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ABSTRACT The number of sequenced genomes is growing exponentially, pro-
foundly shifting the bottleneck from data generation to genome interpretation.
Traits are often used to characterize and distinguish bacteria and are likely a driving
factor in microbial community composition, yet little is known about the traits of
most microbes. We describe Traitar, the microbial trait analyzer, which is a fully au-
tomated software package for deriving phenotypes from a genome sequence. Traitar
provides phenotype classifiers to predict 67 traits related to the use of various sub-
strates as carbon and energy sources, oxygen requirement, morphology, antibiotic
susceptibility, proteolysis, and enzymatic activities. Furthermore, it suggests protein
families associated with the presence of particular phenotypes. Our method uses L1-
regularized L2-loss support vector machines for phenotype assignments based on
phyletic patterns of protein families and their evolutionary histories across a diverse
set of microbial species. We demonstrate reliable phenotype assignment for Traitar
to bacterial genomes from 572 species of eight phyla, also based on incomplete
single-cell genomes and simulated draft genomes. We also showcase its application
in metagenomics by verifying and complementing a manual metabolic reconstruc-
tion of two novel Clostridiales species based on draft genomes recovered from com-
mercial biogas reactors. Traitar is available at https://github.com/hzi-bifo/traitar.

IMPORTANCE Bacteria are ubiquitous in our ecosystem and have a major impact on
human health, e.g., by supporting digestion in the human gut. Bacterial communi-
ties can also aid in biotechnological processes such as wastewater treatment or de-
contamination of polluted soils. Diverse bacteria contribute with their unique capa-
bilities to the functioning of such ecosystems, but lab experiments to investigate
those capabilities are labor-intensive. Major advances in sequencing techniques
open up the opportunity to study bacteria by their genome sequences. For this pur-
pose, we have developed Traitar, software that predicts traits of bacteria on the ba-
sis of their genomes. It is applicable to studies with tens or hundreds of bacterial
genomes. Traitar may help researchers in microbiology to pinpoint the traits of in-
terest, reducing the amount of wet lab work required.

KEYWORDS: ancestral trait reconstruction, genotype-phenotype inference,
metagenomics, microbial traits, phenotypes, phyletic patterns, single-cell genomics,
support vector machines

Microbes are often characterized and distinguished by their traits, for instance, in
Bergey’s Manual of Systematic Bacteriology (1). A trait or phenotype can vary in

complexity; for example, it can refer to the degradation of a specific substrate or the
activity of an enzyme inferred in a lab assay, the respiratory mode of an organism, the
reaction to Gram staining, or antibiotic resistances. Traits are also likely driving factors
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in microbial community composition (2). Microbial community members with various
metabolic capabilities can aid in wastewater treatment, bioremediation of soils, and
promotion of plant growth (3–5); in the cow rumen microbiota, bacterial cellulose
degraders influence the ability to process plant biomass material (6). In the tammar
wallaby foregut microbiome, the dominant bacterial species is implicated in the lower
methane emissions produced by wallabies than by ruminants (7).

In addition to the exponential growth of available sequenced microbial genome
isolates, metagenome and single-cell genome sequencing further contributes to the
increasing number of available genomes. For the recovery of genomes from metag-
enomes (GFMs), computational methods based on, e.g., differential read coverage and
k-mer usage were developed (8–13) that allow the recovery of genomes without the
need to obtain microbial isolates in pure culture (6, 14). In addition, single-cell genom-
ics provides another culture-independent analysis technique and also allows genome
recovery, although often fragmented, for less abundant taxa in microbial communities
(15, 16). Together, these developments profoundly shift the analytical bottleneck from
data generation to interpretation.

The genotype-phenotype relationships for some microbial traits have been well
studied. For instance, bacterial motility is attributed to the proteins of the flagellar
apparatus (17). We have recently shown that delineating such relationships from
microbial genomes and accompanying phenotype information with statistical learning
methods enables the accurate prediction of the plant biomass degradation phenotype
and the de novo discovery of both known and novel protein families that are relevant
for the realization of the plant biomass degradation phenotype (18, 19). However, a
fully automated software framework for prediction of a broad range of traits from only
the genome sequence is currently missing. Additionally, horizontal gene transfer, a
common phenomenon across bacterial genomes, has not been utilized to improve trait
prediction so far. Traits with their causative genes may be transferred from one
bacterium to another (20, 21) (e.g., for antibiotic resistances [22]), and the vertically
transferred part of a bacterial genome might be unrelated to the traits under investi-
gation (2, 23, 24).

Here we present Traitar, the microbial trait analyzer, an easy-to-use, fully automated
software framework for the accurate prediction of currently 67 phenotypes directly
from a genome sequence (Fig. 1). We used phenotype data from the microbiology
section of the Global Infectious Disease and Epidemiology Online Network
(GIDEON)—a resource dedicated to the diagnosis, treatment, and teaching of infectious
diseases and microbiology (25)—for training phenotype classification models on the
protein family annotation of a large number of sequenced genomes of microbial
isolates (predominantly bacterial pathogens). We investigated the effect of incorporat-
ing ancestral protein family gains and losses into the model inference on classification
performance to allow consideration of horizontal gene transfer events in the inference
of phenotype-related protein families and phenotype classification. We rigorously
tested the performance of our software in cross-validation experiments, on further test
data sets and for different taxonomic ranks. To test Traitar’s applicability beyond the
bacteria represented in GIDEON, we subsequently applied it to several hundred bac-
teria described in Bergey’s Manual of Systematic Bacteriology (1). We used Traitar to
phenotype bacterial single amplified genomes (SAGs) and simulated incomplete ge-
nomes to investigate its potential for the phenotyping of microbial samples with
incomplete genome sequences. We characterized two novel Clostridiales species of a
biogas reactor community with Traitar on the basis of their genomes recovered with
metagenomics. This verified and complemented a manual metabolic reconstruction. As
Traitar furthermore suggests protein families associated with the presence of a partic-
ular phenotype, we discuss the protein families Traitar identified for several pheno-
types, namely, for motility, nitrate-to-nitrite conversion, and L-arabinose fermentation.

Traitar is implemented in Python 2.7. It is freely available under the open-source
GPL 3.0 license at https://github.com/hzi-bifo/traitar and as a Docker container at
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https://hub.docker.com/r/aweimann/traitar. A Traitar web service can be accessed at
https://research.bifo.helmholtz-hzi.de/traitar.

RESULTS
The Traitar software. We begin with a description of the Traitar software and phe-
notype classifiers. Traitar predicts the presence or absence of a phenotype, i.e., assigns
a phenotype label, for 67 microbial traits to every input sequence sample (Table 1; see
Table S1 in the supplemental material). For each of these traits, Traitar furthermore
suggests candidate protein families associated with its realization, which can be
subjects of experimental follow-up studies.

For phenotype prediction, Traitar uses one of two different classification models. We
trained the first classifier—the phypat classifier— on the protein and phenotype pres-
ence and absence labels from 234 bacterial species (see phenotype models in Materials
and Methods). The 2nd classifier—the phypat�PGL classifier—was trained by using the
same data and additionally information on evolutionary protein family and phenotype
gains and losses. The latter were determined by using maximum-likelihood inference of
their ancestral character states on the species phylogeny (see ancestral protein family
and phenotype gains and losses in Materials and Methods).

The input to Traitar is either a nucleotide sequence FASTA file for every sample,
which is run through gene prediction software, or a protein sequence FASTA file. Traitar
then annotates the proteins with protein families. Subsequently, it predicts the pres-
ence or absence of each of the 67 traits for every input sequence. Note that Traitar does
not require a phylogenetic tree for the input samples. Finally, it associates the predicted
phenotypes with the protein families that contributed to these predictions (Fig. 2). A
parallel execution of Traitar is supported by GNU parallel (26). The Traitar annotation
procedure and the training of the phenotype models are described in more detail
below (see Traitar software in Materials and Methods).

Evaluation. We evaluated the two Traitar classifiers by using 10-fold nested
cross-validation of 234 bacterial species found in GIDEON (GIDEON I). The macroaccu-
racy (the accuracy balanced over all phenotypes) determined for the 67 GIDEON

FIG 1 Traitar can be used to phenotype microbial community members on the basis of genomes recovered
from single-cell sequencing or (metagenomic) environmental shotgun sequencing data or of microbial isolates.
Traitar provides classification models based on protein family annotation for a wide variety of different
phenotypes related to the use of various substrates as source of carbon and energy for growth, oxygen
requirement, morphology, antibiotic susceptibility, and enzymatic activity.
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TABLE 1 The 67 traits available in Traitar for phenotyping (we grouped each of these
phenotypes into a microbiological or biochemical category)

Phenotypea Categoryb

Alkaline phosphatase Enzyme
Beta-hemolysis
Coagulase production
Lipase
Nitrate-to-nitrite conversion
Nitrite to gas
Pyrrolidonyl-�-naphthylamide

Bile susceptible Growth
Colistin-polymyxin susceptible
DNase
Growth at 42°C
Growth in 6.5% NaCl
Growth in KCN
Growth on MacConkey agar
Growth on ordinary blood agar
Mucate utilization

Arginine dihydrolase Growth, amino acid
Indole
Lysine decarboxylase
Ornithine decarboxylase

Acetate utilization Growth, carboxylic acid
Citrate
Malonate
Tartrate utilization

Gas from glucose Growth, glucose
Glucose fermenter
Glucose oxidizer
Methyl red
Voges-Proskauer

Cellobiose Growth, sugar
D-Mannitol
D-Mannose
D-Sorbitol
D-Xylose
Esculin hydrolysis
Glycerol
Lactose
L-Arabinose
L-Rhamnose
Maltose
Melibiose
myo-Inositol
ONPGc (�-galactosidase)
Raffinose
Salicin
Starch hydrolysis
Sucrose
Trehalose
Urea hydrolysis

Bacillus or coccobacillus Morphology
Coccus
Coccus—clusters or groups predominate
Coccus—pairs or chains predominate
Gram negative
Gram positive
Motile
Spore formation
Yellow pigment

Aerobe Oxygen
Anaerobe

(Continued on following page)
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phenotypes was 82.6% for the phypat classifier and 85.5% for the phypat�PGL
classifier; the accuracy (fraction of correct assignments averaged over all of the samples
tested) for phypat was 88.1%, in comparison to 89.8% for phypat�PGL (see evaluation
metrics in Materials and Methods; Table 2). Notably, Traitar classified 53 phenotypes
with �80% macroaccuracy and 26 phenotypes with at least 90% macroaccuracy with
one of the two classifiers (Fig. 3; see Table S2 in the supplemental material). Phenotypes
that could be predicted with very high confidence included the outcome of a methyl
red test, spore formation, oxygen requirement (i.e., anaerobe and aerobe), and growth
on MacConkey agar or catalase. Some phenotypes proved to be difficult to predict (60
to 70% macroaccuracy), which included DNase, myo-inositol, yellow pigment, and
tartrate utilization, regardless of which classifier was used. This might be caused by the
relatively small number (�20) of positive (phenotype present) examples that were
available.

For an independent assessment of Traitar’s classification performance, we next
tested Traitar with 42 bacterial species that had phenotype information available in
GIDEON (GIDEON II) but were not used for learning the phenotype models (see
annotation in the Traitar software). For calculation of macroaccuracy, we considered
only phenotypes represented by at least five phenotype-positive and five phenotype-
negative bacteria. On these data, Traitar predicted the phenotypes with a macroaccu-
racy of 85.3% with the phypat classifier and 86.7% with the phypat�PGL classifier and
accuracies of 87.5% and 87.9%, respectively (Table 2). To investigate the performance
of Traitar for bacterial genomes from a different data source, we next determined from
two volumes of Bergey’s Manual of Systematic Bacteriology, namely, the Proteobacteria
and the Firmicutes, the phenotypes of further sequenced bacteria that were not in our
GIDEON I and II data sets (see Tables S1 and S4 in the supplemental material). In total,
we thus identified phenotypes for another 296 sequenced bacterial species (see
annotation in the Traitar software). Also for these bacteria, Traitar performed well but
was less reliable than before, with accuracies of 72.9% for the phypat classifier and

FIG 2 Work flow of Traitar. Input to the software can be genome sequence samples in nucleotide or amino acid FASTA format. Traitar
predicts phenotypes on the basis of precomputed classification models and provides graphic and tabular output. In the case of
nucleotide sequence input, the protein families that are important for the phenotype predictions will be further mapped to the
predicted protein-coding genes.

TABLE 1 (Continued)

Phenotypea Categoryb

Capnophilic
Facultative

Catalase Oxygen, enzyme
Oxidase

Hydrogen sulfide Product

Casein hydrolysis Proteolysis
Gelatin hydrolysis

aGIDEON phenotypes with at least 10 presence and 10 absence labels.
bPhenotypes assigned to microbiological/biochemical categories.
cONPG, o-nitrophenyl-�-D-galactopyranoside.
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72.1% for the phypat�PGL classifier (Table 2). This is likely due to the taxonomic
differences among the bacteria listed in GIDEON and Bergey’s Manual of Systematic
Bacteriology and also because most of the bacteria in Bergey’s Manual of Systematic
Bacteriology have only draft genomes available for phenotyping.

When combining the predictions of the phypat and phypat�PGL classifiers into a
consensus vote, Traitar assigns phenotypes more reliably, while predicting fewer
phenotype labels than the individual classifiers (Table 2). Depending on the use case,
Traitar can be used with performance characterized by different tradeoffs between the
recall of the phenotype-positive and phenotype-negative classes.

Performance per taxon at different ranks of the taxonomy. We investigated
the performance of Traitar across the part of the bacterial tree of life represented in our
data set. For this purpose, we evaluated the nested cross-validation performance of the
phypat and phypat�PGL classifiers at different ranks of the National Center for Bio-
technology Information (NCBI) taxonomy. For a given GIDEON taxon, we pooled all of
the bacterial species that are descendants of this taxon. Figure 4 shows the accuracy
estimates projected on the NCBI taxonomy from the domain level down to individual
families. Notably, the accuracy of the phypat�PGL (phypat) classifier for the phyla
covered by at least five bacterial species showed low variance and was high across all
of the phyla, i.e., 84% (81%) for Actinobacteria, �90% (89%) for Bacteroidetes, 89% (90%)
for Proteobacteria, 91% (90%) for Firmicutes, and 91% (86%) for Tenericutes.

Phenotyping of incomplete genomes. GFMs or SAGs are often incomplete, and
thus we analyzed the effect of missing genome assembly parts on the performance of
Traitar. Rinke et al. used a single-cell sequencing approach to analyze poorly charac-
terized parts of the bacterial and archaeal tree of life, the so-called microbial dark
matter (16). They pooled 20 SAGs from the “Candidatus Cloacimonetes” phylum,
formerly known as WWE1, to generate joint—more complete— genome assemblies
that had at least a genome-wide average nucleotide identity of 97% and belonged to
a single 16S rRNA gene-based operational taxonomic unit, namely, “Candidatus Clo-
acamonas acidaminovorans” (27).

According to our predictions based on the joint assembly of the single-cell ge-
nomes, “Candidatus Cloacamonas acidaminovorans” is Gram negative and is adapted to

TABLE 2 Evaluation of the Traitar phypat and phypat�PGL phenotype classifiers and a
consensus vote of both classifiers for 234 bacteria described in GIDEON in a 10-fold
nested cross-validation by using different evaluation measuresa

Data set (no. of bacteria) and classifier Macroaccuracy Accuracy

Recall phenotype

Positive Negative

GIDEON I (234)
Phypat 82.6 88.1 86.1 91.4
Phypat�PGL 85.5 89.8 87.8 90.9
Consensus 83.0 88.8 82.2 95.4

GIDEON II (42)
Phypat 85.3 87.5 84.9 90.2
Phypat�PGL 86.7 87.9 86.3 89.7
Consensus 85.7 87.2 80.8 93.7

Bergey’s Manual of Systematic
Bacteriology (296)

Phypat NAb 72.9 74.6 71.2
Phypat�PGL NAb 72.4 74 70.8
Consensus NAb 72.9 66.6 79.2

aSee evaluation metrics in Materials and Methods. Subsequently, we tested another 42 bacteria from GIDEON
and 296 bacteria described in Bergey’s Manual of Systematic Bacteriology for an independent performance
assessment of the two classifiers. Bold values depict the best performance obtained across the Phypat,
Phypat�PGL, and consensus classifiers for each measure.

bOnly the overall accuracy is reported, as insufficient phenotype labels (fewer than five with negative and
positive labels, respectively) were available for several phenotypes, to enable a comparable macroaccuracy
calculation to the other data sets (see Table S1 in the supplemental material).
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an anaerobic lifestyle, which agrees with the description of Rinke et al. (Fig. 5). Traitar
further predicted arginine dihydrolase activity, which is in line with the characterization
of the species as an amino acid degrader (16). Remarkably, the prediction of a bacillus
or coccobacillus shape agrees with the results of Limam et al. (28), who used a

FIG 3 Macroaccuracy for each phenotype of the Traitar phypat and phypat�PGL phenotype classifiers
determined in nested cross-validation of 234 bacterial species described in GIDEON (see evaluation metrics in
Materials and Methods; Table 1; see Table S1 in the supplemental material).
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WWE1-specific probe and characterized the samples by fluorescence in situ hybridiza-
tion. They furthermore reported that members of the “Candidatus Cloacimonetes”
phylum are implicated in the anaerobic digestion of cellulose primarily in early hydro-
lysis, which is in line with the very limited carbohydrate degradation spectrum found
by Traitar.

FIG 4 Classification accuracy for each taxon at different ranks of the NCBI taxonomy. For better
visualization of names for the internal nodes, the taxon names are displayed on branches leading to
the respective taxon node in the tree. The nested cross-validation accuracy obtained with Traitar for
234 bacterial species described in GIDEON was projected onto the NCBI taxonomy down to the family
level. Colored circles at the tree nodes depict the performance of the phypat�PGL classifier
(left-hand circles) and the phypat classifier (right-hand circles). The size of the circles reflects the
number of species per taxon.
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Subsequently, we compared the predicted phenotypes for the SAGs to the predic-
tions for the joint assembly. The phypat classifier recalled more of the phenotype
predictions of the joint assembly based on the SAGs than the phypat�PGL classifier.
However, the phypat�PGL classifier made fewer false-positive predictions (Fig. 6a).

In the next experiment, we inferred phenotypes based on simulated GFMs by
subsampling from the coding sequences of each of the 42 bacterial genomes (GIDEON
II). Starting with the complete set of coding sequences, we randomly deleted genes
from the genomes. For the draft genomes obtained with different degrees of com-
pleteness, we reran the Traitar classification and computed the accuracy measures as
before. We observed that the average fraction of phenotypes identified (macrorecall for
the positive class) of the phypat�PGL classifier dropped more quickly with more
missing coding sequences than that of the phypat classifier (Fig. 6b). However, at the
same time, the recall of the negative class of the phypat�PGL classifier improved with
a decreasing number of coding sequences, meaning that fewer but more reliable
predictions were made.

Overall, the tradeoffs in the recall of the phenotype-positive and phenotype-
negative classes of the two classifiers resulted in a similar overall macroaccuracy across
the range of tested genome completeness. Thus, depending on the intended use, a
particular classifier can be chosen. We expect that the reliable predictions inferred with
the phypat�PGL classifier and the more abundant but less reliable predictions made

FIG 5 Single-cell phenotyping with Traitar. We used 20 genome assemblies with various degrees of completeness
from single cells of the “Candidatus Cloacimonetes” phylum and a joint assembly for phenotyping with Traitar. Shown
is a heat map of assembly samples versus phenotypes, which is the standard visualization for phenotype predictions
in Traitar. The origin of the phenotype’s prediction (Traitar phypat and/or phypat�PGL classifier) determines the color
of the heat map entries. The sample labels have their genome completeness estimates as suffixes. The colors of the
dendrogram indicate similar phenotype distributions across samples, as determined by a hierarchical clustering with
SciPy (http://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html).

Traitar, the Microbial Trait Analyzer

Volume 1 Issue 6 e00101-16 msystems.asm.org 9

http://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html
msystems.asm.org


with the phypat classifier will complement one another in different use cases for partial
genomes recovered from metagenomic data.

By analyzing the protein families with assigned weights and the bias terms of the
two classifiers, we found the phypat�PGL classifier to base its predictions primarily on
the presence of protein families that were typical for the phenotypes. In contrast, the
phypat classifier also took typically absent protein families from phenotype-positive
genomes into account in its decision. More technically, the positive weights in models
of the phypat classifier are balanced out by negative weights, whereas for the
phypat�PGL classifier, they are balanced out by the bias term. By downweighting the
bias term for the phypat�PGL classifier by the protein content completeness, we could
show that the accuracy of the phypat classifier could be exceeded by the phypat�PGL
classifier, regardless of the protein content completeness (data not shown). However,
this requires knowledge of the protein content completeness for each genomic sample,
which could be indirectly estimated by using methods such as checkM (29).

Traitar as a resource for gene target discovery. In addition to phenotype
assignment, Traitar suggests the protein families relevant for the assignment of a
phenotype (see majority feature selection in Materials and Methods, Table 3). Here, as
an example, we demonstrate this capability for three phenotypes that are already well
studied, namely, motile, nitrate-to-nitrite conversion, and L-arabinose metabolism.
These phenotypes each represent one of the phenotype categories morphology,
enzymatic activity, and growth on sugar. In general, we observed that the protein
families important for classification can be seen to be gained and lost jointly with the
respective phenotypes within the microbial phylogeny (Fig. 7).

Among the selected Pfam families that are important for classifying the motility
phenotype were proteins of the flagellar apparatus and chemotaxis-related proteins
(Table 3). Motility allows bacteria to colonize their preferred environmental niches.
Genetically, it is attributed mainly to the flagellum, which is a molecular motor, and is
closely related to chemotaxis, a process that lets bacteria sense chemicals in their

FIG 6 Phenotyping of simulated draft genomes and single-cell genomes. In panel a, we used 20 genome
assemblies with various degrees of completeness from single cells of the “Candidatus Cloacimonetes” phylum
and a joint assembly for phenotyping with the Traitar phypat and phypat�PGL classifiers. Shown is the
performance of the phenotype prediction versus the genome completeness of the single cells with respect to
the joint assembly. In panel b, we simulated draft genomes on the basis of an independent test set of 42
microbial (pan)genomes. The coding sequences of these genomes were downsampled (10 replications per
sampling point), and the resulting simulated draft genomes were used for phenotyping with the Traitar phypat
and phypat�PGL classifiers. We plotted various performance estimates (mean center values and standard
deviation error bars are shown) against protein content completeness.
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surroundings. Motility also plays a role in bacterial pathogenicity, as it enables bacteria
to establish and maintain an infection. For example, pathogens can use flagella to
adhere to their host and have been reported to be less virulent if they lack flagella (30).
Of the 48 flagellar proteins described in reference 31, 4 (FliS, MotB, FlgD, and FliJ) were
sufficient for accurate classification of the motility phenotype and were selected by our
classifier, as well as FlaE, which was not included in this collection. FliS (accession no.
PF02561) is a known export chaperone that inhibits early polymerization of the flagellar
filament FliC in the cytosol (32). MotB (PF13677), part of the membrane proton-channel
complex, acts as the stator of the bacterial flagellar motor (33). Traitar also identified
further protein families related to chemotaxis, such as CZB (PF13682), a family of
chemoreceptor zinc-binding domains found in many bacterial signal transduction
proteins involved in chemotaxis and motility (34), and the P2 response regulator-
binding domain (PF07194). The latter is connected to the chemotaxis kinase CheA and
is thought to enhance the phosphorylation signal of the signaling complex (35).

Nitrogen reduction in nitrate-to-nitrite conversion is an important step of the
nitrogen cycle and has a major impact on agriculture and public health. Two types of
nitrate reductases are found in bacteria, the membrane-bound Nar and periplasmic Nap
nitrate reductases (36), both of which we found to be relevant for the classification of

TABLE 3 The most relevant Pfam families for the classification of three important phenotypes, nitrate-to-nitrite conversion, motility, and
L-arabinosea

Accession no. Phenotype Pfam description Remark

PF13677 Motile Membrane MotB of proton-channel complex
MotA/MotB

Flagellar protein

PF03963 Motile Flagellar hook capping protein
N-terminal region

Flagellar protein

PF02561 Motile Flagellar FliS protein Flagellar protein
PF02050 Motile Flagellar FliJ protein Flagellar protein
PF07559 Motile Flagellar basal body protein FlaE Flagellar protein
PF13682 Motile Chemoreceptor zinc-binding domain Chemotaxis related
PF03350 Motile Uncharacterized protein family, UPF0114
PF05226 Motile CHASE2 domain Chemotaxis related
PF07194 Motile P2 response regulator binding domain Chemotaxis related
PF04982 Motile HPP family
PF03927 Nitrate-to-nitrite conversion NapD protein Involved in Nar formation
PF13247 Nitrate-to-nitrite conversion 4Fe-4S dicluster domain Iron-sulfur cluster center of beta

subunit of Nar
PF03892 Nitrate-to-nitrite conversion Nitrate reductase cytochrome c-type subunit

(NapB)
Periplasmic Nap subunit

PF02613 Nitrate-to-nitrite conversion Nitrate reductase delta subunit Nap subunit
PF01127 Nitrate-to-nitrite conversion Succinate dehydrogenase/fumarate reductase

transmembrane subunit
PF01292 Nitrate-to-nitrite conversion Prokaryotic cytochrome b561

PF03459 Nitrate-to-nitrite conversion TOBE domain
PF03824 Nitrate-to-nitrite conversion High-affinity nickel transport protein
PF04879 Nitrate-to-nitrite conversion Molybdopterin oxidoreductase Fe4S4 domain Bound to alpha subunit of Nar
PF02665 Nitrate-to-nitrite conversion Nitrate reductase gamma subunit Nar subunit
PF11762 L-Arabinose L-Arabinose isomerase C-terminal domain Catalyzes first reaction in

L-arabinose metabolism
PF04295 L-Arabinose D-Galactarate dehydratase/altronate hydrolase,

C terminus
PF13802 L-Arabinose Galactose mutarotase-like
PF11941 L-Arabinose Domain of unknown function (DUF3459)
PF14310 L-Arabinose Fibronectin type III-like domain
PF06964 L-Arabinose �-L-Arabinofuranosidase

C terminus
Acts on L-arabinose side chains in

pectins
PF01963 L-Arabinose TraB family
PF01614 L-Arabinose Bacterial transcriptional regulator
PF06276 L-Arabinose Ferric iron reductase FhuF-like transporter
PF04230 L-Arabinose Polysaccharide pyruvyl transferase
aWe ranked the Pfam families with positive weights in the Traitar SVM classifiers by the correlation of the Pfam families with the respective phenotype labels across
234 bacteria described in GIDEON. Shown are the 10 highest ranking Pfam families along with their descriptions and a description of their phenotype-related
function, where we found one.
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the phenotype. We identified all of the subunits of the Nar complex as being relevant
for the nitrate-to-nitrite conversion phenotype (i.e., the gamma and delta subunits
[PF02665, PF02613]), as well as Fer4_11 (PF13247), which is in the iron-sulfur center of
the beta subunit of Nar. The delta subunit is involved in the assembly of the Nar
complex and is essential for its stability but probably is not directly part of it (37). Traitar
also identified the molybdopterin oxidoreductase Fe4S4 domain (PF04879), which is
bound to the alpha subunit of the nitrate reductase complex (37). Traitor furthermore
suggested as relevant NapB (PF03892), which is a subunit of the periplasmic Nap
protein, and NapD (PF03927), which is an uncharacterized protein implicated in Nap
formation (36).

L-Arabinose is major constituent of plant polysaccharides that is located, for in-
stance, in pectin side chains and is an important microbial carbon source (38). Traitar
identified the L-arabinose isomerase C-terminal domain (PF11762), which catalyzes the
first step in L-arabinose metabolism—the conversion of L-arabinose into L-ribulose (39),
as being important for realizing L-arabinose metabolism (Fig. 7). It furthermore sug-
gested the C-terminal domain of �-L-arabinofuranosidase (PF06964), which cleaves
nonreducing terminal �-L-arabinofuranosidic linkages in L-arabinose-containing poly-
saccharides (40) and is also part of the well-studied L-arabinose operon of Escherichia
coli (39).

Phenotyping of biogas reactor population genomes. We used Traitar to
phenotype two novel Clostridiales species (unClos_1, unFirm_1) on the basis of their
genomic information reconstructed from metagenome samples. These were taken from
a commercial biogas reactor operating with municipal waste (41). The genomes of
unClos_1 and unFirm_1 were estimated to be 91 and 60% complete, respectively, on
the basis of contigs of �5 kb. Traitar predicted unClos_1 to utilize a broader spectrum
of carbohydrates than unFirm_1 (Table 4). We cross-referenced our predictions with a
metabolic reconstruction conducted by Frank et al. (64). We considered all phenotype
predictions that Traitar inferred with either the phypat or the phypat�PGL classifier.
The manual reconstruction and predictions inferred with Traitar agreed to a great
extent (Table 4). Traitar recalled 87.5% (6/7) of the phenotypes inferred via the
metabolic reconstruction and also agreed to 81.8% (9/11) on the absent phenotypes.
Notable exceptions were that Traitar found only a weak signal for D-xylose utilization.
A weak signal means that only a minority of the classifiers in the voting committee
assigned these samples to the phenotype-positive class (see phenotype models in
Materials and Methods). However, the metabolic reconstruction was also inconclusive
with respect to xylose fermentation. Furthermore, Traitar found only a weak signal for

FIG 7 Phenotype gain and loss dynamics match protein family dynamics. Shown are the phenotype-protein
family gain and loss dynamics for families identified as important by Traitar for the L-arabinose phenotype.
Signed colored circles along the tree branches depict protein family gains (�) or losses (�). Taxon nodes are
colored according to their inferred (ancestral) phenotype state.
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glucose fermentation by unFirm_1. While genomic analysis of unFirm_1 revealed the
Embden-Meyerhof-Parnas (EMP) pathway, which would suggest glucose fermentation,
gene-centric and metaproteomic analyses of this phylotype indicated that the EMP
pathway was probably employed in an anabolic direction (gluconeogenesis); therefore,
unFirm_1 is also unlikely to ferment D-mannose. This suggests that unFirm_1 is unlikely
to ferment sugars and instead metabolizes acetate (also predicted by Traitar; Table 4)
via a syntrophic interaction with hydrogen-utilizing methanogens.

Traitar predicted further phenotypes for both species that were not targeted by the
manual reconstruction. One of these predictions was an anaerobic lifestyle, which is
likely to be accurate, as the genomes were isolated from an anaerobic bioreactor
environment. It also predicted them to be Gram positive, which is probably correct, as
the Gram-positive sortase protein family can be found in both genomes. This is a Gram
positivity biomarker (42). Furthermore, all Firmicutes known so far are Gram positive (1).
Additionally, Traitar assigned motile and spore formation to unFirm_1 on the basis of
the presence of several flagellar proteins (i.e., FlaE, FliM, MotB, FliS, and FliJ) and the
sporulation proteins CoatF and YunB.

DISCUSSION

We have developed Traitar, a software framework for predicting phenotypes from the
protein family profiles of bacterial genomes. Traitar provides a quick and fully auto-
mated way of assigning 67 different phenotypes to bacteria on the basis of the protein
family contents of their genomes.

Microbial trait prediction from phyletic patterns has been proposed in previous
studies for a limited number of phenotypes (18, 19, 43–46). To our knowledge, the only
currently available software for microbial genotype-phenotype inference is PICA, which
is based on learning associations of clusters of orthologous genes (47) with traits (45).
Recently, PICA was extended by Feldbauer et al. for predicting 11 traits overall,
optimized for large data sets, and tested on incomplete genomes (46). Of the 67
phenotypes that Traitar predicts, 60 are entirely novel. It furthermore includes different
prediction modes, one based on phyletic patterns, one additionally including a statis-
tical model of protein family evolution for its predictions. An initial prototype of the
Traitar methodology was originally developed for prediction of the plant biomass
phenotype, with excellent classification performance observed and providing sugges-
tions of candidate domains for experimental verification (18). The methodology has
since been adapted to the use of GIDEON and inclusion of phylogenetic signals, which
is why the plant biomass predictor is not included in the Traitar release. This shows that,

TABLE 4 Phenotype predictions for two novel Clostridiales species with genomes
reconstructed from a commercial biogas reactor metagenome

Phenotype unClos_1 unFirm_1

Glucose Yes Weak
Acetate utilization No Yes
Mannitol Yes No
Starch hydrolysis No No
Xylose Weak No
L-Arabinose Yes No
Capnophilic Yes No
Sucrose Yes No
D-Mannose Yes No
Maltose Yes No
Arginine dihydrolase No Yes
aTraitar output (yes, no, weak) was cross-referenced with phenotypes manually reconstructed on the basis of
Kyoto Encyclopedia of Genes and Genomes orthology annotation (64), which are primarily the fermentation
phenotypes of various sugars. We considered all of the phenotype predictions that Traitar inferred with
either the phypat or the phypat�PGL classifier. A weak prediction means that only a minority of the
classifiers in the Traitar voting committee assigned this sample to the phenotype-positive class (Traitar
phenotype). Entries shaded light gray show a difference between the prediction and the reconstruction,
whereas dark gray denotes an overlap; bold (no shading) is inconclusive.
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principally, given suitable training data, also very complex phenotypes can be learned
and predicted with this methodology.

Traitar also suggests associations between phenotypes and protein families. For
three traits, we showed that several of these associations are to known key families of
establishment of a particular trait. Furthermore, candidate families were suggested that
might be relevant for particular traits and serve as targets for experimental studies.
Some of the phenotypes annotated in GIDEON are specific for the human habitat (such
as coagulase production or growth on ordinary blood agar), and the genetic under-
pinnings learned by Traitar could be interesting to study for infection disease research.

In cross-validation experiments with phenotype data from the GIDEON database, we
showed that the Traitar phypat classifier has high accuracy in phenotyping bacterial
samples. Consideration of ancestral protein family gains and losses in the classification,
which is implemented in the Traitar phypat�PGL classifier, improves the accuracy
compared to prediction from phyletic patterns only, both for individual phenotypes
and overall. Barker et al. were the first to note the phylogenetic dependence of
genomic samples and how this can lead to biased conclusions (24). MacDonald et al.
selected protein families on the basis of correlations with a phenotype and corrected
for the taxonomy (45). Here we accounted for the evolutionary history of the pheno-
type and the protein families in the classifier training itself to automatically improve
phenotype assignment. We additionally demonstrated the reliability of the perfor-
mance estimates by phenotyping, with similar accuracy, an independent test data set
with bacteria described in GIDEON that we did not use in the cross-validation. Traitar
also reliably phenotyped a large and heterogenic collection of bacteria that we
extracted from Bergey’s Manual of Systematic Bacteriology—mostly with only draft
genomes available. We did not observe any bias toward specific taxa in GIDEON, but
some of the phenotypes might be realized with different protein families in taxa that
are less well represented, as indicated by the around 15 to 20% less reliable pheno-
typing results for bacteria described in Bergey’s Manual of Systematic Bacteriology. We
expect that the accuracy of the phenotype classification models already available in
Traitar will further improve as more data become available and can be incorporated
into its training.

We found that Traitar can provide reliable insights into the metabolic capabilities of
microbial community members even from partial genomes, which are very common for
genomes recovered from single cells or metagenomes. One obvious limitation being
for incomplete genomes, the absence of a phenotype prediction may be due to the
absence of the relevant protein families from the input genomes. The analysis of both
the SAGs and simulated genomes led us to the same conclusions, i.e., that the phypat
classifier is more suitable for exploratory analysis, as it assigned more phenotypes to
incomplete genomes at the price of more false-positive predictions. In contrast, the
phypat�PGL classifier assigned fewer phenotypes but also made fewer false assign-
ments. At the moment, genotype-phenotype inference with Traitar only takes into
account the presence and absence of protein families of the bacteria analyzed. This
information can be readily computed from the genomic and metagenomic data. Future
research could focus also on the integration of other omics data to allow even more
accurate phenotype assignments. Additionally, expert knowledge of the biochemical
pathways that are used in manual metabolic reconstructions, for example, could be
integrated as prior knowledge into the model in future studies.

For the phenotyping of novel microbial species, generating a detailed (manual)
metabolic reconstruction such as the one by Frank et al. (64) is time-intensive. Further-
more, such reconstructions are usually focused on specific pathways and are depen-
dent on the research question. This is not an option for studies with tens or hundreds
of genomes, which are becoming more and more common in microbiology (6, 14, 16).
Traitar thus is likely to be particularly helpful for multigenome studies. It furthermore
may pick up on things outside the original research focus and could serve as a seed or
a first-pass method for a detailed metabolic reconstruction in future studies.
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MATERIALS AND METHODS
The Traitar software. In this section, we first describe the Traitar annotation procedure. We proceed
with the genome and phenotype data used for the training of Traitar phenotype models; afterward, we
explain the training and illustrate how we considered ancestral protein family gains and losses in the
models. Finally, we specify the requirements for running the Traitar software.

Annotation. In the case of nucleotide DNA sequence input, Traitar uses Prodigal (48) for gene
prediction prior to Pfam family annotation. The amino acid sequences are then annotated in Traitar with
protein families (Pfams) from the Pfam database (version 27.0) (49) by using the hmmsearch command
of HMMER 3.0 (50).

Each Pfam family has a hand-curated threshold for the bit score, which is set in such a way that no
false positive is included (51). A fixed threshold of 25 is then applied to the bit score (the log-odds score),
and all Pfam domain hits with an E value above 10�2 are discarded. The resulting Pfam family counts
(phyletic patterns) are turned into presence or absence values, as we found this representation to yield
favorable classification performance (18).

Genome and phenotype data. We obtained our phenotype data from the GIDEON database (25).
In GIDEON, a bacterium is labeled either as phenotype positive, phenotype negative, or strain specific.
In the latter case, we discarded this phenotype label. The GIDEON traits can be grouped into the
categories such as the use of various substrates as sources of carbon and energy for growth, oxygen
requirement, morphology, antibiotic susceptibility, and enzymatic activity (Table 1; see Table S1 in the
supplemental material). We considered only phenotypes that were available in GIDEON for at least 20
bacteria, with a minimum of 10 bacteria annotated as positive (phenotype presence) and 10 as negative
(phenotype absence) for a given phenotype to enable a robust and reliable analysis of the respective
phenotypes. Furthermore, for inclusion in the analysis, we required each bacterial sample to have (i) at
least one annotated phenotype, (ii) at least one sequenced strain, and (iii) a representative in the
sequenced tree of life (sTOL).

In total, we extracted 234 species-level bacterial samples with 67 phenotypes with sufficient total,
positive, and negative labels from GIDEON (GIDEON I). GIDEON associates these bacteria with 9,305
individual phenotype labels, 2,971 being positive and 6,334 negative (see Tables S1 and S3 in the
supplemental material). GIDEON species that had at least one sequenced strain available but were not
part of the sTOL were set aside for a later independent assessment of classification accuracy. In total, this
additional data set comprised a further 42 unique species with 58 corresponding sequenced bacterial
strains (GIDEON II; see Tables S1 and S4). We obtained 1,836 additional phenotype labels for these
bacteria, consisting of 574 positive and 1,262 negative ones. We searched the Firmicutes and Proteobac-
teria volumes of Bergey’s Manual of Systematic Bacteriology specifically for further bacteria not repre-
sented so far in the GIDEON data sets (1). In total, we obtained phenotype data from Bergey’s Manual of
Systematic Bacteriology for 206 Firmicutes and 90 Proteobacteria with a total of 1,152 positive labels and
1,376 negative labels (see Tables S1 and S5). As in GIDEON, in Bergey’s Manual of Systematic Bacteriology,
the phenotype information is usually given on the species level.

We downloaded the coding sequences of all of the complete bacterial genomes that were available
via the NCBI FTP server at ftp://ftp.ncbi.nlm.nih.gov/genomes/ as of 11 May 2014 and genomes available
from the PATRIC database as of September 2015 (52). These were annotated with Traitar. For bacteria
with more than one sequenced strain available, we chose the union of the Pfam family annotation of the
single genomes to represent the pangenome Pfam family annotation, as in reference 53.

Phenotype models. We represented each phenotype from the set of GIDEON phenotypes across all
genomes as a vector yp and solved a binary classification problem by using the matrix of Pfam phyletic
patterns XP across all genomes as input features and yp as the binary target variable (see Fig. S1 in the
supplemental material). For classification, we relied on support vector machines (SVMs), which are a
well-established machine learning method (54). Specifically, we used a linear L1-regularized L2-loss SVM
for classification as implemented in the LIBLINEAR library (55). For many data sets, linear SVMs achieve
accuracy comparable to that of SVMs with a nonlinear kernel but allow faster training. The weight vector
of the separating hyperplane provides a direct link to the Pfam families that are relevant for the
classification. L1 regularization enables feature selection, which is useful when applied to highly
correlated and high-dimensional data sets such as those used in this study (56). We used the interface
to LIBLINEAR implemented in scikit-learn (57). For classification of unseen data points— genomes
without available phenotype labels supplied by the user—Traitar uses a voting committee of five SVMs
with the best single cross-validation accuracy (see cross-validation below). Traitar then assigns each
unseen data point to the majority class (phenotype presence or absence class) of the voting committee.

Ancestral protein family and phenotype gains and losses. We constructed an extended classifi-
cation problem by including ancestral protein family gains and losses, as well as the ancestral phenotype
gains and losses in our analysis, as implemented in GLOOME (58). Barker et al. report that common
methods for inferring functional links between genes that do not take the phylogeny into account suffer
from high rates of false positives (24). Here, we jointly derived the classification models from the
observable phyletic patterns and phenotype labels, and from phylogenetically unbiased ancestral
protein family and phenotype gains and losses, which we inferred via a maximum-likelihood approach
from the observable phyletic patterns on a phylogenetic tree, showing the relationships among the
samples (see Fig. S1 in the supplemental material). Ancestral character state evolution in GLOOME is
modeled via a continuous-time Markov process with exponential waiting times. The gain and loss rates
are sampled from two independent gamma distributions (59).

GLOOME needs a binary phylogenetic tree with branch lengths as the input. The taxonomy of the
NCBI and other taxonomies are not suitable because they provide no branch length information. We
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used the sTOL (60), which is bifurcating and was inferred by a maximum-likelihood approach based on
unbiased sampling of structural protein domains from whole genomes of all sequenced organisms (61).
We employed GLOOME with standard settings to infer posterior probabilities for the phenotype and
Pfam family gains and losses from the Pfam phyletic patterns of all of the NCBI bacteria represented in
the sTOL and the GIDEON phenotypes. Each GIDEON phenotype p is available for a varying number of
bacteria. Therefore, for each phenotype, we pruned the sTOL to those bacteria that were present in the
NCBI database and had a label for the respective phenotype in GIDEON. The posterior probabilities of
ancestral Pfam gains and losses were then mapped onto this GIDEON phenotype-specific tree (Gps-sTOL;
see Fig. S2 in the supplemental material).

Let B be the set of all branches in the sTOL and P be the set of all Pfam families. We then denote the
posterior probability gij of an event a for a Pfam family pf to be a gain event on branch b in the sTOL
computed with GLOOME as

gij � P�a � gain | i � b, j � pf� ∀ i � B, ∀ j � P

and the posterior probability of a to be a loss event for a Pfam family p on branch b as

lij � P�a � loss | i � b, j � pf� ∀ i � B, ∀ j � P

We established a mapping f:B=¡B between the branches of the sTOL B and the set of branches B= of the
Gps-sTOL (see Fig. S2 in the supplemental material). This was achieved by traversing the tree from the
leaves to the root.

There are two different scenarios for branch b= in B= to map to the branches in B.
(i) Branch b= in the Gps-sTOL derives from single branch b in the sTOL as follows: f(b=) � {b}. The

posterior probability of a Pfam gain inferred in the Gps-sTOL on branch b= consequently is the same as
that on branch b in the sTOL: gb’j � gbj∀j�P.

(ii) Branch b= in the Gps-sTOL derives from m branches b1........, bm in the sTOL as follows: f(b=) �
{b1,........,bm} (see Fig. S2). In this case, we iteratively calculated the posterior probabilities for at least
one Pfam gain g= on branch b= from the posterior probabilities for a gain g’b1j. From the posterior
probabilities g1.......,gm of a gain on branches b1.......,bm with the help of h,

h1 � gb1j

hn � 1 � �1 � hn� · gbn � 1j

g’b1j � hm ∀ j � P.

Inferring the Gps-sTOL Pfam posterior loss probabilities (l=ij) from the sTOL posterior Pfam loss proba-
bilities is analogous to deriving the gain probabilities. The posterior probability for a phenotype (p) to be
gained (g=ip) or lost (l=ip) can be directly defined for the Gps-sTOL in the same way as for the Pfam gain
and loss probabilities.

For classification, we did not distinguish between phenotype or Pfam gains or losses, assuming that
the same set of protein families gained with a phenotype will also be lost with the phenotype. This
assumption simplified the classification problem. Specifically, we proceeded in the following way.

(i) We computed the joint probability x=ij of a Pfam family gain or loss on branch b= and the joint
probability yj of a phenotype gain or loss on branch b=:

xij �g� ij l� ij � �1 � g� ij� · l� ij � �1 � l� ij� · g� ij ∀ i � B� , ∀ j � P

�g� ij � �1 � g� ij� · l� ij

yi � g�ip � �1 � gip�� · l�ip ∀ i � B� .

(ii) Let xi be a vector representing the probabilities x=ij for all Pfam families j�P on branch bi. We
discarded any samples (xi, yi) that had a probability for a phenotype gain or loss (yi) above the reporting
threshold of GLOOME but below a threshold (t). We set the threshold t to 0.5.

This defines the matrix X and the vector y as follows:

(X, y) � �(xi,yi,) | yi � 0 � yi � t, i � B � �
By this means, we avoided presenting the classifier with samples corresponding to uncertain phenotype
gain or loss events and used only confident labels in the subsequent classifier training instead.

(iii) We inferred discrete phenotype labels y= by applying this threshold t to the joint probability yi for
a phenotype gain or loss to set up a well-defined classification problem with a binary target variable.
Whenever the probability for a phenotype to be gained or lost on a specific branch was larger than t, the
event was considered to have happened as follows:

y � � �1, if yi � t

0, otherwise
∀ i � B�

(iv) Finally, we formulated a joint binary classification problem for each target phenotype yp and the
corresponding gain and loss events y= the phyletic patterns XP, and the Pfam gain and loss events X,
which we solved again with a linear L1-regularized L2-loss SVM. We applied this procedure for all of the
GIDEON phenotypes under investigation.

Software requirements. Traitar can be run on a standard laptop with Linux/Unix. The run time (wall
clock time) for annotating and phenotyping a typical microbial genome with 3 Mbp is 9 min (3 min/Mbp)
on an Intel Core i5-2410M dual-core processor with 2.30 GHz, requiring only a few megabytes of memory.

Cross-validation. We employed cross-validation to assess the performance of the classifiers
individually for each phenotype. For a given phenotype, we divided the bacterial samples that were
annotated with that phenotype into 10 folds. Each fold was selected once for testing the model,
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which was trained on the remaining folds. The optimal regularization parameter C needed to be
determined independently in each step of the cross-validation; therefore, we employed a further
inner cross-validation by using the following range of values for the parameter C:
10�3, 10�2 · 0.7, 10�2 · 0.5, 10�2 · 0.2, 10�2 · 0.1,......,1. In other words, for each fold kept out for testing
in the outer cross-validation, we determined the value of the parameter C that gave the best
accuracy in an additional 10-fold cross-validation on the remaining folds. This value was then used
to train the SVM model in the current outer cross-validation step. Whenever we proceeded to a new
cross-validation fold, we recomputed the ancestral character state reconstruction of the phenotype
with only the training samples included (see ancestral protein family and phenotype gains and
losses above). This procedure is known as nested cross-validation (62).

The bacterial samples in the training folds imply a Gps-sTOL in each step of the inner and outer
cross-validation without the samples in the test fold. We used the same procedure as before to map the
Pfam gains and losses inferred previously on the Gps-sTOL onto the tree defined by the current
cross-validation training folds. Importantly, the test error is only estimated on the observed phenotype
labels rather than on the inferred phenotype gains and losses.

Evaluation metrics. We used evaluation metrics from multilabel classification theory for perfor-
mance evaluation (63). We determined the performance for the individual phenotype-positive and the
phenotype-negative classes based on the confusion matrix of true-positive (TP), true-negative (TN),
false-negative (FN), and false-positive (FP) samples from their binary classification equivalents by aver-
aging over all n phenotypes. We utilized two different accuracy measures to assess multiclass classifi-
cation performance (i.e., the accuracy pooled over all classification decisions and the macroaccuracy).
Macroaccuracy represents an average over the accuracy of the individual binary classification problems,
and we computed this from the macrorecall of the phenotype-positive and phenotype-negative classes
as follows:

MacrorecallPos � �	
i � 1

n TPi

TPi � FNi

 ⁄ n

MacrorecallNeg � �	
i � 1

n TNi

FPi � TNi

 ⁄ n

Macroaccuracy � �MacrorecallPos � MacrorecallNeg� ⁄ 2

However, if there are only few available labels for some phenotypes, the variance of the macroac-
curacy will be high and this measure cannot be reliably computed anymore; it cannot be computed
at all if no labels are available. The accuracy only assesses the overall classification performance
without consideration of the information about specific phenotypes. Large classes dominate small
classes (63).

RecallPos �
	i � 1

n
TPi	i � 1

n
TPi � 	i � 1

n
FNi

RecallNeg �
	i � 1

n
TNi	i � 1

n
TNi � 	i � 1

n
FPi

Accuracy � �RecallPos � RecallNeg� ⁄ 2

Majority feature selection. The weights in linear SVMs can be directly linked to features that are
relevant for the classification. We identified the most important protein families used as features from the
voting committee of SVMs consisting of the five most accurate models, which were also used to classify
new samples. If the majority, which is at least three predictors, included a positive value for a given
protein family, we added this feature to the list of important features. We further ranked these protein
family features by their correlation with the phenotype by using Pearson’s correlation coefficient (see
Table S6 in the supplemental material).

SUPPLEMENTAL MATERIAL
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