of the procedure

(n¼13) or on clinical outcomes (n¼4).

Technical success criteria included reporting needle

insertion attempts or first pass success; three sources reported

fewer attempts/higher success rates,80,90,91 two reported no

statistically significant difference,87,89 and three sources sim-

ply reported rate of first pass success using AI assistance

(87.23%, 79.1%, and 92.0%, respectively) without comparison to

no AI assistance.86,88,93 Two sources were case reports of

successful epidural catheter insertion in patients living with

obesity.81,85 A second criterion for technical success was the

number of needle directs, with three sources reporting fewer

redirects were required with AI assistance.82,90,91 As with

utility evaluations of PNB models, time taken for the proced-

ure/to identify the appropriate view (intervertebral space) was

assessed in a number of sources. This showed variable results,

with some reporting increased time,87,91 no difference,82,89 a

mixed picture,75,80 or reduced time required.90 Two sources

report the time taken for the procedure, but did not provide a

comparison with an alternative technique (28 s and 31 s,

respectively).30,85

In clinical outcome studies, no significant difference in

patient satisfaction was associated with use of AI-assisted
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ultrasound scanning for CNB,87 or failed block and adverse

events,91 though a lower incidence of paraesthesia and lower

back pain have been reported elsewhere.80,90

As might be expected, the body region used to evaluate AI

assistance for ultrasound scanning in CNB was more consis-

tent than for PNB. Eleven sources report using ultrasound

scans of the lumbar spine30,75,80,81,86e91,93 and one utilised the

thoracolumbar spine,82 whilst one did not specifically state

which region was seen though use of the lumbar region can be

deduced as it is a case report of a patient undergoing total knee

arthroplasty.85
Standardisation of study methodology and reporting

An additional limitation to comparing evaluations of this

technologies is that reporting varies considerably; only 32/93

(34.4%) reviewed sources reported demographic data for the

subjects assessed in these studies.7,9,12,21,22,29,30,35,37e42,44,

46,52,53,74,75,78,80e85,88,90e93 This is important as demographic

factors such as age (muscle atrophy) and obesity affect the

appearance of anatomical structures on the ultrasound im-

age.94 These descriptions were themselves inconsistent; such

as reporting age and gender, but not BMI,78 or reporting only

mean age/BMI without ranges.74 Importantly, older and obese

patients were underrepresented with only 18/32 (56.3%) sour-

ces reporting demographic data which included subjects aged

>60 yr, BMI �30 kg m�2, or both.12,37e42,52,80,81,83e86,88,90e92

Models for CNB ultrasound were most commonly assessed

in the obstetric population, with 14 sources reporting data in
Table 1 Commercial systems and accompanying information. AI, a
ripheral nerve blockade. *Company approached for information on r

System name
Manufacturer

Approved as a medical
device

Description

cNerve
GE Healthcare

(Chicago, IL, USA)

UK/EU (Unknown*)
USA (June 2022)

Colour overlay
segmentation o
interscalene to
supraclavicular
brachial plexus
and popliteal-le
sciatic nerve

Nerveblox
SmartAlpha

(Ankara, Turkey)

UK/EU (May 2021) Colour overlay of
vessels, bone, m
nerves, and fasc
for 12 PNBs

NerveTrack
Samsung (Suwon,

South Korea)

UK/EU (February 2021)
USA (May 2021)

Bounding box aro
median and uln
in the forearm

ScanNav Anatomy
Peripheral Nerve
Block

Intelligent
Ultrasound
(Cardiff, UK)

UK/EU (April 2021)
USA (October 2022)

Colour overlay of
vessels, bone, m
nerves, and fasc
for 10 PNBs
this cohort.31e34,37,75,81,83,84,86,88,90,92,93 Despite CNB being a

common technique throughout anaesthesia, only four sources

included non-obstetric patients,80,82,85,91 whilst four utilised

healthy volunteers,29,30,35,77 and three sources did not identify

the subject population being scanned.7,74,76

Only six sources reported their data according to

recognised reporting standards,40,42,82,86,88,92 including the

CONSORT-AI,95 CONSORT,96 DECIDE-AI,97 and STROBE98

guidelines. Of these, only CONSORT-AI and DECIDE-AI are

AI-specific. As they were published in 2020 and 2022, respec-

tively, time will tell whether future studies are reported in a

more consistent manner and in line with these guidelines.

Finally, it is good practice in the field of AI to make training

and testing/validation data publicly available.99e101 However,

only 15 sources used publicly available data or shared their

data when publishing.48,49,51,55,59e61,63e66,68,71,74,79

Commercially available systems

Seven AI systems are commercially available to support ul-

trasound scanning in UGRA, five for PNB and two for CNB

(Table 1).
Peripheral nerve blockade

cNerve (GE Healthcare)102 and Smart Nerve (Mindray)103 are

systems incorporated into the manufacturers’ ultrasound ma-

chines, which segment peripheral nerves to produce a (yellow)

colour overlay over them. NerveTrack (Samsung Medison,

Suwon, South Korea)10,104 is also integrated into the
rtificial intelligence; CNB, central neuraxial blockade; PNB, pe-
egulatory approval in UK and EU but not provided.

Company claims Sources of data on
performance

f

-level
, femoral,
vel

‘Helps detect and track nerves
in 99% of cases’

Commercial102

blood
uscles,
ia/serosa

No specific claims
regarding accuracy

‘ … gives anesthesiologists
extra confidence … ’

‘ … help anesthesiologists
practice PNB faster.’

Commercial105

Academic9,43,47,50

und
ar nerves

‘ … can detect the median and
ulnar nerve with
reasonable accuracy … ’

‘ … efficiency of nerve
detection … ’ is claimed to
be 4.4/5 with vs 3.8/5
without (P<0.0001)

‘ … reduce scanning time
significantly, from 24.7 s to
8.2 s.’

Commercial10,104

blood
uscles,
ia/serosa

‘ … enhance the accuracy and
standardization of
ultrasound image
interpretation … ’

‘ … help tip the balance of
safety and confidence in
favour of performing
regional anaesthesia.’

Commercial106

Academic6,11,12,39e41

Continued
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System name
Manufacturer

Approved as a medical
device

Description Company claims Sources of data on
performance

Smart Nerve
Mindray (Shenzhen,

China)

UK/EU (Unknown*)
USA (November 2021)

Colour overlay
segmentation of
interscalene to
supraclavicular-level
brachial plexus nerves

No specific claims
regarding accuracy

‘ … automatically recognise
the brachial plexus and
highlight the nerve,
increasing clinical
confidence and reducing
procedure time … ’

Commercial103

Accuro
Rivanna Medical

(Charlottesville,
VA, USA)

UK/EU (June 2016)
USA (March 2014)

Provides guidance for CNB
(spinal and epidural) in
the thoracic and lumbar
regions of the spine
using ‘AI-enabled
SpineNav3D image
recognition’.

Software identifies
intervertebral space on
ultrasound image and
hardware identifies
point of needle insertion
on the skin.

‘Improve the safety, speed,
and efficiency of epidural
and spinal anesthesia.’

‘ … accurately identifies the
epidural location with
success rates exceeding
94%, Accuro gives you
confidence … ’

‘Clinically proven to:
- Increase first attempt

success
- Reduce needle passes
- Reduce placement times
- Significantly increase patient

satisfaction and pain
control’

‘Collectively, these benefits
significantly reduce the cost
of care’

Commercial107,108

Academic81e87,89e92

uSine
HiCura Medical

(Singapore)

UK/EU (August 2023)
Singapore (July 2022)

Additional screen labels
spinous processes and
intervertebral spaces on
lumbar ultrasound scan,
and measures epidural
depth

‘ … machine learning
algorithm allows automatic
identification of spinal
landmarks during
ultrasound scan.’

‘… alerts anaesthetist in real-
time when the right
location and right angle are
reached.’

‘ … achieved very high [92%]
first-attempt puncture
success rate.’

‘ … safe and effective and
promotes a reduction of
procedural time, better
clinical outcomes and
improves patient
satisfaction.’

Commercial109

Academic88,93
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manufacturer’s machine, but produces bounding boxes around

the median and ulnar nerves of the forearm. Nerveblox (Smar-

tAlpha)105 and ScanNav Anatomy Peripheral Nerve Block (Intel-

ligent Ultrasound)106 are external devices, which can be

connected to an ultrasound machine to provide an additional

displaywith anAI-generated colour overlay of key structures for

anumberofPNBs.Numerousstudieshavebeenpublishedonthe

latter device,12,39e42 all of which are included in this review.
Central neuraxial blockade

Accuro (Rivanna Medical) is a handheld device with an inte-

grated ultrasoundmachine,107,108 whereas uSine (HiCura) is an

external device which is connected to the ultrasound ma-

chine.109 Both systems aim to support identification of the

vertebral level, intervertebral space, and depth to target. The

former system incorporates hardware to mark the patient’s

skin with the optimal needle insertion site.
Conflicts of interests

As in any field, declaring sources of funding and conflicts of

interest is essential to transparent reporting of research. Work
in AI has a potential for commercial value, thus it is particu-

larly pertinent in this setting. Of the 23 academic studies

which directly relate to a commercial product (see Table 1),

10 declare funding for research (or in-kind support),

industry affiliations, or both in the conflict of interests

statement.6,11,12,39e41,86,90e92 Two report these affiliations in

the limitations section of the discussion.39,40
Discussion

AI in healthcare is an area of intense and growing inter-

est;110 the worldwide AI healthcare market projected to

reach $200 billion by 2030111 and the number of regulatory

approvals for AI-based medical devices is steadily

increasing.112 Anaesthesia is a data-rich specialty, with a

heavy reliance on technology, but there are relatively few AI

devices approved for use in this field of medicine compared

with others such as radiology and cardiology.113

This scoping review has surveyed literature acrossmultiple

disciplines and identified key findings. Firstly, the dominant

technique is deep learning, which is used in virtually all pub-

lications since 2017. In addition, model outputs show consis-

tency; most commonly sono-anatomical structure
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segmentation for PNB or identification of intervertebral space

and depth to target for CNB. Secondly, and conversely,

methods for evaluating accuracy and utility originate in mul-

tiple disciplines and show gross heterogeneity with a notable

lack of clinical data. Thirdly, reporting is inconsistent amongst

academic publications and data on device performance in-

formation from commercial organisations is scarcedoften

produced by clinicians in subsequent studies rather than

made available by the companies from their regulatory

approval studies.

It is possible that heterogenous and unstructured research

literature remains a barrier to AI being successfully incorpo-

rated into clinical anaesthetic practice. The uniformity in AI

techniques now used, and consistency in model outputs,

should facilitate further standardisation. This will engender

greater understanding of this technology and support appro-

priate adoption in clinical practice. Despite the rapid growth in

the field, this should provide cause for optimism that appro-

priate structure can be implemented successfully.

However, this is an interdisciplinary field, and the discor-

dant approaches of clinical medicine, technology, and in-

dustry are striking. This is evident in the anatomical

structures that groups/companies chose to identify, how

models are trained (e.g. source of ground truth), how accuracy

is validated (e.g. metric used), and how utility is assessed. In

addition, there is still a paucity of data on patient outcomes

and institutional impact. Standardisation has become a com-

mon feature of UGRA.114e117 Whilst initial efforts have been
Overseen by the responsible bod
(clinical practice, patie

Led by clinician(s) with input of key specia

Standardisation Accura

Open-source ratified
validation dataset

Diverse subject
ethnographic background

and body habitus

Defined machines/probes

Agreed structures

 Agreed set of blocks

Agreed pixel-wi
(e.g. Dice s

coefficie

Agree clinica
(including level 

experience/e

Agreed thres
accepta

Open-access reporting acco
agreement amongst journal

Fig 2. Conceptual overview of a structured framework for the validat

ultrasound scanning in UGRA. AI, artificial intelligence; UGRA, ultraso
made to address this in AI,118,119 it has not yet been realised

and the authors believe that this limitation will continue to

impede clinical implementation of AI in UGRA until it is

addressed.

Enthusiasm to share novel findings in this exciting and

fast-moving field is understandable, but differences in

reporting also hinder reliable comparison of models/systems

and limit a true understanding of the state of the art.

Furthermore, as companies are not incentivised to share data

from their regulatory filings, there is variability in approaches

to regulatory approval and a lack of understanding of the

relative performance of approved devices.

We propose that a structured framework be developed for

validating accuracy and clinical utility of AI which assists ul-

trasound scanning in UGRA (Fig. 2). This should include which

sono-anatomical structures systems identify for specific pro-

cedures, a standardised method for both pixel-wise and clin-

ical assessment of accuracy, clearly identified measures of

clinical utility, demonstration of clinical impact, and stand-

ardised reporting.120 Clinical bodies should lead the develop-

ment of this framework, to ensure clinically relevant pain

points are addressed, and ensure contribution from technol-

ogy experts, clinical medicine, industry and regulatory bodies,

and patient and public involvement. Developing an open-

access dataset of representative ultrasound scans for all

parties to utilise in validation studies will be a key element to

facilitating standardised evaluation. Industry should be

encouraged to utilise this and publish their data. Standardised
y for advances in anaesthesia
nt care and safety)
lists (e.g. computer science/technology)

cy Utility

se metric(s)
imilarity
nt)

l metrics
of assessor
xpertise)

holds of
bility

Identify which staff/patient
populations benefit most

Demonstrate benefits in
simulation setting first

Demonstrate benefits and
safety in clinical setting

rding to agreed standard
s, industry and regulators

ion of accuracy and clinical utility of AI technology which assists

und-guided regional anaesthesia.

mailto:Image of Fig 2|eps
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reporting of these evaluations will further aid dissemination of

knowledge, aided by a non-critical view of declared potential

conflicts of interest.

Ultrasound revolutionised UGRA in an unstructured

manner has led to great progress, but barriers in the field

remain as some techniques to assist with ultrasound image

interpretation remain unvalidated (e.g. hydrolocation).4

Recent initiatives are attempting to retrospectively provide

structure.121 AI will revolutionise medicine,110 and potentially

UGRA; adopting this technology in a structured manner will

provide the optimal opportunities to harness its full potential.
Conclusions

This scoping review has identified gross heterogeneity and

poor reporting across the literature pertaining to AI for the

identification of anatomical structures on ultrasound in

regional anaesthesia. This is an important barrier to devel-

oping the field and implementing AI technologies within

clinical anaesthetic practice. The situation can only be

improved by clinicians, scientists, and industry working

together to standardise our approach to understanding these

systems, to optimise use in ultrasound-guided regional

anaesthesia.
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