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Abstract: An evaluation of polymorphism at the microsatellite loci was applied in distinguishing
85 oat (Avena sativa L.) genotypes selected from the collection of genetic resources. The set of
genotypes included oats with white, yellow, and brown seeds as well as a subgroup of naked oat
(Avena sativa var. nuda Koern). Variation at these loci was used to form potential heterotic groups
potentially used in the oat breeding program. Seven from 20 analyzed microsatellite loci revealed
polymorphism. Altogether, 35 microsatellite alleles were detected (2–10 per locus). Polymorphic
patterns completely differentiated all genotypes within the subgroups of white, brown, and naked
oats, respectively. Only within the greatest subgroup of yellow genotypes, four pairs of genotypes
remained unseparated. Genetic differentiation between the oat subgroups allowed the formation of
seven potential heterotic groups using the STRUCTURE analysis. The overall value of the fixation
index (Fst) suggested a high genetic differentiation between the subgroups and validated a heterotic
grouping. This approach can be implemented as a simple predictor of heterosis in parental crosses
prior to extensive field testing or development and implementation of more accurate genomic
selection.

Keywords: oat; seed parameter; microsatellite polymorphism; heterotic group

1. Introduction

Cultivated oat (Avena sativa L.) is an economically important crop, ranking sixth in
world cereal production after wheat, rice, maize, barley, and sorghum. Oat is used as
green fodder, straw, hay, or silage with good balanced feed components for livestock. Oat
grains are also part of humans’ diet, either directly as raw food (flakes, milk) or as raw
material and ingredients in food production. They possess unique and important nutri-
tive characteristics, particularly high contents of lipids, proteins, and micronutrients [1].
Compared with other cereals, oat grains are rich in antioxidants (e.g., α-tocotrienol, α-
tocopherol, and avenanthramides) total dietary fiber, and the water-soluble dietary fiber,
the β-D-glucans [2–4]. Generally, oat grains have multifunctional use in human nutrition,
animal feeding, and in the production of health care and cosmetic products [5].

Plant breeders frequently use genetically similar parents in crosses to generate pro-
genies to create new cultivars. Such an approach is also common among oat breeders.
Elite but genetically very similar parents have the potential to generate advanced offspring
without an undesirably changed genetic background. However, if breeders need to substan-
tially extend genetic diversity and introduce new genes, they must select and cross parents
genetically as different as possible. Genetically divergent parents can generate advanced
hybrids with higher heterozygosity and manifested heterotic effects. Genetic diversity as
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well as unrelatedness is usually determined by pedigree analysis, morphological, physio-
logical, agronomical traits, and biometric analysis. These approaches are limited mainly by
low variation in these parameters and have been enriched gradually after the introduction
of molecular, especially DNA markers. Molecular markers can effectively contribute to
the formation of heterotic groups. Subsequently, parental genotypes can be selected from
distinct groups with the expectation of greater heterosis effect in offspring. However, the
reliability of molecular markers to confirm the relationship between genetic diversity and
heterosis in offspring is neither completely clear nor universal. It depends on the type
of molecular markers used, the plant species, the observed phenotypic traits, and other
factors. Melchinger [6] accumulated results for numerous crops and concluded that DNA
markers are well-suited for assessment of the genetic diversity, grouping of genotypes,
and selecting parents to establish the base populations. Nevertheless, he [6] expected
that the heterotic response between these groups cannot be simply predicted from genetic
distances detected by DNA markers, but it needs to be evaluated and confirmed in real field
trials. Later, the relationship between the heterosis effect and the genetic distance between
parental components determined by several types of molecular markers was evaluated [7].
Among three types of molecular markers (SSR, AFLP, RAPD), the parental components for
heterosis crosses were the most effectively selected by microsatellite markers (SSR) and
confirmed by calculated Jaccard, Kluczyński, Nei, and Rogers coefficients, respectively [7].
Other marker types were less useful (AFLP) or declared no clear relationship between
genetic distance and the heterotic effect (RAPD) [7]. The number of such studies performed
in oats is very limited. However, the crossing between genotypes belonging to genetically
different groups may result in high heterosis usable in breeding improvement of oat [8,9].
A genetic diversity analysis in oats themselves was performed using various molecular
markers [10–15]. Relatively high polymorphism and ease of use favor SSRs located in
non-coding (SSRs) as well as in coding (EST-SSRs) DNA sequences [16–18]. Oat breeders
are also interested in the effect of heterosis obtained by the crossing of thoroughly selected
parent components. An analysis of genetic dissimilarity between selected parents can be a
tool to achieve this. Therefore, the aim of this study was to determine the extent of genetic
diversity in a set of oats (Avena sativa L.) genotypes from a maintained collection of ge-
netic resources using the microsatellite polymorphism for selection of genetically different
genotypes and formation of potential heterotic groups for the oat breeding program.

2. Results
2.1. Informativeness of SSR Markers

Twenty pairs of primers for the polymorphism analysis at the microsatellite loci
were tested. Only seven (AM1, AM14, AM22, AM83, AM87, AM102, AM115) revealed
polymorphism within the set of 85 analyzed oat genotypes. Altogether, 35 alleles were
detected, 2–10 alleles per locus, and on average 5 alleles per locus. The most polymorphic
one was the locus AM1 (10 alleles) where the highest number of different microsatellite
patterns (31) were found. A heterozygote status was detected at several loci.

The genetic variation at all polymorphic microsatellite loci was declared by several
parameters (Table 1). The heterozygosity indices (i.e., expected heterozygosity) showed the
probability that an individual genotype would be heterozygous at a given locus. Its values
ranged from 0.327 to 0.5. The polymorphic information content (PIC) values showed that
all seven analyzed markers (loci) had approximately the same predictive value. Although
the PIC values were not high (below 0.5), together with the Heterozygosity index (H), the
values suggested that primers designed for the analysis at these microsatellite loci have
discriminatory competence.
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Table 1. Parameters of polymorphism in analyzed SSR loci.

Locus n H PIC E Havp MI D R

AM1 10 0.3270 0.3720 2.0588 0.0004 0.0008 0.9578 4.1176
AM14 8 0.3779 0.3540 2.0235 0.0006 0.0011 0.9363 2.5176
AM22 3 0.4987 0.3011 1.5765 0.0020 0.0031 0.7248 1.8353
AM83 2 0.5000 0.3004 1.0000 0.0029 0.0029 0.7515 0.1412
AM87 4 0.3750 0.3551 1.0000 0.0011 0.0011 0.9381 0.9882

AM102 4 0.3750 0.3551 1.0000 0.0011 0.0011 0.9381 0.9412
AM115 4 0.4992 0.3008 2.0824 0.0015 0.0031 0.7297 0.2118

Mean 5 0.4218 0.3341 1.5345 0.0014 0.0019 0.8538 1.5361
n—number of alleles; H—heterozygosity index; PIC—polymorphism information content; E—effective multiplex
ratio; Havp—mean heterozygosity; MI—marker index; D—discriminating power; R—resolving power.

The marker index (MI) is the product of the effective multiplex ratio (E) and Havp and
should reveal the distinguishing power of markers or techniques. It predicts the relative
utility of various marker systems [19]. The MI proved to be useful in comparing the efficacy
of different marker systems in some studies [20,21]. Prevost and Wilkinson [22] argued
that there is little or no correlation between MI and the ability of primers to distinguish
genotypes, and the practical value of MI for this purpose is limited. Only one type of
marker (microsatellite) was used in our work, so the MI had no informative value in this
case. Its values were low due to very low Havp values.

The parameter resolving power (R) compared the diagnostic effectiveness of used
primers within the analyzed set of oats. The most effective was the marker locus AM1
with the highest R value (4.1176). According to the equation of Prevost and Wilkinson [22]
0.15x + 1.78 = R (where x is the number of genotypes identified), this marker alone can
identify 15 oat genotypes. Other markers had lower R values (Table 3). Even this marker
is useful for discrimination of this set of oats only in combination with many others.
Theoretically, at least six markers with the R value higher than 4.2 would be required for
complete discrimination of all 85 evaluated oat genotypes.

The Discriminating power (D) described by Tessier et al. [23] can be a good estimator
of the efficiency of individual markers or marker combinations to describe the probability
that two randomly chosen genotypes have different patterns. However, the efficiency of a
given marker does not depend only on the number of patterns it generates. The higher the
D value (closest to 1) the lower the probability of confusion between microsatellite profiles
within the analyzed oat genotypes. Both, the mean (0.8538) and individual (0.7248–0.9578)
D values were high to very high in our experiment (Table 1).

Generally, the polymorphism revealed at the genomic microsatellite loci in the oat
genome tends to be high. It is characterized by heterozygosity and a high number of
alleles per locus, which usually results in high PIC values, diversity indices, and a high
ability to differentiate genotypes [16,17,24,25]. Many of the developed EST-SSR markers
have similar robustness as microsatellites (SSR) markers [26–28]. The effectiveness of oat
genotypes distinguishing relates to the extent of the genetic diversity within the analyzed
set of genotypes. This, in turn, usually depends on the geographical origin, pedigrees,
and type of germplasm (cultivars, breeding lines, landraces, wild relatives). The second
factor is the appropriate choice of microsatellite marker, either genomic (SSR) or expression
sequence tags (EST-SSRs). The set of 85 oats used in this study contained considerable
genetic variation and the parameters of all seven used polymorphic microsatellite markers
had high informativeness. This allowed the subsequent analysis of genetic diversity and
population structure within a set of oat genotypes.

2.2. Genetic Diversity

The relationships between subgroups of oat genotypes differing in seed parameters
(glume color and hull/naked) faithfully demonstrated the principal component analysis
(PCA). This type of statistical analysis is suitable for the discrimination of genotypes into
groups and subgroups based on selected parameters. The classification of oat genotypes
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by PCA into subgroups according to seed parameters (white, yellow, brown, and naked)
was created in this case. Four subgroups, white, yellow, brown, and naked oats, contained
a different number of genotypes. A relatively high variation in analyzed microsatellite
loci was revealed within each of these four subgroups. Nevertheless, it should be noted
that separate subgroups overlapped and no boundaries and no separation between them
were evident (Figure 1). Therefore, the relationships between the aggregating of genotypes
based on variations at the microsatellite loci and the observed seed parameters could not
be identified.
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Figure 1. The principal component analysis (PCA) of microsatellite data and separation of oats with different seed
parameters (white, yellow, brown, naked).

Although the PCA did not show the formation of separate subgroups, it revealed the
differentiation ability of microsatellite markers. This analysis apparently demonstrated
the suitability for differentiating genotypes of a relatively large group as a whole and
individuals within four subgroups (white, yellow, brown, and nude). All genotypes within
the subgroups of white, brown, and naked oats were completely differentiated from each
other. Only four pairs remained unseparated within the subgroup of yellow genotypes:
Hecht-Hron (PS-100), Auron-Senator, Ardo-Cyril, and Expander-Expo, respectively. Pair-
wise comparisons based on the PCA analysis revealed that only the brown oats were not
statistically different from other subgroups of oats (Table 2)

Table 2. p-values from Pairwise PERMANOVA between all pairs of subgroups (white, yellow,
brown, naked) calculated from the values of the first 10 significant principal components from PCA.
Significant comparisons at p ≤ 0.05 are shown in bold.

White Yellow Brown Naked

White -
Yellow 0.0414 -
Brown 0.5260 0.1204 -
Naked 0.0078 0.0014 0.1103 -
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A high differentiation competence of the microsatellite markers is better demonstrated
though a cluster analysis that also indicates the possible grouping of genotypes into smaller
groups/subgroups (Figure 2). It revealed the tendency for the grouping of naked and
brown oats (in the middle of the dendrogram), but partially also white genotypes (in the
upper half of the dendrogram). Yellow oats were scattered throughout the dendrogram.
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Figure 2. Cluster analysis of oat genotypes according to microsatellite variation.

2.3. Population Structure

The estimation of the population structure was performed by the STRUCTURE soft-
ware using the program Structure Harvester [29]. The ∆K determining the best fitted value
was at K = 2 (Figure 3). The genotypes were differentiated at K = 2 only into two subgroups
that correspond to the two main clusters formed also by the hierarchical cluster analysis
(Figure 2). There were nineteen genotypes in one subgroup (cluster at the bottom of the den-
drogram, Figure 2). All the other genotypes were in the second large subgroup. However,
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there was no rational reason for the separation of genotypes into only two subgroups. They
have different geographical origins, the period of origin, pedigrees, agronomic parameters,
chemical composition of seeds, and other traits. In addition, the molecular markers used
were genomic microsatellites, so it was neither reasonable to separate the genotypes into
two subgroups, nor to look for associations with the observed seed parameters. Therefore,
K = 2 was not used in the STRUCTURE analysis. The aim of the study was to create more
subsets of oats that are closer to the potential heterotic groups. To achieve a more reliable
and useful grouping it may be appropriate to test the K-values that are not the best fitted
to ∆K. The ∆K helps in identifying the correct number of clusters in most situations, but
it should not be used exclusively [30,31]. The ∆K method should be used with caution
and a meaningful genetic structure should be considered when selecting an appropriate
K-value [32]. Such an approach may allow the detection of additional substructure layer
with more closely related accessions [33]. Considering these references, it was hypothesized
that the formation of seven potential heterotic groups can be more applicable. The analysis
conducted for K = 7, where the second highest peak was observed in ∆K plot (Figure 3),
permitted a more detailed genetic grouping to seven clusters.
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Figure 3. The ln(K) and ∆K values based on the dataset of used microsatellites. Hypothesized number
of populations ranged from 1 to 14.

The alignment of individual clusters containing genotypes grouped to seven sub-
groups is marked in the Figure 4 (colors of clusters are the same as in the Figure 5). It
reflected the microsatellite allele frequencies between subgroups (Table 3). The most dis-
tant were subgroups 3 and 7, and the most similar were 1 and 4. The average distances
(expected heterozygosity) between individual genotypes within seven individual clusters
indicated great variation within each of them (values are inside the Figure 4). Their values
were quite comparable and showed relatively high average distances.

Seed parameters were no longer decisive for genotype classification in the presented
output of the STRUCTURE analysis (Figure 5). The variation at the microsatellite loci
was crucial; therefore, the STRUCTURE analysis did not present the commonly used
form of clustering according to the affiliation with individual clusters. However, the
grouping of genotypes according to their seed parameters (white, yellow, brown, naked)
was intentionally applied. Such a presentation showed a high genetic variation within all
four subgroups of oats (white, yellow, brown, and naked).
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Figure 5. Classification of 85 oat genotypes based on microsatellite variation and seed parameters. Each bar represented
individual genotype numbered in accordance with Table S1.

Table 3. Divergences in allele frequency among oat subgroups differentiated into 7 clusters.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7

Cluster 1 -
Cluster 2 0.228 -
Cluster 3 0.202 0.232 -
Cluster 4 0.055 0.229 0.200 -
Cluster 5 0.077 0.202 0.201 0.063 -
Cluster 6 0.111 0.263 0.178 0.111 0.081 -
Cluster 7 0.188 0.245 0.274 0.210 0.147 0.179 -

Oat genotypes with white and yellow seeds were distributed across all seven clus-
ters. White oats had a high proportion in clusters 1 and 4 (red and yellow colors in
Figures 4 and 5), 24.3% and 29.7%, respectively. Yellow oats had a proportion of 28.8%
in cluster 6 (turquoise) and brown oats of 43.9% proportion in cluster 4 (yellow). Naked
oats were grouped mainly in cluster 7 (orange) with a proportion 42.1%. According to the
frequency divergence of the analyzed microsatellite alleles, it was possible to identify the
most genetically distant genotypes within individual white, yellow, brown, and naked sub-
groups. Among the white oat genotypes, the most distant were Edit versus Pendek, among
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the yellow oats Euro, Expander, Expo versus Consul, and among the naked oats genotypes
Detvan versus PS-106. Within the hulled genotypes such can be Edmund, Flamingstern,
and Unisignum versus Consul and Edit. For the selection of the most genetically different
genotypes within the whole set of 85 oats, it would be appropriate to select genotypes
from clusters 3 and 7. The classification created in this way made it possible to search the
most different genotypes with identical seed parameters as well as between genotypes
regardless of this parameter.

The calculated fixation indices (Fst) from the STRUCTURE analysis helped to know
how different subgroups can be from each other. The overall fixation index Fst was
0.367, suggesting high genetic differentiation between the subgroups in the frame of the
assayed germplasm and validated heterotic grouping suitable for development of advanced
offspring. In addition, the Fst values of seven individual subgroups were: Fst1 = 0.181,
Fst2 = 0.412, Fst3 = 0.498, Fst4 = 0.434, Fst5 = 0.214, Fst6 = 0.490, and Fst7 = 0.343, indicating
high variation found within subgroups, especially in those included in clusters 2, 3, 4,
and 6. This can suggest that the separation of genotypes according to genetic diversity at
microsatellite loci can continue into even more heterotic groups. This is also supported by
the ∆K plot (Figure 3) where another interesting peak was observed for K = 9.

3. Discussion

Melchinger and Gumber [34] in their concept of heterosis suggested approaches to
identify heterotic groups. With many germplasm accessions, it is not feasible in most
crops to form diallel crosses and produce sufficient F1 seeds for field testing in different
environments. Their suggestion was to identify heterotic groups, and the first step was to
group the germplasm (i.e., genotypes) according to genetic similarity. Molecular markers
have been marked as extremely powerful tools for grouping of germplasm for a long
time [35]. This theory was later tested in practical hybrid breeding of different plant
species. Several authors have reported in different crops no or low correlations between
heterosis and the genetic distance defined by molecular markers not linked to the required
trait and higher heterosis effect for a yield reported in intra-group than for inter-group
hybrids [36–39]. Others stated that some significant correlations between genetically
different heterotic groups formed by molecular markers and yield in hybrids were found
only in particular environments and across environments [40]. However, many other
studies have confirmed the theory published by Melchinger [35] and Melchinger and
Gumber [34]. Geng et al. [41] found that the crossing of parents from different heterotic
groups, formed by SSR and SNP markers resulted in a heterotic effect in F1 progenies. They
suggested that the genetic distance between parents determined by molecular markers can
be helpful in heterosis prediction for some traits, and categorization for heterotic groups
and parental selection would be beneficial in cotton hybrid breeding. Similar statements
were presented in sorghum and maize [7,42,43], rye [44], barley [45], wheat [46], rice [47],
and in other crops. Wang et al. [48] concluded that genomic selection predicted higher
accuracy of genotypic value of genotypes for hybrid breeding but only if a higher number
of field trials in more testing locations and years are used. According to them, genomic
selection can be extended by marker-assisted selection using a higher number of molecular
markers distributed over the genome with sufficient density. Therefore, a much simpler
genetic distance analysis using different molecular markers, especially SSRs and SNPs, can
be easily implemented as a simple predictor of hybrid performance in parental crosses
before the implementation of such more accurate but more complicated genomic selection
procedures [48–50].

4. Materials and Methods
4.1. Plant Material

The set of 85 oats (Avena sativa L.) contained registered cultivars and breeding lines
from the period of 1952–2007 originating from 18 countries (including former Czechoslo-
vakia and Soviet Union, Table S1). The oat genotypes were with hulled or naked (hull-less)
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grains (Avena sativa var. nuda Koern) and differed in the color of the glume (white, yellow,
brown). Seeds of all oat genotypes were obtained from the Avena sp. collection of genetic
resources maintained in the Gene Bank of the Slovak Republic (Piešt’any, Slovakia).

4.2. Molecular Analysis

The total DNA was extracted from young leaves using the protocol of Dellaporta
et al. [51]. DNA from each oat genotype represented bulk DNA prepared from equivalent
amounts of DNA from 1 to 2 g of young leaves. Twenty pairs of microsatellite-derived
primers were used for analysis (Table S2). Polymerase chain reactions were performed in
15 µL volumes containing 25 ng of DNA, 1 × PCR buffer (50 mmol/L KCl, 10 mmol/L
TRIS-HCl, pH 8.3), 1.5 mmol/L MgCl2, 0.1 µmol/L of both primers, 0.1 µmol/L each of
dNTPs, and 0.8 U of Taq-DNA polymerase. The amplification conditions included an
initial denaturation 3 min at 94 ◦C, followed by 30 cycles of denaturation, 1 min at 94 ◦C,
annealing 1 min at annealing temperature (Table S2), extension 1 min at 72 ◦C, and the
final extension 8 min at 72 ◦C. The equivalent volume of loading buffer (95% formamide,
10 mmol/L NaOH, 0.05% bromophenol blue) was added to each sample. Samples were
denatured for 3 min at 99 ◦C and 5 µL of each sample was loaded into 6% polyacrylamide
gel containing 7 mol/L of urea. Gels in the electrophoretic unit (SEQ 3341, Scie-Plas Ltd.,
Waterbeach Cambridge, United Kingdom) were run in 0.5 × TBE buffer at the constant
power of 45 W for 3.5–5 h, depending on the size of amplified fragments. The microsatellite
DNA was stained by the silver staining method [52]. The sizes of the microsatellite alleles
were determined using 10 bp, 25 bp, 50 bp, and 100 bp DNA Ladders (Invitrogen Thermo
Fisher Scientific, Waltham, MA, USA).

4.3. Data Analysis

The selected polymorphic indices characterizing used SSR markers and loci were
calculated using the iMEC Online Marker Efficiency Calculator [21].

The principal component analysis (PCA), using the Euclidean distance measure and
the cluster analysis using the neighbor joining clustering and Jaccard similarity index were
performed using the Paleontological Statistics (PAST) software version 3.19 [53]. This
software also used the Euclidean similarity index and 9999 permutations for the Pairwise
PERMANOVA analysis using score (eigenvalues) from the first 10 significant principal
components based on the Scree plot in PCA.

The population structure was evaluated through the STRUCTURE v. 2.3.4 soft-
ware [54] using the default setting of the admixture model for the ancestry of individuals
and correlated allele frequencies. The models were tested for K-values ranging from one
to fifteen with ten independent runs each. The Burn-in and Markov Chain Monte Carlo
iterations were set to 100,000. The number of clusters was chosen by plotting the LnP(D)
values against ∆K values with the K value selected according to the Evanno test [30]. The
tree in STRUCTURE was estimated using the program NEIGHBOR by Mary Kuhner and
John Yamato, implementing Saitou and Nei’s neighbor joining method [55]. The plot was
produced using DRAWTREE as part of his PHYLIP phylogeny package [56–59].

5. Conclusions

The analysis of genetic distance using genomic microsatellite markers revealed a
relatively high degree of polymorphism and heterozygosity at given loci. This can be used
for the almost perfect mutual differentiation of genotypes as well as for the classification
of genotypes into several subgroups. Microsatellite polymorphism dominated in the way
these subgroups were discriminated, but signs of grouping by seed parameters were also
identifiable. High genetic differentiation between the subgroups supported a heterotic
grouping. Moreover, the high heterozygosity found within subgroups suggests that mi-
crosatellite polymorphism can also be used in the formation of other heterotic groups. This
approach can be implemented as a simple predictor of heterosis in parental crosses prior to
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extensive field testing or the development and implementation of more accurate genomic
selection.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/plants10112462/s1, Table S1: List of oat genotypes included in SSR analyses, Table S2: Primer
sequences for oat microsatellite loci.
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