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Immunotherapy for skin malignancies has ushered in a new era for cancer treatments by

demonstrating unprecedented durable responses in the setting of metastatic Melanoma.

Consequently, checkpoint inhibitors are now the first-line treatment of metastatic

melanoma and widely used as adjuvant therapy for stage III disease. With the observation

that higher tumor mutational burden correlates with a better response, checkpoint

inhibitors are tested in other skin cancer types of known high tumor mutational burden

with promising results and recently became the first-ever FDA-approved treatment for

metastatic Merkel cell carcinoma. The emerging new standards-of-care will necessitate

more precise biomarkers and predictors for treatment response and immune-related

adverse events. Measurable immune-related mediators are currently under investigation

as factors that promote or block the response to cancer immunotherapy andmay provide

insights into the underlying immune response to the tumor. Cytokines and chemokines

are such mediators and are crucial for facilitating the recruitment and activation of

specific subsets of leukocytes within the microenvironment of skin cancers. The exact

mechanisms of how these meditators, both immunological and non-immunological,

operate in the tumor microenvironment is an area of active research, so to reliable

biomarkers of responses to cancer immunotherapy. Here, we will review and summarize

the expanding body of literature for immune-related biomarkers pertaining to Melanoma,

Basal cell carcinoma, Squamous cell carcinoma, and Merkel cell carcinoma, highlighting

clinically relevant checkpoint inhibitor therapy biomarker advancements.

Keywords: biomarkers, checkpoint inhibitors, cytokines, chemokines, melanoma, Squamous cell carcinoma,

Basal cell carcinoma, Merkel cell carcinoma

INTRODUCTION

In recent years, the field of cutaneous oncology has been invigorated by novel therapies that
modulate the immune system, and shifted away from conventional chemotherapy, radiation, and
targeted therapy. Immune checkpoint inhibitors (CPIs) are at the center of this new treatment
paradigm, providing unprecedented rates of response in Malignant Melanoma (MM), Basal cell
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carcinoma (BCC), Squamous cell carcinoma (SCC) and
metastatic Markel cell carcinoma (mMCC). The most impressive
clinical difference of immune-based therapies in comparison
with targeted therapy is the durability, while the majority of the
complete responder treated with CPIs still cancer free (>60%)
(1) vs. <30% at 4 years treated with dabrafenib plus trametinib,
a regimen for BRAF-mutated patients (2). However, despite
the promising results of CPI treatment in several cancers, only
a subset of patients show long-term response, and CPI-based
therapies can result in severe and potentially life-threating side
effects termed immune-related adverse events (irAEs). The
overall incidence rate of irAEs has been reported occur in up
to 90% of patients treated with anti-CTLA-4 (3) and 70% of
patients treated with PD-1 or PD-L1 antibodies (4, 5), with
serious toxicities (> grade 3) needing treatment discontinuation
for anti-PD-1 antibody therapy, anti-CTLA-4 antibody therapy,
and combination therapy at 21, 28, and 59%, respectively,
in large phase III trial analyses(6, 7). It is still unclear of the
mechanisms of irAEs and why some patients develop them, nor
why certain CPIs cause certain irAEs or their effect on patient
outcomes. Hence, predictive biomarkers that can aid in the
more precise delivery of immunotherapy to patients are urgently
needed. Thus, far, few biomarkers have been established that
can predict treatment success and positive clinical outcomes
for patients. Mutations in tumor cells are thought to be a
mechanistically relevant and an important initial event for
the generation of neoantigens that contribute to the initial
anti-tumor immune response (8–12). Tumor mutational burden
(TMB) became one of the first analytic tools to have a significant
correlation with response rate and prognostication (10, 11, 13).
Programmed death-ligand 1(PD-L1) is a transmembrane
protein, capable of being expressed by most tissues, that plays a
major role in suppressing the immune system via engagement
of programmed death protein 1 (PD-1) expressed on activated
T cells. The inflammatory cytokines produced following T cell
activation results in the expression of PD-L1 in the surrounding
tissue and promote selective immune tolerance. In the tumor
microenvironment, PD-L1 can be overexpressed by the tumor
cells and antigen-presenting cells (APCs), in turn blocking
the appropriate T cell immune responses required for tumor
rejection. PD-L1 expression is currently the only U.S. FDA
approved, commercially available predictive tool that helps
identify patients who are likely to benefit from therapy that
blocks the programmed death protein 1 (PD-1)/PD-L1 axis
pathway (14). Both biomarkers serve to estimate the statistical
likelihood of treatment success, but seldom are either used
in practice as the major clinical decision factor for which
to deploy CPIs for a patient, perhaps due to their relatively
low positive predictive value and undefined or sometimes
controversial correlation with overall survival (15, 16). As more
sophisticated means of patient immune monitoring, both on and
off therapy, are being developed, other potential biomarkers are
being investigated. In addition, it is worth noting that although a
number of reviews have addressed the importance of chemokines
and cytokines in skin cancer progression and metastasis (17–23),
fewer, if any, have addressed their potential as biomarkers for
treatment outcomes in skin malignances. Here, we offer a brief

overview of the current and emerging standard-of-care drugs
used in cancer immunotherapy for metastatic skin cancers, and
provide updates on immune-related biomarker advancements
pertaining to MM, BCC, SCC, and mMCC, including TMB,
PD-L1, novel immune activation/exhaustion markers, as well
as relevant cytokines/chemokines, highlighting research that
may be invaluable for the diagnostic, prognostic and predictive
information helpful in establishing better clinical outcome.

MECHANISM OF TUMOR IMMUNE
ESCAPE AND CLINICAL IMPACT OF
IMMUNE CHECKPOINTS IN METASTATIC
SKIN CANCER

CTLA-4 and PD-1 are both elements of a naturally evolved
network of peripheral tolerance responsible for maintaining
immune homeostasis and preventing overt autoimmunity. Early
studies in animal models showed that cancers exploit these
regulatory mechanisms, as checkpoint proteins are frequently
over expressed in the tumor microenvironment. CTLA-4 is
upregulated during T cell activation and eventually outcompetes
costimulatory molecule CD28 for CD86 and CD80 expressed on
antigen-presenting cells, halting further activation (24–26). CD86
and CD80 are known to be up-regulated at sites of inflammation
and are capable of being removed from the cell surface through
process known as trans-endocytosis by CTLA-4-expressing cells
as a method also of block CD28 co-stimulation (27). In addition,
CTLA-4 engagement enhances Treg suppressive function (28).
Anti-CTLA-4 antibodies are capable of blocking and preventing
this interaction, effectively shifting the balance back toward T
cell activation (3, 4, 29). Pre-clinical and clinical data show
CTLA-4 blockade results in the activation of both CD4 and
CD8 effector cells in favor of anti-tumor immunity. The effect
on the suppressive capacity of regulatory T cells in the tumor
microenvironment remains controversial and is an area of active
investigation (30–32). While the CTLA-4 pathway appears to
regulate anti-tumor immunity in the draining lymph nodes,
the PD-1/PD-L1 axis appear to take place in the local tumor
microenvironment (33–35), PD-1 is expressed highly on T cells
following repeated activation and chronic stimulation (36). As
opposed to the draining lymph nodes, the PD-1 ligands PD-L1
and PD-L2 are more widely expressed and upregulated at effector
sites of immune responses such as at inflamed tissues or the
tumor microenvironment itself where they function to suppress
T cell responses (36). The importance of interferon signaling
in regulating the expression of PD-L1 and PD-L2, suggests that
their expression patterns in advanced cancer and following CPI
treatment may reflect a mechanism of primary or acquired
resistance (34, 37). PD-1 and PD-L1 interaction inhibits T cell
proliferation, survival, and effector function including cytokine
release and tumor-targeted killing and can promote regulatory
T cells differentiation (36, 38–41). Blocking this interaction via
anti-PD-1 or anti-PD-L1 monoclonal antibodies restores the
T cell from its “exhausted” phenotype, improves local T cells
proliferation and effector function, and ultimately results in anti-
tumor immunity (34).
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The tumor microenvironment is a key location where
tumor cells and the host immune system interact. When a
cancer-associated antigen triggers an initial immune response,
a series of tumor microenvironment modifications occur and
impact the fate of antitumor immunity (42). The mutation-
derived neoantigens are presented by the patients’ major
histocompatibility complex (MHC) as “foreign” antigens,
recognized as such by the patients’ immune system. The priming
and activation of these cancer-reactive T cells is thought to occur
in draining lymph nodes, generating helper, and cytotoxic T cells
which traffic into the tumor, exert effector functions, and carry
with them the potential to reject the tumor (43–45). At this
phase, however, the pro-inflammatory environment generated
by the inciting immune response favors the upregulation of
reactive “shut-down” mechanisms that function to restore
immune homeostasis, likely evolved to prevent aberrant immune
reactions and the destruction of healthy host cells Figure 1.

These checkpoint and tolerance mechanisms often prevent
successful tumor eradication, but their presence and detection
in the tumor microenvironment also provide evidence that
an initial immune recognition has occurred and a battle
between immune cells and tumor has begun. This is the
scenario in which immunotherapy can help offset the balance
toward tumor killing. This principle is behind the development
of PD-L1 testing as a companion predictive biomarker for
PD-1/PD-L1 based CPI treatment and is currently the only
commercially available FDA approved predictive biomarker for
cancer immunotherapy (section Tumor mutational burden, PD-
L1, and other tumor microenvironment-associated biomarkers
for checkpoint inhibitor treatment; Table 1). PD-L1 expression
in pre-treatment tumor or immune cells is upregulated as a
consequence of proinflammatory cytokine interferon-gamma
(IFN-γ ) released from T cells activation, presumably by
tumor-associated antigens within the microenvironment (44).
The presence of this immune response is correlated with a
significantly higher chance that PD-1 based treatment will work
in metastatic melanoma and a variety of other tumor types
(46, 47).

For metastatic skin malignancies, the durable response
rates from checkpoint blockade are unprecedented, with PD-
1 inhibitor monotherapy approaching 40% and the hallmark
combination approach of dual CTLA-4 and PD-1 blockade
providing objective responses approaching 60% in patients
with metastatic melanoma, a cohort with a historically dismal
treatment response rate and prognosis (48). Furthermore, of the
patients that achieve a complete response, >90% remain disease
free even with monotherapy, with patients from the largest
KEYNOTE-01 (NCT01295827) study still not reaching median
treatment response duration at 5 years (49). Encouragingly, the
response rates in non-melanoma skin cancers follow a similar
trend, with avelamub (anti-PD-L1 antibody) now approved as
first-line therapy for metastatic MCC, and cemiplimab (anti-
PD-1 antibody) granted FDA priority review in 2018 for SCC,
with clinical trials are underway for BCC (NCT03132636,
NCT02690948). Despite these advancements, the observation
that durable objective response can occur in these difficult to
treat metastatic solid tumors with the blockade of checkpoint

pathways comes with the frustration that treatment responses
and their associated irAEs are highly variable and unpredictable.
Nevertheless, there are several irAES with reported correlations
to clinical response, notable examples include autoimmune
skin depigmentation (vitiligo) and Type 1 Diabetes (8, 50–
59). The precise mechanism of irAEs, whether they are driven
solely by the reduction of T cell exhaustion and aberrant
activation to autoantigens via CPI treatments or by changes in
the epigenetic transcriptional control in the effector T cells, is
currently unknown (52). As detailed below, research efforts are
rapidly underway to help uncover the determinants of anti-tumor
response for immunotherapy and their associated predictive
biomarkers.

OVERVIEW OF CURRENT AND EMERGING
STANDARD-OF-CARE TREATMENTS IN
METASTATIC SKIN CANCERS

Metastatic melanoma is associated with the greatest mortality
of all the skin malignancies and is often considered one of the
deadliest metastatic cancers. Prior to the US FDA approval of
the CPI ipilimumab in 2011, even with multi-modality systemic
therapy, including surgery, radiation, and chemotherapy, the
prognosis was grim, with an estimated 5-year survival of <20%
and median survival of <1 year (60, 61). Fortunately, the
standard-of-care has been shifting over the last decade, as a direct
consequence of the success of CPIs. Drugs that block the PD-
1 pathway (nivolumab, pembrolizumab, etc.) have been shown
to provide higher response rates with a comparable durability
of response and less toxicity than the cytotoxic T-lymphocyte
associated protein 4 (CTLA-4) blocker ipilimumab (49, 62–64).
Consequently, PD-1 blocking CPIs, with or without CTLA-4
blockade (ipilimumab) are now the preferred US FDA approved
first-line therapy (Table 2). Chemotherapy, surgery, radiation,
MEK inhibitors, and BRAF-mutation targeted therapy rarely
produce durable responses, as mentioned above (2). They are
options reserved for cases where rapid debulking and early
response is necessary, often due to cancer impingement on
vital structures (i.e., large brain metastasis), as they are able
to achieve a faster, albeit often temporary, regression of large
masses (NCCN guidelines version 3.2018). Older generation
immunotherapy drugs such as systemic high-dose interleukin-
2 (IL-2) or interferon alpha (IFNα) and bio-chemotherapy
combinations (decarbonize, cisplatin, vinblastine, IL-2, and
IFNα) are rarely recommended due to low efficacy and high
toxicity, even in the adjuvant or second-line settings. While we
await updated metastatic melanoma survival data in the age
of modern immunotherapy, CPIs are expected to significantly
improve and thus transform the standard-of-care and outlook for
patients with this devastating cancer.

BCC, SCC, and mMCC comprise the vast majority of non-
melanoma skin cancers. Like melanoma, at the early stage,
local and surgical therapies are often curative and systemic
therapies are only considered in settings where the tumor is
unresectable or has metastasized. When disseminated, these
cancers are comparable in mortality to metastatic melanoma
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FIGURE 1 | The “Physics” of Cancer Immune Response. (0) The steady state of the immune system at homeostasis is without effector cell activation and

inflammation. (1) At its inception, a cancer cell may be invisible to the immune system and not trigger any response. (2) As cancer cells gain mutations over time,

protein products foreign to the host are formed and these neoantigens increasingly gain recognition by the immune system. (3) “Potential energy” increases for the

immune system to act, and reaches a threshold maximum where an immune attack on the cancer cells begins. (4) Naturally evolved feedback mechanisms such as

Tregs, CTLA-4, and PD-1 attempt to restore the immune system back to homeostasis and halts ongoing immune response, however, unlike infectious elements that

have been cleared, the immune suppression is often premature as antigens generated from cancer cells persist with the growing tumor. This is the point of intervention

where agents such as checkpoint inhibitors are thought to exert its effect. (5) After successful blockade of immune checkpoints, the “kinetic energy” of the immune

system resumes and can reach its maximum and tumor can be fully eradicated.

TABLE 1 | Commercially available PD-L1 diagnostic tests.

IHC assay Assay developer Companion drug FDA indications Expression source *Scoring cutoff Antibody clone

Ventana

PD-L1 (SP142)

Ventana Atezolizumab

(anti-PD-L1)

Bladder Cancer,

NSCLC

FFPE of tumor

infiltrating immune cells

and tumor cells

≥10% Rabbit SP142

Ventana

PD-L1

(SP263)

Ventana Durvalumab

(anti-PD-L1)

Bladder Cancer FFPE of tumor cells ≥25% Rabbit SP263

PD-L1

IHC 22C3 pharmDx

Dako Pembrolizumab

(anti-PD1)

NSCLC, Gastric

Adenocarcinoma,

Cervical Cancer

FFPE of tumor cells

and stroma

≥ 1% Mouse 22C3

PD-L1

IHC 28-8

pharmDx

Dako Nivolumab

(anti-PD1)

NSCLC, Melanoma,

SCC of Head and

Neck, Bladder Cancer

FFPE of tumor cells ≥ 1% Rabbit 28-8

*Scoring cutoff varies by indication/study; unless otherwise indicated, reference value provided is based on sample non-small-cell lung cancer tumor cell IHC cutoffs.

and are notoriously difficult to treat. Similarly, the paradigm
for their systemic treatment has shifted away from conventional
cytotoxic modalities, which are often ineffective, to CPIs. In 2017,
the FDA accelerated approval avelumab, a PD-L1 blocker, as
the first-ever and only FDA approved drug for the aggressive
metastatic MCC highlighting this trend (Table 2). For metastatic

BCC and SCC, currently approved targeted therapies such as
hedgehog pathway inhibitors vismodegib and sonidegib for
BCC and epidermal growth factor receptor pathway inhibitors
(cetuxmimab, pantimumumab, gefitinib, erlotinib) for SCC,
although with proven response rates, face the challenge primary
or acquired resistance in their respective pathways and have
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TABLE 2 | Current status of immunotherapy drugs in metastatic skin cancer.

Cancer type Pre-immunotherapy drugs Immunotherapy drugs US FDA approved

Metastatic Melanoma Chemotherapy (i.e., Dacarbazine, Temozolomide,

nab-Paclitaxel, Carboplatin); Targeted therapy (i.e.,

Dabrafenib, Trametinib, Combimetinib, Vemurafenib,

Binimetinib)

High-dose Interleukin-2, Interferon-α (adjuvant only),

Ipilimumab (anti-CTLA-4), Nivolumab (anti-PD1),

Pembrolizumab (anti-PD1), Talimogene

Laherparevec (oncolytic virus)

All Approved

Merkel Cell Carcinoma Chemotherapy (i.e., Carboplatin, Etoposide,

Cyclophosphamide, Doxorubicin, Vincristine);

Targeted therapy (i.e., Pazopanib)

Avelumab (anti-PD-L1), Pembrolizumab, Nivolumab,

Ipilimumab, Talimogene Laherparevec

Avelumab (approved), Others (in

clinical trial)

Squamous Cell

Carcinoma

Chemotherapy (i.e., Cisplatin, Doxorubicin,

Bleomycin, Fluorouracil); Targeted therapy (i.e.,

Cetuximab, Panitumumab)

Cemiplimab (anti-PD1), Nivolumab, Pembrolizumab,

Talimogene Laherparevec

Cemiplimab (under FDA priority

review), Others (in clinical trial)

Basal Cell Carcinoma Chemotherapy (i.e., Cisplatin, Doxorubicin,

Paclitaxel); Targeted therapy (i.e., Sonidegib,

Vismodegib)

Ipilimumab, Nivolumab, Pembrolizumab,

Talimogene Laherparevec

All in clinical trial

response durations that are often short-lived (65–69). Due to
their shared feature of high tumor mutational burden (70–
72), PD-1 blockade has demonstrated significant numbers
of durable responses for SCC and BCC (73–76) and may
likely be considered as a new standard-of-care for these
indications.

As the standard-of-care for these different types of metastatic
skin cancers converge on CPIs, the treatment decision process
of BCC, SCC, and MCCs will likely share the clinical experience
gained from MM. Some major challenges remain in the clinical
deployment of CPIs for metastatic skin cancers: (1) The response
rate for PD-1 inhibitor monotherapy tops out at around 40%, and
while in a recent phase 3 trial combination therapy with PD-1
and CTLA-4 blockade found the response rate closer to 60%, it
carries a significantly more serious toxicity profile leading to the
frequent need for early treatment discontinuation (6, 48, 63, 77).
(2) The general unpredictability of responses/toxicities of CPIs
makes monitoring challenging and the determinants on how
to shift the balance toward more response and less toxicity are
largely unknown. (3) What happens if there is a relapse? Are you
able to re-start CPI treatment again and get a response? Does
resistance to one CPI treatment pathway infer resistance to all?
(4) When to stop treatment? The high cost associated with CPIs
makes it challenging to continue treatment indefinitely (78), and
despite some reports of prolonged efficacy after discontinuation,
the optimal time to stop treatment to ensure sustained complete
response is currently unknown (49). In practice, in responding
patients, many clinicians continue treatment until complete
response plus at minimum 1 year after, but there have been
no randomized clinical trials designed to address this important
question. These and other considerations necessitate the interest
and resources dedicated to better the mechanistic understanding
of how CPIs work as well as develop biomarkers for treatment
so that we can more rationally and efficiently deploy them.
Ideally, we can improve upon current overall response to CPIs
while lessening toxicity, but until then, predictive biomarkers
could help target PD-1 monotherapy to those who have a
higher probability of response and help identify those for
whom a more aggressive combination of immunotherapy is
needed.

TUMOR MUTATIONAL BURDEN, PD-L1,
AND OTHER TUMOR
MICROENVIRONMENT-ASSOCIATED
BIOMARKERS FOR CHECKPOINT
INHIBITOR TREATMENT

TMB is a mechanistically rational biomarker for CPI treatment

efficacy. As the skin is the first line of host defense against
environmental assaults, providing the physical barrier against the

mutagenic effects of UV radiation, invasion of viral pathogens,

and colonization of commensal bacteria, it stands to reason

that this organ system and cancers that arise from it should
accumulate higher antigenic mutational burden for T cell

detection (79, 80). Indeed, all metastatic skin cancers have
demonstrated significant responses to CPI treatment (9), and
TMB analysis has shown that melanoma, SCC, BCC, and MCC,
typically harbor mutational and antigenic loads at the higher
end of the mutational spectrum (8, 9, 70–72). Over time, the
environmental assaults on the skin accumulate mutations and
result in a “tug-of-war” between oncogenic driver mutations that
create cancerous lesions and immunogenic passenger mutations
that may then cause its regression from immune recognition (81–
83). In theory, high tumor mutational burden provides a source
of tumor-associated peptides that become neoantigens which
trigger the initial differential T cell recognition of cancer cells
from normal cells and provide the requisite anti-tumor immune
response that allows patients to respond to immune- based
treatments (79, 84). Clinical evidence is supportive for TMB as
a biomarker of checkpoint response, as there is a correlation with
the number of mutations and the chance such a mutation will
provide a productive immunogenic antigen. In addition, clinical
observations correlating cancers with high tumor mutational
load with a better checkpoint blockade response raised the initial
possibility of an association (10, 11). This hypothesis was further
validated after reports that DNA mismatch-repair deficiency
associated cancers (microsatellite instability-high) harbor some
of the highest known tumor mutational burdens. Patients with
this class of tumors have one of the highest response rates to PD-1
inhibitors (85, 86). These findings eventually led to accelerated
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FDA approval in 2017 for all cancers that are microsatellite
instability-high.

PD-L1 is currently a U.S. FDA approved biomarker for PD-1
based CPI therapies. In general, patients with higher PD-L1 levels
by immunohistochemistry have higher chances of responding
to PD-1 based CPI therapy (87, 88). However, the predictive
value for response is more accurate for patients with lung cancer
than for skin cancers such as melanoma (89, 90), as durable
responses to PD-1 CPI treatment has been observed in some
melanoma patients with low expression of PD-L1. In terms of
correlation to overall survival, interestingly, the majority of prior
reports (before the wide usage of immunotherapy) suggest that
high expression of PD-L1 correlates with shorter survival, even
in settings of a high tumor mutational burden (16, 91–94). The
paradoxical relationship between lower historical overall survival
and higher PD-1 therapy response rate can be reconciled with
the explanation that tumors with high tumor mutational burden
generally leads to higher local expression of PD-L1, because
more T cells sensitive to the tumor are likely to be present
to be activated. On the other hand, highly mutated tumors
would also have a higher potential to evolve driver mutations or
pathways for adaptive resistance (81, 95–97) (Figure 1), therefore
bypassing mechanisms of tumor rejection. Thus, while the value
of PD-L1 as a biomarker for predicting better PD-1 therapy
response is established, its use as a predictor for overall survival
remains controversial and is to be determined in the era of
immunotherapy. Neither the use of TMB nor PD-L1 is perfect,
and the use of the combination of TMB and PD-L1 to identify
likely responders to CPIs may be costly. Until more effective
biomarkers are available, one clinical strategy for their use in skin
cancers that has demonstrated some success is to utilize TMB
and PD-L1 together as negative instead of positive predictors
of response- when a low TMB and PD-L1 immune signature is
present, this indicates that stronger immunotherapy such as PD-1
and CTLA-4 combination therapy should be utilized (98).

As more sophisticated means of patient immune monitoring
both on and off therapy are being developed, other potential
biomarkers are being investigated. For example, various other
T cell activation and exhaustion markers including inducible
T cell costimulatory (ICOS), 4-1BB (CD137), PD-1, CTLA-4,
lymphocyte activation gene 3 (LAG-3), T cell immunoglobulin
mucin-3 (Tim-3) and CD39, whether in circulation or within
the tumor microenvironment, are now being correlated with
response rates (46, 99–104) These, and other immune activation
related biomarkers are biological surrogate markers that
collectively signify an active immune response within the
tumor microenvironment for which drugs such as CPIs can
potentially take advantage, and may add to the predictive
value and reliability of tumor mutational burden and PD-
L1 expression (Figure 1). For biomarkers that are not directly
associated with immune activation, serum lactate dehydrogenase
level assessments have traditionally been made in the clinic
as a surrogate indicator of disease progression and poor
prognosis in melanoma, based on the rationale that lactate
dehydrogenase is released upon cell damage and death associated
with elevated tumor burden. Low baseline levels further
demonstrate a favorable response correlation with CPI usage

(105). Additionally, several novel non-immune activation related
biomarkers of CPI response have been proposed, and include
total tumor volume (101, 106), the presence of liver metastasis
(98, 107), MHC protein expression (108), and the composition
of the gut microbiome (109–112). Total tumor volume and liver
metastasis assessment offer the benefit of cost-effectiveness and
easier accessibility in clinical use, as they can be readily identified
with standard-of-care imaging. Both high tumor volume and
liver metastasis have independently been reported to result in
unfavorable alterations in systemic T cell profiles (98, 101),
suggesting yet-to-be discovered mechanisms of tumor immune
regulation. Gut microbiota composition of certain bacterial
strains and overall microbiome diversity appear to correlate
with response rates (110–112), but larger and more geographical
and demographically diverse studies are likely needed before
conclusions can be finalized to influence clinical practice.
Finally, the accumulation of the variety of rationally developed
biomarkers may eventually contribute to patient-individualized
“immunoscoringm,” a promising precision-medicine strategy
that may be immunotherapy-focused and disease-agnostic,
and effectively allow for constant updates and dynamic
improvements in the fast-paced predictive biomarker field (113).

CYTOKINES AND CHEMOKINES AS
PROGNOSTIC INDICATORS FOR SKIN
CANCER

Cytokines and chemokines influence a complex network of
regulation regarding immune cell function and trafficking.
They can be divided readily into pro-inflammatory, anti-
inflammatory, mitogenic, and chemotactic subgroups and are
capable of contributing to particular functions dependent
on their microenvironment. In addition to these properties,
cytokines and chemokines and their receptors play a part in
biological functions relevant to oncogenesis, including tumor
cell proliferation, protease induction, and angiogenesis. Thus,
cytokines and chemokines can facilitate immune-mediated
tumor rejection or promote tumor progression as well as
metastasis. These dichotomous associations and their underlying
mechanism have become an area of active research not only
for biomarker development but also for novel therapeutic
targeting. Assessment of cytokine and chemokine profiles within
the tumor microenvironment or in circulation, may greatly
increase the resolution of our understanding of the status of the
immune response to the tumor. The ability to tease apart the
delicate balance of effector vs. regulatory elements in the tumor
microenvironment will be essential to patient therapeutic design
targeting a variety of critical aspects of the immune axis that
could be dysregulated in cancer disease progression.

A number of chemokines and cytokines have been
investigated for their roles in skin malignancies. Pro-
inflammatory cytokines including TNF-α, Interleukin-16
(IL-16), IL-17, IL-21, IL-22, and IL-23 have all been associated
with tumorigenesis and an inflammatory environment.
Cytokines like IFN-γ and IL-12 are cytotoxic T cell related
cytokines associated withmounting a cytolytic immune response.
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Their anti-tumor response is well-characterized in limiting skin
cancer development (114–117). Immune-modulating cytokines
including IL-10 and TGF-β are reported to oppose anti-tumor
response since they are made predominantly by T regulatory cells
to suppress cytotoxic responses against the skin malignancies
(114, 118–120). However, like all cytokines, their roles are
context-specific. For example despite circulating IL-10 levels
have been associated with poor patient prognosis in a number of
cancer settings, yet IL-10 expressing CD8T cells confer a positive
prognosis in patients with lung cancer (121–123). Chemokines,
similarly, have long been associated with the recruitment of
cells into the skin and can be sub-grouped as homeostatic or
pro-inflammatory chemokines. Homeostatic chemokines are
expressed constitutively and play key roles in normal leukocyte
development and trafficking, pro-inflammatory chemokines are
inducible and are responsible for trafficking to inflammation
associated events (124). The chemokine receptor CXCR3 is
expressed on inflammatory infiltrates and mediates attraction
to the IFN-γ -inducible chemokines CXCL9 (or MIG), CXCL10
(or IP-10), and CXCL11(I-TAC) into the skin (125–129).
These pathways of recruitment are also capable of regulating
immune cell differentiation and activation, favoring Th1 and
IFN-γ -production, respectively. The IFN-γ /CXCL9, CXCL-10,
CXCL-11/CXCR3 axis can be a double-edged sword in cancer,
promoting an anti-tumor effect but also increasing the capability
of cancer cell proliferation, angiogenesis and metastasis (125).
CXCL1 (melanoma growth-stimulatory activity/growth-
regulatory protein α) and CXCL8 (IL-8) have important roles
in inflammation, angiogenesis, tumorigenesis, and wound
healing (130). However, these pathways can also be hijacked in
cancer, promoting inflammation, inducing angiogenesis, tumor
growth, and metastasis (131). For melanoma the expression of
chemokine receptors CCR10, CXCR4, and CCR7 have been
attributed to tumor escape and preference for metastasis (132). A
number of reviews have addressed the importance of chemokines
in skin cancer growth and metastasis (17–22, 133). Fewer, if any,
have addressed their potential as biomarkers for prognosis or
treatment outcomes.

CYTOKINES AND CHEMOKINES AS
BIOMARKERS FOR CHECKPOINT
INHIBITOR TREATMENT IN MALIGNANT
SKIN CANCERS

Although limited, a number of groups that have studied cytokines
and chemokines as biomarkers for predicting clinical outcomes
to CPI therapies for skin malignancies. The prototypical T cell
growth factor, IL-2, and the major anti-inflammatory cytokine,
IL-10, have yielded surprisingly little correlation with actual
clinical response rates, possibly due to the transient and locally
expressed nature of these cytokines (88, 134). Available research,
with many focused on patients treated with CTLA-4 inhibitors
that were approved much earlier, with their main findings and
predicted clinical outcomes are summarized in Table 3 and
discussed below.

TGF-β and IFN-γ
Tarhini et al. (135) evaluated circulating serum levels of
cytokines, chemokines and a number of growth factors in
response to CTLA-4 therapy (ipilimumab) finding a strong
correlation between baseline levels of IL-17 and irAEs, and
the combination of TGF-β and IL-10 baseline levels were
predictive of relapse against therapy (135). Interesting, TGF-β
has also been proposed as a serum marker of response to PD-1
(nivolumab) therapy in a cohort of MM patients by Nonomura
et al. (120), with significantly increased pre-treatment levels,
but not post-treatment levels, reported between responders
and non-responders (120). The group found increased levels
of newly characterized CD4 population, Th9 cells, that are
generated in the presence of TGF-β and IL-4, suggesting that the
blockade of PD-1/PD-L1 axis promoted Th9 cell differentiation,
which in turn suppressed melanoma progression and increases
cytotoxic activities of CD8T cells (120). Although conflicting,
the presence of TGF-β is reflective of a reduced immune
response and therefore more likely to represent resistance to
CPI treatments (152–154). In melanoma TGF-β production is
positively correlated relative to disease progression, acting as
a tumor promoter rather than a suppressor, and negatively
regulating the activity of T cells by blocking IL-2 production
(119).

The importance of an immune-active tumor
microenvironment in clinical responses for CPI treatment
has been shown in a number of melanoma patient cohorts. Early
work performed Herbst et al. (140) to understanding predictive
correlates of response to PD-1 therapy (MPD3280A) examined
blood-based biomarkers. However, despite increases in IL-18,
CXCL11 (ITAC), and IFN-γ found during the initial stages
of treatment, there was no correlation to patients’ long-term
response and outcomes (140). Examining tumor tissue gene
expression, however, they did find a number of genes associated
with enhanced T-effector cell activity in pre-treatment responsive
tumors compared to non-responsive tumors, including IFN-γ ,
IDO-1, and CXCL9 (140). In 2012, Ji et al. reported a phase II
clinical trial in which 45 melanoma patients were treated with
CTLA-4 (ipilimumab), and treatment was found to induce IFN-
γ -inducible genes IDO1, GBP1, and class II MHC molecules and
a number of Th1-associated marker genes IFN-γ , CCL4, CCL5,
CXCL9, CXCL10, andCXCL11 in patients with a clinical response
(141). The importance of IFN-γ gene signatures for response
has been published similarly by Ribas et al. (146) in a test cohort
of 19 melanoma patients treated with PD-1. Comparing the
gene signature of responders vs. non-responders revealed a
number of top-ranking genes that were strongly associated
with IFN-γ signaling and correlation with IFN-γ expression.
Their preliminary IFN-γ gene signature included IFNG, STAT1,
CCR5, CXCL9, CXCL10, CXCL11, IDO1, PRF1, GZMA, and
MHCII HLA-DRA and an expanded immune signature of genes
related to cytolytic activity (e.g., granzyme A/B/K and PRF1),
cytokines and chemokines (e.g., CXCR6, CXCL9, CCL5, and
CCR5), T cell markers (e.g., CD3D, CD3E, CD2, IL2RG), NK
cell activity (e.g., NKG &, HLA-E), antigen presentation (e.g.,
CIITA, HLA-DRA) and other immunomodulatory factors (e.g.,
LAG3, IDO1, and SLAMF6) were able to differentiate between
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TABLE 3 | Chemokine & Cytokine biomarkers investigated for CPI treatment outcomes.

Treatment Biomarker

category

Biomarker Associated outcome Study summary References

MELANOMA

CTLA-4 Blood soluble

immune factor

IL-17, TGF-β & IL-10 Baseline levels predict

toxicity and relapse

33 patients; blood and

serum; baseline and 6

weeks following treatment

(135)

CTLA-4 Blood soluble

immune factor

IL-6 High levels above media

associated with treatment

failure

40 patients; blood and

serum taken at baseline and

following up to 4 treatments

(136)

CTLA-4 Blood soluble

immune factor

CXCL11 & sMICA High baseline levels

associated with poor overall

survival to treatment

137 patients; blood and

serum; independently

validated in different cohort;

baseline levels

(137)

CTLA-4 Blood soluble

immune factor

IL-8 Decreases in serum levels in

responders vs. increased

levels in non-responders

8 patients; blood and

serum; same response

correlated with iBRAF

treatment responses

(138)

PD-1 Blood soluble

immune factor

IL-8 Early changes (decrease)

were strongly associated

with response

29 patients; blood and

serum; independently

validated in cohort of 12

melanoma and 19 NSLCL

patients

(139)

PD-1 Blood soluble

immune factor

IFN- γ , IL-6 & IL-10 Higher baseline levels were

found in patients with

objective tumor response

compared to those with

progression

37 patient; blood and

serum; baseline and day 43

(134)

PD-1 Blood soluble

immune factor

IL-9 & TGF-β Increase frequency of IL-9

producing CD4T cells and

increased pre-treatment

TGF-β serum levels in

responders

46 patients; 18 responders

and 28 non-responders; pre

and post treatment (3

infusions)

(120)

PD-1 Blood soluble

immune factor and

Tumor tissue gene

expression

IFN- γ , IL-18, CXCL11

& IL-6

Serum changes were

observed. Increased IFN- γ

genes in pretreatment tumor

biopsies associated with

response

Blood and serum samples

taken before and after

treatments

(140)

CTLA-4 Tumor tissue gene

expression

IFN-γ , CCL4, CCL5,

CXCL9, CXCL10,

CXCL11, IDO1, GBP1

and class II MHC

molecules

Higher baseline levels of

immune-related genes

predicted clinical response

45 patients; tumor biopsy;

pre and post treatment

(141)

CTLA-4 Tumor

Whole-exome

sequencing

IFNGR1, IFNGR2,

JAK2, IRF1, IFIT1,

IFIT2, MTAP, miR3,

SOCA1 & PIAS4

Tumors that are resistant to

treatment contain genomic

defects in the IFN- γ

pathway genes

12 non-responders and 4

responders; Tumor samples

(142)

CTLA-4

followed by

PD-1

Tumor tissue gene

expression

GZMA, GZMB, PRF1,

HLA-DQA1,

HLA.DRB1, IFNG,

STAT1, CCL5,

CXCL9,−10, - 11,

ICAM1-5 & VCAM-1

Active immune signature in

early tumor samples were

highly predictive of response

5 responding patients and 6

non-responders following

PD-1 treatment; tumor

samples

(143)

PD-1 Tumor Whole

exome sequencing

JAK1 & JAK2 Tumors that are resistant to

treatment contain genomic

defects in the IFN- γ

pathway genes

4 patients; initially had an

objective response to

treatments but went on to

have disease progression

(144)

PD-1 Tumor tissue gene

expression

IFNG, STAT1, CCR5,

CXCL9, CXCL10,

CXCL11, IDO1, PRF1,

GZMA, MHCII

HLA-DRA, CXCR6,

Immune-related signature

using RNA from baseline

tumor samples which

correlated with clinical

benefit

19 patients; tumor biopsies

prior to treatment; validated

in 62 melanoma patients

(145–147)

(Continued)
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TABLE 3 | Continued

Treatment Biomarker

category

Biomarker Associated outcome Study summary References

TIGIT, CD27, CD274

(PD-L1), PDCD1LG2

(PD-L2), LAG3, NKG 7,

PSMB10, CMKLR1,

CD8A, IDO1, CCL5,

CXCL9, HLA.DQA1,

CD276, HLA.DRB1,

STAT1 & HLA.E

PD-1 Tumor tissue gene

expression

CD3D, CD3E, CD3G,

CD247, ZAP70, CD2,

CD28, ICOS, IL12Rb1,

CXCR3, STAT4, PRF1,

IFNG, CD8A, CD8B,

GZMM & FLTSLG

Immune-related signature

from baseline tumor

samples where associated

with non-progressive

disease and progression

free survival

25 patients; tumor biopsies

prior to treatment

(148)

PD-1 Tumor tissue gene

expression

IFNG, IDO1, CXCL9,

CXCL10 & CXCL11

Strong positive correlation

between IFN-γ and

IFN-inducible genes is

associated with response

and prolonged overall

survival

21 melanoma patients;

tumor biopsies prior to

treatment; 17 NSCLC

patients

(149)

SCC

PD-1 Tumor tissue gene

expression

CXCL9, CXCL10,

IDO1, IFNG, HLA-DRA

& STAT1

IFN- γ signature may be

associated with clinical

response

56 patients; tumor RNA

extracted from FFPE slides

(150, 151)

PD-1 Tumor tissue gene

expression

CXCR6, TIGIT, CD27,

CD274 (PD-L1),

PDCD1LG2 (PD-L2),

LAG3, NKG 7,

PSMB10, CMKLR1,

CD8A, IDO1, CCL5,

CXCL9, HLA.DQA1,

CD276, HLA.DRB1,

STAT1 & HLA.E

Immune-related signature

using RNA from baseline

tumor samples which

correlated with clinical

benefit

Validated in 43 HNSCC

patients.

(145)

PD-1 Tumor tissue gene

expression

CD3D, CD3E, CD3G,

CD247, ZAP70, CD2,

CD28, ICOS, IL12Rb1,

CXCR3, STAT4, PRF1,

IFNG, CD8A, CD8B,

GZMM & FLTSLG

Immune-related signature

using RNA from baseline

tumor samples where

associated with

non-progressive disease

and progression free survival

5 patients; tumor biopsies

prior to treatment

(148)

HNSCC, Head and Neck SCC; NSCLC, Non-small cell lung cancer; FFPE, Formalin-Fixed Paraffin-Embedded

objective responses and non-responders. Additionally, the group
was able to further refine their IFN-γ and expanded immune
gene signatures within another cohort of 62 melanoma patients
(145–147), in which the baseline immune-related tumor samples
correlated with clinical benefit from treatment. The importance
of activated Th1 and cytotoxic T cells in mediating CPI mediated
tumor responses irrespective of the tissue environment was
also used to test and further refine the gene signature, with
the group finding these signatures capable of associating
with treatment response to pembrolizumab in HNSCC and
gastric cancer. Furthermore, the final T cell-inflamed gene
expression profile consisting of 18 genes, (CXCR6, TIGIT,
CD27, CD274 (PD-L1), PDCD1LG2 (PD-L2), LAG3, NKG 7,
PSMB10, CMKLR1, CD8A, IDO1, CCL5, CXCL9, HLA.DQA1,
CD276, HLA.DRB1, STAT1, and HLA.E), was tested against 9
tumor types (KEYNOTE-012; bladder, gastric, HNSCC, and

triple-negative breast cancer, KEYNOTE-028; anal canal, biliary,
colorectal, esophageal, and ovarian cancer) with most of the
gene signature positive association with response. The data
present by Ayers et al. (145) highlights the importance of the
T cell-inflamed microenvironment common to patients who
respond to anti-PD-1 CPI treatment regardless of the tumor type
or tissue type and also proposes a difference between resistance
mechanisms between non-responding patients that lack T cell
inflammation and those who have infiltration but lack clinical
response (145).

Chen et al. (143) followed a unique set of melanoma
patients that were initially treated with CTLA-4 followed by
PD-1 at progression, identifying a unique immune signature in
responders not evident in non-responding patients significant
after 2 to 3 cycles of treatment (143). Within the 411 significantly
differentially expressed genes of responders where a number of
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cytolytic makers (i.e., GZMA, GZMB, and PRF1), HLAmolecules
(e.g., HLA-DQA1HLA.DRB1) IFN-γ pathway genes (e.g., IFNG,
STAT1), chemokines (e.g., CCL5, CXCL9,−10, and 11) and select
adhesion molecules (i.e., ICAM1-5 and VCAM-1). The dataset
also allow for the comparison of pretreatment samples and after
treatment fold changes clearly differentiating responders from
non-responders, regardless of the pretreatment with CTLA-4.
These finding clearly support the assessment of early immune
responses can be highly predictive of overall response to therapy.
However, it should also be noted that these on treatment changes
maybe associated solely with treatment and not associated with a
mechanism of response. In additional Chen et al. also highlight
an angiogenic phenotype in non-responding patients (decreased
VEGFA), downregulation of antigen processing and presentation
(HLA genes) and defects in the interferon signaling pathways, all
of which are consistent with a number of previously published
works (142, 143, 155–159).

Prat et al. (148) evaluated pre- and post-PD-1
(pembrolizumab or nivolumab) treated tumor samples from a
range of cancers, including melanoma patients. Twenty three
immune related genes or signatures where identified to be
associated with non-progressive disease and progression free
survival, these included genes associated with the formation
of the TCR complex (e.g., CD3D, CD3E, CD3G, CD247, and
ZAP70), co-stimulatory factors (e.g., CD2, CD28, and ICOS)
and genes involved in differentiation (e.g., IL12Rb1, CXCR3,
and STAT4). In addition to apoptosis pathway genes involving
granzyme A, B and perforin 1, T cell receptor signaling (e.g.,
CD8A, CD8B, and IFN-γ ), cell adhesion molecules (e.g., CD4,
CD86, and integrinβ2), a number of toll-like receptors (TLR1,4,
7, and 8) and checkpoint molecules PD-1, PDL-2, and LAG3.
These signatures were found across all the different cancer types
assessed and 12 signatures tracking immune cells including
CD8T cell associated genes PRF1, CD8A, CD8B, GZMM,
FLTSLG, CD4T cell activated genes IL26 and IL17A as well
as NK cell and B cell genes and PDL-1, PD1, and CTLA4 and
IFN-signaling pathway activation (148). These findings are in
support of the Ribbas et al. (146), Ayer et al. (147), and Ayer
et al. (145) T cell and IFN activation predicting response to the
PD-1/PD-L1 treatment across multiple tumor types and tumors
with strong pre-treatment immunity.

Gao et al. (142) used whole-exome sequencing of tumor
tissues to show that tumors that are non-responsive to CTLA-
4 (ipilimumab) therapy have defects in IFN-γ pathway via
significantly higher somatic mutations including copy-number
variations and single-nucleotide variants in IFN-γ signaling
genes including IFNGR1, IFNGR2, JAK2, IRF1, IFIT1, IFIT2,
MTAP, and miR31 and amplification of IFN-γ suppressor genes
(SOCA1 and PIAS4) compared to responders (142). Similarly,
Zaretsky et al. (144) published a similar finding in melanoma
patients treated with anti-PD-1 antibody (Pembrolizumab)
finding that loss of function mutations within the IFN receptor
associated Janus kinase 1 (JAK1) or Janus kinase 2 (JAK2) lead
to lack of response to IFN-γ leading to acquired resistance
to PD-1 blockade (144). However, both cohorts of patients
were small, 16 and 4, respectively, and require validation in
larger cohorts of patients and treatments. Similar observations

have been previously published by Tumeh et al. (45) in a MM
patient cohort treated with anti-PD-1 (pembrolizumab), with
baseline and post-dosing biopsies for phospho-STAT1 (pSTAT1),
an immediate downstream effector upon IFN-γ binding (45).
Proposing that the PD-L1 tumor expression can be linked to
interferon production within the tumor microenvironment via
T-cell recognition, patients that were found to have a response
to therapy had significantly higher expression of pSTAT1 at
baseline and during treatment compared to progression group
(45). Highlighting again the importance of a pre-existing tumor
immune response in patient outcomes.

Recently, a retrospective study conducted in melanoma
samples found that significantly longer progression-free survival
and overall survival were observed in patients with pre-treatment
high IFN-γ expression (149). High pre-treatment expression
of IFN-γ-inducible genes (e.g., IDO1, CXCL9, CXCL10, and
CXCL11 among others) was associated with response and
prolonged overall survival for anti-PD-1 (pembrolizumab)
treatment of melanoma (149). In a cohort melanoma patients
treated with anti-CTLA-4 (ipilimumab; NCT00094653) Koguchi
et al. (137) found elevated pre-treatment serum levels of CXCL11
and a soluble MHC class I polypeptide-related chain (sMICA)
to be strong predictors of poor survival benefit, this finding
was confirmed in an independent cohort of melanoma patients
treated with ipilimumab (137). This finding is in contrast with
tumor tissue samples that favor CXCL11 as a biomarker of T
cell infiltration and therefore a favorable prognostic marker, as
mentioned above. CXCL11 also has distinct immunoregulatory
functions through the higher affinity to its receptor CXCR3
(125). CXCL11 is also capable of binding to CXCR7, more
commonly associated with tumor growth, making its functional
role controversial (125, 137, 149). In addition, the contrast in
findings between protein in the serum to mRNA levels in the
tissue microenvironment suggests that parallel analysis of both
serum and tissue, and protein and mRNA, maybe required
further clarify these differences (137).

Despite strong preclinical support of checkpoint inhibitor
for the treatment of non-melanoma skin cancers, little is still
known about blocking the PD-1/PD-L1 and CTLA-4 pathways
in patients. A number of single case studies have been published
on the use CPI in the treatment of these cancers, however due
to patient numbers investigation into biomarkers for predicting
treatment response has been limited. Chow et al. (150) were
the first to clinically assess the use of PD-1 and PD-L1 CPIs in
head and neck SCC. Keynote-012 stratified patients to assess the
response of PD-1 (pembrolizumab) on PD-L1-positive head and
neck SCC patients (150, 151). Using the identified gene signature
(CXCL9, CXCL10, IDO1, IFNG, HLA-DRA, and STAT1) that
was identified in the melanoma cohort and validated in a
head and neck SCC cohort (146, 147), all six of the IFN-γ -
related genes were statistically higher in responding patients
compared to non-responders. However, it should be noted
that the study only included PD-L1 positive patients. Further
work is needed to elucidate the interaction with PD-L1 and an
IFN-γ gene signature (151). Despite these initial findings, little
has been published regarding biomarker discovery, outside of
HPV status and PD-L1 expression (150, 160–163). Tumor tissue
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gene expression of similar IFN-γ gene signatures identified in
independent melanoma cohorts has also been correlated with
clinical benefit from anti-PD-1 treatment in a small number of
head and neck SCC patient cohorts (145, 148).

The use of CPI therapies for the treatment of BCC are
currently under clinical trial. A few promising case studies
have been published recently (73, 76, 164) with treated
efforts based predominately on the success of CPIs in similar
tumors with high mutational burdens, and from the finding
that ∼90% of BCCs stain positively for PD-L1 expression
(165). Recently, Lipson et al. (75) correlated the expression
of PD-L1 in the tumor microenvironment with predictability
for objective responses in PD-1-pathway-directed therapies
(75). It has also been established that BCCs undergoing
spontaneous regression (presumably immune-mediated) contain
elevated levels of Th1 cytokines (e.g., IFN-γ ) and infiltrating
activated T cells (166, 167). Additionally, treatments that
have focused on interferon therapy have shown efficacy in
BCC (168). MCC is a rare but aggressive skin cancer,
with several published studies finding expressed PD-L1 in
the tumor and also PD-1 expression on tumor-infiltrating
lymphocytes (159, 169–172). These observations provide a strong
rationale for assessing CPIs on patients with advanced disease
that has few therapies to extend survival. Current clinical
trial by Nghiem and colleagues treated patients with PD-1
(pembrolizumab), response to treatment did not correlate with
PD-L1 expression, so too in both virus negative and positive
cancers (172).

Although strongly biased by melanoma patient data, there
is strong evidence supporting the importance of an active
immune microenvironment for successful CPI therapy outcomes
in metastatic skin cancer. IFN-γ production by activated T
cells is capable of multitude of downstream affects, including
activation of dendritic cells and macrophages (like, STAT1 and
CMKLR1), which in turn produce their own chemokines and
cytokines (like, CCL5, CXCL9,-10,-11) to further recruit CD8T
cells. Upregulation of co-stimulatory molecules (CD27) and
effector molecules (IFN-γ , perforin, and granzymes) further
contribute to the immune response. IFN-γ induces upregulation
of HLA molecules and other pathway associated with antigen
processing and presenting. IFN-γ also drives upregulation of
PD-L1 and PD-L2 on the surface of macrophages, DCs and
tumor cells. Other checkpoint molecules like IDO1, TIGIT
and LAG3 are similarly associated with T cell activation
and IFN-γ signaling to help restrain antitumor responses
(145). The use of gene expression signature highlights the
complexity within the immune response associated with CPI
treatment and response and suggests the importance of multiple
cell types within the tumor microenvironment. These gene
expression profiles provide an interesting insight into the
immune responses to CPI therapy and highlight a number of
possible targets that can be manipulated for better therapeutic
outcomes.

IL-6 and IL-8
IL-6 is a pleiotropic cytokine that is associated similarly with
disease pathogenesis and metastasis and has already been

published as a serum marker for melanoma patients. IL-6 has
also been linked to IL-10 production within the melanoma tumor
microenvironment. For head and neck SCC, BCC, and mMCC
high IL-6 levels are also associated with a poor prognosis and
treatment resistance (173). The expression of PD-L1 has also
been linked to IL-6 and IL-10 cytokines, which may explain their
role in tumor progression and as a marker of non-response.
Bjoern et al. (136) found MM patient cohort following CTLA-
4 treatment (ipilimumab) who had lower serum baseline levels
and lower levels at the 4th dose of pro-inflammatory cytokine IL-
6 responded better to therapy (136). This observation of serum
IL-6 as a poor prognostic biomarker for MM immunotherapy
responses has been previously suggested in IL-2-based and bio-
chemotherapy therapies (174, 175). Pre-treatment serum levels
of IL-6, IFN-γ , and IL-10 were found to be significantly higher
in patients with objective tumor responses in a cohort of phase
2 advanced melanoma patients treated with PD-1 (nivolumab)
in comparison to non-responders with progressive disease (134).
The increased cytokine levels were also positively correlated
with each other, suggesting both a spontaneous activation and
suppressive response at the same time (134). In addition,
the group found increases in CXCL9 and CXCL10 between
pre-treatment and post-treatment (Day 43) serum samples in
response to treatment, postulated to be associated with IFN-γ
production by activated T cells in the blood (134).

IL-8 serum levels have been proposed to reflect tumor burden
and decreased levels in a small cohort of MM patients during
treatment with CTLA-4 (ipilimumab) correlated with patient
benefit from treatment (138). Sanmamed et al. found that serum
IL-8 levels are a consequence of tumor burden in a number of
cancer types including melanoma and could be monitored to
predict response to BRAF inhibitors and correlated to overall
survival (138). In addition, the authors recently published that
changes in serum IL-8 levels reflect tumor response to PD-1
treatment (nivolumab or pembrolizumab) in MM patients in
both identification cohort and independent validation cohort
(139). Decreases in IL-8 serum levels were found at patient’s
best response, additionally, they were able to distinguish pseudo-
progression (decreased) and non-responders (increased) and also
monitor responses via IL-8 serum fluxes (139). IL-8 has been
similarly implicated as a biomarker for head and neck SCC
patients receiving chemoradiation with or without novel hypoxic
cytotoxins (176). A recently published case report describing
a recurrent head and neck SCC patient on PD-1 (nivolumab)
treatment found increased levels of IL-8 and IL-6 following
treatment (from pre-treatment levels) and decreased levels of
IL-10 and CXC3C1, the patient was found to have progressive
disease (177), this cytokine and chemokine profile is constant
previously published work from a cohort of melanoma and non-
small-cell lung cancer patients (139). The role of IL-8 and its
receptor CXCR2 in tumor development and progression has
been well-documented in a wide range cancer cells including
melanoma, SCC, BCC, and MCC (18, 146, 178–182). IL-8, and
its receptor CXCR2, are poised to be examined as potential
biomarkers in both BCC and mMCC treated with CPIs. The
induction of pro-inflammatory cytokines like IL-6 and IL-
8, appear strong indicators of unsuccessful CPI therapy and
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highlight the need for biomarkers for patients who will not
respond to treatment as well as for those who will.

PREDICTIVE BIOMARKERS FOR
IMMUNE-RELATED ADVERSE EVENTS

As stated above, checkpoint inhibitor therapy can be associated
with severe or even life-threatening irAEs. Generally, irAEs
occur within weeks to 3 months after initiation of treatment but
have been documented to occur months after discontinuation
of treatment. Fatigue is the most common irAE reported
following treatment with either anti-CTLA-4 and anti-PD1/anti-
PDL-1 antibodies and can range up to 50% (183). For PD-1
based therapy, the next most common (10–20%) are grade 1-
2 skin rash, transaminitis, arthralgia, colitis, low-grade fevers,
thyroiditis, and other endocrinopathies. For CTLA-4 based
therapies, the next most common (20–30%) are grade 1–2
colitis, anemia, transaminitis, skin rash, arthralgia, and low-grade
fevers(184). Grade 3–4 irAEs are rare for PD-1 based therapies
but are more common in CTLA-4 based or combination
CTLA-4 plus PD-1 therapies, and are mostly commonly colitis,
transaminitis, and endocrinopathies. In addition, there are also
a number of rare (<1%) immune-related adverse events that
have also been reported following CPI treatment including
Type I Diabetes and systemic lupus erythematosus (50, 185,
186). The causes and mechanisms of these various irAEs are
an area of active investigation. We need to have predictive
biomarkers for therapy response to maximize benefit as well
as predictive biomarkers for irAEs to minimize risk, however,
biomarkers for irAEs have been less vigorously investigated
than biomarkers that predict therapy response. Nevertheless,
as more and more immunotherapy are being deployed, some
predictive immune signals are beginning to surface. For example,
increased overall white blood cell count and eosinophil count
with decreased relative lymphocyte count have been associated
with higher grade irAEs (187, 188). Increased T-cell repertoire
diversity is associated with more irAEs in patients treated with
ipilimumab (189, 190). A post combination anti-CTLA-4 and
anti-PD-1 therapy reduction in total peripheral B cells with an
enrichment of CD21lo PD-1+ memory B cells correlated with
irAE development (191). Increases in circulating autoantibodies
against self-antigens and mRNA gene expression signatures
of immune activation have been correlated with impending
irAEs (192–195). Finally, as mentioned, IL-17 levels may be
associated with gastrointestinal toxicities (135). As most studies
are small and not repeated in large-scale clinical trials, more
work is needed before effective predictors of irAEs are clinically
available.

NOVEL TECHNOLOGIES AND ASSAYS
UNDER INVESTIGATION

Biomarker assays that require the smallest amounts of accessible
samples, for instance, blood and other bodily fluids from
patient clinical samples, will inherently be less invasive and
more likely to be implemented in a clinical setting. Blood

biomarkers such as circulating tumor DNA may allow for
more meaningfully analysis of patients tumor response with
smaller blood volumes in comparison to approaches capturing
circulating tumor cells and have been recently reviewed (196,
197). These approaches have the potential to overcome the tumor
heterogeneity and sample quantity procurement limitations of
tumor biopsies. A number of biotech companies including
Grail, Freenome, and Guardant Health are utilizing this
approach to create assay platforms that improve early cancer
detection and immunotherapy responses for better outcomes. In
addition, recent advancements in imaging are allowing for non-
invasive evaluation of the tumor immune-microenvironment
and have been recently well-reviewed (198). Using PET scan
in conjunction with antibodies or antibody fragments labeled
with PET-based radionuclides, scanners have the potential to
detect T-cell subsets and effector molecules within tumors or
lymphoid tissues and non-invasively monitor changes within
the tumor microenvironment throughout the immunotherapy
treatment process. Technologies such as this may help clinicians
to better distinguish patients with true disease progression,
which requires the timely transition to alternative treatments,
from pseudoprogression, a phenomenon characterized by the
transient increase in tumor size followed by a decrease, where
immunotherapy should be continued.

DISCUSSION

Immunotherapies such as CPIs are demonstrating
unprecedented response rates across all major types of
metastatic skin cancers. Unlike traditional cancer treatment
modalities, the durability of response seen in CPIs enabled
clinician and patients alike to consider the possibility of cures
in a historically highly resistant and fatal group of cancers.
Building upon that success, efforts are underway to further
improve response rates and more precisely deliver treatment
to patients who are most likely to respond while monitoring
treatment outcomes in a timely fashion. These efforts will likely
serve to ameliorate the problem of high cost and unpredictability
of cancer immunotherapy. This review attempts to summarize
the tools currently available for clinical practice as well as
technologies in emerging areas of discovery. As combination
immunotherapy and associated biomarkers gain sophistication,
efforts to prioritize the tools available and to standardize
practice methods will require dedicated large studies. It is
established that immune impairment is common among cancer
patients, with the entity of metastatic skin cancer every so
close to finally achieving improved clinical outcomes for its
patients using immunotherapy, the mechanistic understanding
of the tumor microenvironment and lessons learned from
improving this field will hopefully benefit other disease entities
as well.

AUTHOR CONTRIBUTIONS

JBr and JL contributed to the writing, figure design, and
literature review. AD, JW, and JBl provided expert opinion

Frontiers in Medicine | www.frontiersin.org 12 December 2018 | Volume 5 | Article 351

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Bridge et al. Biomarkers, Cytokines, and Chemokines in Skin Cancer

and critical revision of the review. All authors contributed
to manuscript revision, read and approved the submitted
version.

FUNDING

The research was also supported by the Parker Institute for
Cancer Immunotherapy and the Sean N. Parker Autoimmune
Research Laboratory. JBr funded by Jeffrey G. Klein Family

Fellowship in diabetes award. JL funded by A.P. Giannini
Foundation Fellowship Award and Parker Institute for Cancer
Immunotherapy (A130504). AD research grant from Genentech,
Novartis, Pfizer, Merck, BMS, Incyte; advisory board for Roche,
Novartis, OncoSec. This work was supported by Cancer Council
Queensland project grants APP1069748 and APP1128447,
National Health and Medical Research Council project grant
APP1099999, and a Perpetual Trustees Fellowship to JW. JBl is
supported by grants awarded by the Parker Institute for Cancer
Immunotherapy (A130504 & A132273).

REFERENCES

1. Long GV, Schachter J, Ribas A, Arance AM, Grob J-J, Mortier L, et al.

4-year survival and outcomes after cessation of pembrolizumab (pembro)

after 2-years in patients (pts) with ipilimumab (ipi)-naive advanced

melanoma in KEYNOTE-006. J Clin Oncol. (2018) 36(15 Suppl.):9503.

doi: 10.1200/JCO.2018.36.15_suppl.9503

2. Long GV, Eroglu Z, Infante J, Patel S, Daud A, Johnson DB, et al. Long-

term outcomes in patients with BRAF V600-mutant metastatic melanoma

who received dabrafenib combined with trametinib. J Clin Oncol. 36:667–73

(2018) doi: 10.1200/JCO.2017.74.1025

3. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al.

Improved survival with ipilimumab in patients with metastatic melanoma.N

Engl J Med. (2010) 363:711–23. doi: 10.1056/NEJMoa1003466

4. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott

DF, et al. Safety, activity, and immune correlates of anti–PD-1 antibody

in cancer. N Engl J Med. (2012) 366:2443–54. doi: 10.1056/NEJMoa

1200690

5. Brahmer JR, Tykodi SS, Chow LQM, Hwu W-J, Topalian SL, Hwu P, et al.

Safety and activity of anti–PD-L1 Antibody in patients with advanced cancer.

N Engl J Med. (2012) 366:2455–65. doi: 10.1056/NEJMoa1200694

6. Schadendorf D,Wolchok JD, Stephen Hodi F, Chiarion-Sileni V, Gonzalez R,

Rutkowski P, et al. Efficacy and safety outcomes in patients with advanced

melanoma who discontinued treatment with nivolumab and ipilimumab

because of adverse events: A pooled analysis of randomized phase II and III

trials. J Clin Oncol. (2017) 35:3807–14. doi: 10.1200/JCO.2017.73.2289

7. Shoushtari AN, Friedman CF, Navid-Azarbaijani P, Postow MA, Callahan

MK, Momtaz P, et al. Measuring toxic effects and time to treatment failure

for nivolumab plus ipilimumab in melanoma. JAMAOncol. (2018) 4:98–101.

doi: 10.1001/jamaoncol.2017.2391

8. Goodman AM, Kato S, Bazhenova L, Patel SP, Frampton GM, Miller V,

et al. Tumor mutational burden as an independent predictor of response to

immunotherapy in diverse cancers. Mol Cancer Ther. (2017) 16:2598–609.

doi: 10.1158/1535-7163.MCT-17-0386

9. Jaffee E, Hopkins A, Yarchoan M. Tumor mutational burden and

response rate to PD-1 Inhibition. N Engl J Med. (2017) 377:2500–1.

doi: 10.1056/NEJMc1713444

10. Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, et al.

Genetic Basis for Clinical Response to CTLA-4 Blockade in Melanoma. N

Engl J Med. (2014) 371:2189–99. doi: 10.1056/NEJMoa1406498

11. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al.

Mutational landscape determines sensitivity to PD-1 blockade in non-small

cell lung cancer. Science (2015) 348:124–8. doi: 10.1126/science.aaa1348

12. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and genetic

properties of tumors associated with local immune cytolytic activity. Cell

(2015) 160:48–61. doi: 10.1016/j.cell.2014.12.033

13. Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L,

et al. Genomic correlates of response to CTLA-4 blockade in metastatic

melanoma. Science (2015) 350:207–11. doi: 10.1126/science.aad0095

14. Hersom M, Jørgensen JT. Companion and complementary diagnostics–

focus on PD-L1 expression assays for PD-1/PD-L1 checkpoint inhibitors

in NSCLC. Ther Drug Monit. (2017) 40:1. doi: 10.1097/FTD.00000000000

00460

15. Mathew M, Safyan RA, Shu CA. PD-L1 as a biomarker in NSCLC:

challenges and future directions. Ann Transl Med. (2017) 5:375.

doi: 10.21037/atm.2017.08.04

16. Wang Q, Liu F, Liu L. Prognostic significance of PD-L1 in solid

tumor: an updated meta-analysis. Medicine (2017) 96:e6369.

doi: 10.1097/MD.0000000000006369

17. Sarvaiya PJ, Guo D, Ulasov I, Gabikian P, Lesniak MS. Chemokines

in tumor progression and metastasis. Oncotarget (2013) 4:2171–85.

doi: 10.18632/oncotarget.1426

18. Singh R, Lilladr JW, Singh S. Chemokines: key players in cancer progression

and metastasis. Front Biosci. (2011) 3:1569–82.

19. Chow MT, Luster AD. Chemokines in cancer. Cancer Immunol Res. (2014)

2:1125–31. doi: 10.1158/2326-6066.CIR-14-0160

20. Payne AS, Cornelius LA. The role of chemokines in melanoma

tumor growth and metastasis. J Invest Dermatol. (2002) 118:915–22.

doi: 10.1046/j.1523-1747.2002.01725.x

21. Richmond A, Yang J, Su Y. The good and the bad of chemokines/chemokine

receptors in melanoma. Pigment Cell Melanoma Res. (2009) 22:175–86.

doi: 10.1111/j.1755-148X.2009.00554.x

22. Balkwill F. Cancer and the chemokine network.Nat Rev Cancer (2004) 4:540.

doi: 10.1038/nrc1388

23. Triozzi PL, Fernandez AP. The role of the immune response in merkel cell

carcinoma. Cancers (2013) 5:234–54. doi: 10.3390/cancers5010234

24. Walunas TL, Bakker CY, Bluestone JA. CTLA-4 ligation blocks CD28-

dependent T cell activation. J Exp Med. (1996) 183:2541–50.

25. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity

by CTLA-4 Blockade. Science (1996) 271:1734–36.

26. Walunas TL, Lenschow DJ, Bakker CY, Linsley PS, Freeman GJ, Green JM,

et al. CTLA-4 can function as a negative regulator of T cell activation.

Immunity (1994) 1:405–13. doi: 10.1016/1074-7613(94)90071-X

27. Qureshi OS, Zheng Y, Nakamura K, Attridge K, Manzotti C, Schmidt EM,

et al. Trans-endocytosis of CD80 and CD86: A molecular basis for the

cell-extrinsic function of CTLA-4. Science (80- ). (2011)

28. Lenschow DJ, Walunas TL, Bluestone JA. CD28/B7 System of

T cell costimulation. Annu Rev Immunol. (1996) 14:233–58.

doi: 10.1146/annurev.immunol.14.1.233

29. Pardoll DM. The blockade of immune checkpoints in cancer

immunotherapy. Nat Rev Cancer (2012) 12:252. doi: 10.1038/nrc3239

30. Maker AV, Attia P, Rosenberg SA. Analysis of the cellular

mechanism of antitumor responses and autoimmunity in patients

treated with CTLA-4 blockade. J Immunol. (2005) 175:7746–54.

doi: 10.4049/jimmunol.175.11.7746

31. Selby MJ, Engelhardt JJ, Quigley M, Henning KA, Chen T, Srinivasan M,

et al. Anti-CTLA-4 Antibodies of IgG2a isotype enhance antitumor activity

through reduction of intratumoral regulatory T cells. Cancer Immunol Res.

(2013) 1:32–42. doi: 10.1158/2326-6066.CIR-13-0013

32. Arce Vargas F, Furness AJS, Litchfield K, Joshi K, Rosenthal R, Ghorani E,

et al. Fc effector function contributes to the activity of human anti-CTLA-4

antibodies. Cancer Cell. (2018) 33:649–63.e4. doi: 10.1016/j.ccell.2018.02.010

33. Seymour L, Bogaerts J, Perrone A, Ford R, Schwartz LH, Mandrekar

S, et al. iRECIST: guidelines for response criteria for use in trials

testing immunotherapeutics. Lancet Oncol. (2017) 18:e143–52.

doi: 10.1016/S1470-2045(17)30074-8

Frontiers in Medicine | www.frontiersin.org 13 December 2018 | Volume 5 | Article 351

https://doi.org/10.1200/JCO.2018.36.15_suppl.9503
https://doi.org/10.1200/JCO.2017.74.1025
https://doi.org/10.1056/NEJMoa1003466
https://doi.org/10.1056/NEJMoa1200690
https://doi.org/10.1056/NEJMoa1200694
https://doi.org/10.1200/JCO.2017.73.2289
https://doi.org/10.1001/jamaoncol.2017.2391
https://doi.org/10.1158/1535-7163.MCT-17-0386
https://doi.org/10.1056/NEJMc1713444
https://doi.org/10.1056/NEJMoa1406498
https://doi.org/10.1126/science.aaa1348
https://doi.org/10.1016/j.cell.2014.12.033
https://doi.org/10.1126/science.aad0095
https://doi.org/10.1097/FTD.0000000000000460
https://doi.org/10.21037/atm.2017.08.04
https://doi.org/10.1097/MD.0000000000006369
https://doi.org/10.18632/oncotarget.1426
https://doi.org/10.1158/2326-6066.CIR-14-0160
https://doi.org/10.1046/j.1523-1747.2002.01725.x
https://doi.org/10.1111/j.1755-148X.2009.00554.x
https://doi.org/10.1038/nrc1388
https://doi.org/10.3390/cancers5010234
https://doi.org/10.1016/1074-7613(94)90071-X
https://doi.org/10.1146/annurev.immunol.14.1.233
https://doi.org/10.1038/nrc3239
https://doi.org/10.4049/jimmunol.175.11.7746
https://doi.org/10.1158/2326-6066.CIR-13-0013
https://doi.org/10.1016/j.ccell.2018.02.010
https://doi.org/10.1016/S1470-2045(17)30074-8
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Bridge et al. Biomarkers, Cytokines, and Chemokines in Skin Cancer

34. Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade.

Science (2018) 359:1350–5. doi: 10.1126/science.aar4060.

35. Buchbinder EI, Desai A. CTLA-4 and PD-1 pathways similarities, differences,

and implications of their inhibition. Am J Clin Oncol. (2016) 39:98–106.

doi: 10.1097/COC.0000000000000239.

36. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, et al.

Engagement of the Pd-1 immunoinhibitory receptor by a novel B7 family

member leads to negative regulation of lymphocyte activation. J Exp Med.

(2000) 192:1027–34. doi: 10.1084/jem.192.7.1027

37. Garcia-Diaz A, Shin DS, Moreno BH, Saco J, Escuin-Ordinas H, Rodriguez

GA, et al. Interferon receptor signaling pathways regulating PD-L1 and

PD-L2 expression. Cell Rep. (2017) doi: 10.1016/j.celrep.2017.04.031

38. Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-

like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM

Motif-carrying immunoreceptor. Immunity (1999) 11:141–51.

39. Okazaki T, Honjo T. PD-1 and PD-1 ligands: from discovery to clinical

application. Int Immunol. (2007) 19:813–24. doi: 10.1093/intimm/dxm057

40. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands

in tolerance and immunity. Annu Rev Immunol. (2008) 26:677–704.

doi: 10.1146/annurev.immunol.26.021607.090331

41. Keir ME, Liang SC, Guleria I, Latchman YE, Qipo A, Albacker LA, et al.

Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med.

(2006) 203:883–95. doi: 10.1084/jem.20051776

42. Chen DS. Mellman oncology meets immunology: the cancer-immunity

cycle. Immunity (2013) 39:1–10. doi: 10.1016/j.immuni.2013.07.012

43. Spitzer MH, Gherardini PF, Fragiadakis GK, Bhattacharya N, Yuan RT,

Hotson AN, et al. IMMUNOLOGY. An interactive reference framework

for modeling a dynamic immune system. Science (2015) 349:1259425.

doi: 10.1126/science.1259425

44. Blank CU, Haanen JB, Ribas A, Schumacher TN. The "cancer immunogram”.

Science (2016) 352:658–60. doi: 10.1126/science.aaf2834

45. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJM, Robert L, et al.

PD-1 blockade induces responses by inhibiting adaptive immune resistance.

Nature (2014) 515:568. doi: 10.1038/nature13954

46. Daud AI, Wolchok JD, Robert C, Hwu WJ, Weber JS, Ribas A,

et al. Programmed death-ligand 1 expression and response to the anti-

programmed death 1 antibody pembrolizumab in melanoma. J Clin Oncol.

(2016) 34:4102–9. doi: 10.1200/JCO.2016.67.2477

47. Khunger M, Hernandez AV., Pasupuleti V, Rakshit S, Pennell NA, Stevenson

J, et al. Programmed Cell Death 1 (PD-1) Ligand (PD-L1) Expression in

Solid Tumors As a Predictive Biomarker of Benefit From PD-1/PD-L1 Axis

Inhibitors: a systematic review and meta-analysis. JCO Precis Oncol. (2017)

1:1–15. doi: 10.1200/PO.16.00030

48. Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob J-

J, Cowey CL, et al. Overall survival with combined nivolumab and

ipilimumab in advanced melanoma. N Engl J Med. (2017) 377:1345–56.

doi: 10.1056/NEJMoa1709684

49. Robert C, Ribas A, Hamid O, Daud A, Wolchok JD, Joshua AM, et al.

Durable complete response after discontinuation of pembrolizumab in

patients with metastatic melanoma. J Clin Oncol. (2018) 36:1668-1674.

doi: 10.1200/JCO.2017.75.6270

50. Stamatouli AM, Quandt Z, Perdigoto AL, Clark PL, Kluger H, Weiss SA,

et al. Collateral damage: insulin-dependent diabetes induced with checkpoint

inhibitors. Diabetes (2018) 67:1471–80. doi: 10.2337/dbi18-0002

51. Byrne EH, Fisher DE. Immune and molecular correlates in melanoma

treated with immune checkpoint blockade. Cancer (2017) 123:2143–53.

doi: 10.1002/cncr.30444

52. June CH, Warshauer JT, Bluestone JA. Is autoimmunity the Achilles’

heel of cancer immunotherapy? Nature Med. (2017) 23:540–7.

doi: 10.1038/nm.4321

53. Clotman K, Janssens K, Specenier P, Weets I, De Block CEM. Programmed

cell death-1 (PD-1) inhibitor induced type 1 diabetes mellitus: mini-review.

J Clin Endocrinol Metab. (2018) 103:3144–54. doi: 10.1210/jc.2018-00728

54. Yang JC, Hughes M, Kammula U, Royal R, Sherry RM, Topalian SL, et al.

Ipilimumab (Anti-CTLA4 Antibody) causes regression of metastatic renal

cell cancer associated with enteritis and hypophysitis. J Immunother (2007)

30:825–30. doi: 10.1097/CJI.0b013e318156e47e

55. Hua C, Boussemart L, Mateus C, Routier E, Boutros C, Cazenave H, et al.

Association of vitiligo with tumor response in patients with metastatic

melanoma treated with pembrolizumab. JAMA Dermatol. (2016) 152:45–51.

doi: 10.1001/jamadermatol.2015.2707

56. Boasberg PD, Hoon DSB, Piro LD, Martin MA, Fujimoto A, Kristedja

TS, et al. Enhanced survival associated with vitiligo expression during

maintenance biotherapy for metastatic melanoma. J Invest Dermatol. (2006)

126:2658–63. doi: 10.1038/sj.jid.5700545

57. Gogas H, Ioannovich J, Dafni U, Stavropoulou-Giokas C, Frangia K,

Tsoutsos D, et al. Prognostic Significance of Autoimmunity during

Treatment of Melanoma with interferon. N Engl J Med. (2006) 354:709–18.

doi: 10.1007/s00281-011-0247-y

58. Rosenberg SA, White DE. Vitiligo in patients with melanoma: normal tissue

antigens can be targets for cancer immunotherapy. J Immunother. (1996)

19:81–4 . doi: 10.1097/00002371-199601000-00009

59. Sibaud V, David I, Lamant L, Resseguier S, Radut R, Attal J, et al. Acute

skin reaction suggestive of pembrolizumab-induced radiosensitization.

Melanoma Res. (2015) 25:555–8. doi: 10.1097/CMR.0000000000000191

60. Balch CM, Gershenwald JE, Soong SJ, Thompson JF, Atkins MB, Byrd DR,

et al. Final version of 2009 AJCC melanoma staging and classification. J Clin

Oncol. (2009) 27:6199–206. doi: 10.1200/JCO.2009.23.4799

61. Garbe C, Eigentler TK, Keilholz U, Hauschild A, Kirkwood JM. Systematic

review of medical treatment in melanoma: current status and future

prospects. Oncologis (2011) 16:5–24. doi: 10.1634/theoncologist.2010-0190

62. Hamanishi J, Mandai M, Ikeda T, Minami M, Kawaguchi A, Murayama

T, et al. Safety and antitumor activity of anti-PD-1 antibody, nivolumab,

in patients with platinum-resistant ovarian cancer. J Clin Oncol. (2015)

33:4015–22. doi: 10.1200/JCO.2015.62.3397

63. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD,

et al. Combined nivolumab and ipilimumab or monotherapy in untreated

melanoma. N Engl J Med. (2015) 373:23–34. doi: 10.1056/NEJMoa15

04030

64. Postow MA, Callahan MK, Wolchok JD. Immune checkpoint

blockade in cancer therapy. J Clin Oncol. (2015) 33:1974–82.

doi: 10.1200/JCO.2014.59.4358

65. Chang ALS, Oro AE. Initial assessment of tumor regrowth after vismodegib

in advanced basal cell carcinoma. Arch Dermatol. (2012) 148:1324–5.

doi: 10.1001/archdermatol.2012.2354

66. Atwood SX, Sarin KY,Whitson RJ, Li JR, KimG, RezaeeM, et al. Smoothened

variants explain the majority of drug resistance in basal cell carcinoma.

Cancer Cell. (2015) 27:342–53. doi: 10.1016/j.ccell.2015.02.002

67. Maubec E, Petrow P, Scheer-Senyarich I, Duvillard P, Lacroix L, Gelly J,

et al. Phase II study of cetuximab as first-line single-drug therapy in patients

with unresectable squamous cell carcinoma of the skin. J Clin Oncol. (2011)

29:3419–26. doi: 10.1200/JCO.2010.34.1735

68. William WN, Feng L, Ferrarotto R, Ginsberg L, Kies M, Lippman S, et al.

Gefitinib for patients with incurable cutaneous squamous cell carcinoma:

a single-arm phase II clinical trial. J Am Acad Dermatol. (2017) 77:1110–3.

doi: 10.1016/j.jaad.2017.07.048

69. Gold KA, Kies MS, William WN, Johnson FM, Lee JJ, Glisson BS. Erlotinib

in the treatment of recurrent or metastatic cutaneous squamous cell

carcinoma: a single-arm phase 2 clinical trial. Cancer (2018) 124:2169–73.

doi: 10.1002/cncr.31346

70. Pickering CR, Zhou JH, Lee JJ, Drummond JA, Peng SA, Saade RE, et al.

Mutational landscape of aggressive cutaneous squamous cell carcinoma. Clin

Cancer Res. (2014) 20:6582–93. doi: 10.1158/1078-0432.CCR-14-1768

71. Jayaraman SS, Rayhan DJ, Hazany S, Kolodney MS. Mutational landscape of

basal cell carcinomas by whole-exome sequencing. J Invest Dermatol. (2014)

134:213–20. doi: 10.1038/jid.2013.276

72. Goodman AM, Kato S, Cohen PR, Stephens PJ, Daniels GA, Kurzrock R.

Genomic landscape of advanced basal cell carcinoma : Implications for

precision treatment with targeted and immune therapies. (2018) 7:e1404217.

doi: 10.1080/2162402X.2017.1404217

73. Falchook GS, Leidner R, Stankevich E, Piening B, Bifulco C, Lowy I, et al.

Responses of metastatic basal cell and cutaneous squamous cell carcinomas

to anti-PD1 monoclonal antibody REGN2810. J Immunother Cancer (2016)

4:70. doi: 10.1186/s40425-016-0176-3

Frontiers in Medicine | www.frontiersin.org 14 December 2018 | Volume 5 | Article 351

https://doi.org/10.1126/science.aar4060.
https://doi.org/10.1097/COC.0000000000000239.
https://doi.org/10.1084/jem.192.7.1027
https://doi.org/10.1016/j.celrep.2017.04.031
https://doi.org/10.1093/intimm/dxm057
https://doi.org/10.1146/annurev.immunol.26.021607.090331
https://doi.org/10.1084/jem.20051776
https://doi.org/10.1016/j.immuni.2013.07.012
https://doi.org/10.1126/science.1259425
https://doi.org/10.1126/science.aaf2834
https://doi.org/10.1038/nature13954
https://doi.org/10.1200/JCO.2016.67.2477
https://doi.org/10.1200/PO.16.00030
https://doi.org/10.1056/NEJMoa1709684
https://doi.org/10.1200/JCO.2017.75.6270
https://doi.org/10.2337/dbi18-0002
https://doi.org/10.1002/cncr.30444
https://doi.org/10.1038/nm.4321
https://doi.org/10.1210/jc.2018-00728
https://doi.org/10.1097/CJI.0b013e318156e47e
https://doi.org/10.1001/jamadermatol.2015.2707
https://doi.org/10.1038/sj.jid.5700545
https://doi.org/10.1007/s00281-011-0247-y
https://doi.org/10.1097/00002371-199601000-00009
https://doi.org/10.1097/CMR.0000000000000191
https://doi.org/10.1200/JCO.2009.23.4799
https://doi.org/10.1634/theoncologist.2010-0190
https://doi.org/10.1200/JCO.2015.62.3397
https://doi.org/10.1056/NEJMoa1504030
https://doi.org/10.1200/JCO.2014.59.4358
https://doi.org/10.1001/archdermatol.2012.2354
https://doi.org/10.1016/j.ccell.2015.02.002
https://doi.org/10.1200/JCO.2010.34.1735
https://doi.org/10.1016/j.jaad.2017.07.048
https://doi.org/10.1002/cncr.31346
https://doi.org/10.1158/1078-0432.CCR-14-1768
https://doi.org/10.1038/jid.2013.276
https://doi.org/10.1080/2162402X.2017.1404217
https://doi.org/10.1186/s40425-016-0176-3
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Bridge et al. Biomarkers, Cytokines, and Chemokines in Skin Cancer

74. Migden MR, Rischin D, Schmults CD, Guminski A, Hauschild A, Lewis KD,

et al. PD-1 blockade with cemiplimab in advanced cutaneous squamous-cell

carcinoma. N Engl J Med. (2018) 379:341–51. doi: 10.1056/NEJMoa1805131

75. Lipson EJ, Lilo MT, Ogurtsova A, Esandrio J, Xu H, Brothers P,

et al. Basal cell carcinoma: PD-L1/PD-1 checkpoint expression and

tumor regression after PD-1 blockade. J Immunother Cancer (2017) 5:23.

doi: 10.1186/s40425-017-0228-3

76. Ikeda S, Goodman AM, Cohen PR, Jensen TJ, Ellison CK, Frampton

G, et al. Metastatic basal cell carcinoma with amplification of PD-L1:

exceptional response to anti-PD1 therapy. NPJ Genomic Med. (2016)

1:16037. doi: 10.1038/npjgenmed.2016.37

77. Callahan MK, Kluger H, Postow MA, Segal NH, Lesokhin A, Atkins MB,

et al. Nivolumab plus ipilimumab in patients with advanced melanoma:

Updated survival, response, and safety data in a phase i dose-escalation study.

J Clin Oncol. (2018). 391–8. doi: 10.1200/JCO.2017.72.2850

78. Andrews A. Treating with checkpoint inhibitors-Figure $1 million per

patient. Am Heal drug Benefits (2015) 8:9.

79. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SAJR, Behjati S, Biankin

AV, et al. Signatures of mutational processes in human cancer. Nature (2013)

500:415–21. doi: 10.1038/nature12477

80. Pfeifer GP, You Y-H, Besaratinia A. Mutations induced by ultraviolet light.

Mutat Res. (2005) 571:19–31. doi: 10.1016/j.mrfmmm.2004.06.057

81. McFarland CD, Mirny LA, Korolev KS. Tug-of-war between driver and

passenger mutations in cancer and other adaptive processes. Proc Natl Acad

Sci USA. (2014) 111:15138–43. doi: 10.1073/pnas.1404341111

82. McFarland CD, Korolev KS, Kryukov GV, Sunyaev SR, Mirny LA. Impact of

deleterious passenger mutations on cancer progression. Proc Natl Acad Sci

USA. (2013) 110:2910–5. doi: 10.1073/pnas.1213968110

83. Vesely MD, Schreiber RD. Cancer immunoediting: Antigens, mechanisms,

and implications to cancer immunotherapy. Ann N Y Acad Sci. (2013)

1284:1–5. doi: 10.1111/nyas.12105

84. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy.

Front Immunol. 8:1848. doi: 10.3389/fimmu.2017.01848

85. OvermanMJ, Lonardi S,WongKYM, LenzHJ, Gelsomino F, AgliettaM, et al.

Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch

repair-deficient/microsatellite instability-high metastatic colorectal cancer. J

Clin Oncol. (2018) 36:773–9. doi: 10.1200/JCO.2017.76.9901

86. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-

1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. (2015)

372:2509–20. doi: 10.1056/NEJMoa1500596

87. Yi M, Jiao D, Xu H, Liu Q, Zhao W, Han X, et al. Biomarkers for

predicting efficacy of PD-1/PD-L1 inhibitors. Mol Cancer (2018) 17:129.

doi: 10.1186/s12943-018-0864-3

88. Buder-Bakhaya K, Hassel JC. Biomarkers for clinical benefit of immune

checkpoint inhibitor treatment-A review from the melanoma perspective

and beyond. Front Immunol. (2018) 9:1474. doi: 10.3389/fimmu.2018.01474

89. Carbognin L, Pilotto S, Milella M, Vaccaro V, Brunelli M, Caliò A,

et al. Differential activity of nivolumab, pembrolizumab and MPDL3280A

according to the tumor expression of programmed death-ligand-1 (PD-L1):

sensitivity analysis of trials in melanoma, lung and genitourinary cancers.

PLoS ONE (2015) 10:1–16. doi: 10.1371/journal.pone.0130142

90. Hirsch FR, McElhinny A, Stanforth D, Ranger-Moore J, Jansson M,

Kulangara K, et al. PD-L1 immunohistochemistry assays for lung cancer:

results from phase 1 of the blueprint PD-L1 IHC assay comparison project. J

Thorac Oncol. (2017) 12:208–22. doi: 10.1016/j.jtho.2016.11.2228

91. Xue S, Song G, Yu J. The prognostic significance of PD-L1 expression

in patients with glioma: a meta-analysis. Sci Rep. (2017) 7:1–8.

doi: 10.1038/s41598-017-04023-x

92. Gao Q, Wang XY, Qiu SJ, Yamato I, Sho M, Nakajima Y, et al.

Overexpression of PD-L1 significantly associates with tumor aggressiveness

and postoperative recurrence in human hepatocellular carcinoma. Clin

Cancer Res. (2009) 15:971–9. doi: 10.1158/1078-0432.CCR-08-1608

93. Mu CY, Huang JA, Chen Y, Chen C, Zhang XG. High expression of PD-L1

in lung cancer may contribute to poor prognosis and tumor cells immune

escape through suppressing tumor infiltrating dendritic cells maturation.

Med Oncol. (2011) 28:682–8. doi: 10.1007/s12032-010-9515-2

94. Osmani L, Askin F, Gabrielson E, Li QK. Current WHO guidelines and

the critical role of immunohistochemical markers in the subclassification

of non-small cell lung carcinoma (NSCLC): Moving from targeted

therapy to immunotherapy. Semin Cancer Biol. (2017) 52(Pt 1):103–9.

doi: 10.1016/j.semcancer.2017.11.019

95. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and

acquired resistance to cancer immunotherapy. Cell (2017) 168:707–23.

doi: 10.1016/j.cell.2017.01.017

96. Ribas A. Adaptive immune resistance: how cancer protects from immune

attack. Cancer Discov. (2015) 5:915–9. doi: 10.1158/2159-8290.CD-15-0563

97. Shin DS, Zaretsky JM, Escuin-Ordinas H, Garcia-Diaz A, Hu-

Lieskovan S, Kalbasi A, et al. Primary resistance to PD-1 blockade

mediated by JAK½ mutations. Cancer Discov. (2016) 7:188–201.

doi: 10.1158/2159-8290.CD-16-1223

98. Loo K, Tsai KK, Mahuron K, Liu J, Pauli ML, Sandoval PM, et al. Partially

exhausted tumor-infiltrating lymphocytes predict response to combination

immunotherapy. JCI Insight (2017) 2:93433. doi: 10.1172/jci.insight.93433

99. Daud AI, Loo K, Pauli ML, Sanchez-rodriguez R, Sandoval PM, Taravati K,

et al. Tumor immune profiling predicts response to anti – PD-1 therapy in

human melanoma. J Clin Invest. (2016) 126:1–6. doi: 10.1172/JCI87324

100. Fan X, Quezada SA, Sepulveda MA, Sharma P, Allison JP. Engagement

of the ICOS pathway markedly enhances efficacy of CTLA-4 blockade in

cancer immunotherapy. J Exp Med. (2014) 211:715–25. doi: 10.1084/jem.201

30590

101. Huang AC, Postow MA, Orlowski RJ, Mick R, Bengsch B, Manne S, et al. T-

cell invigoration to tumour burden ratio associated with anti-PD-1 response.

Nature (2017) 545:60–5. doi: 10.1038/nature22079

102. Pauken KE, Wherry EJ. Overcoming T cell exhaustion in infection and

cancer. Trends Immunol. (2015) 36:265–76. doi: 10.1016/j.it.2015.02.008

103. Young A, Mittal D, Stagg J, Smyth MJ. Targeting cancer-derived

adenosine: new therapeutic approaches. Cancer Discovery. (2014) 4:879–88.

doi: 10.1158/2159-8290.CD-14-0341

104. Jacquelot N, Roberti MP, Enot DP, Rusakiewicz S, Ternès N, Jegou S,

et al. Predictors of responses to immune checkpoint blockade in advanced

melanoma. Nat Commun. (2017) 8:592. doi: 10.1038/s41467-017-00608-2

105. Weide B, Martens A, Hassel JC, Berking C, Postow MA, Bisschop

K, et al. Baseline biomarkers for outcome of melanoma patients

treated with pembrolizumab. Clin Cancer Res. (2016) 22:5487–96.

doi: 10.1158/1078-0432.CCR-16-0127

106. Joseph RW, Elassaiss-Schaap J, Kefford RF, Hwu W-J, Wolchok JD, Joshua

AM, et al. Baseline tumor size is an independent prognostic factor for overall

survival in patients withmelanoma treated with pembrolizumab.Clin Cancer

Res. (2018) 24:4960–7.doi: 10.1158/1078-0432.CCR-17-2386

107. Tumeh PC, Hellmann MD, Hamid O, Tsai KK, Loo KL, Gubens MA,

et al. Liver metastasis and treatment outcome with Anti-PD-1 monoclonal

antibody in patients with melanoma and NSCLC. Cancer Immunol Res.

(2017) 5:417–24. doi: 10.1158/2326-6066.CIR-16-0325

108. Rodig SJ, Gusenleitner D, JacksonDG, Gjini E, Giobbie-Hurder A, Jin C, et al.

MHC proteins confer differential sensitivity to CTLA-4 and PD-1 blockade

in untreated metastatic melanoma. Sci Transl Med. (2018) 10:eaar3342.

doi: 10.1126/scitranslmed.aar3342

109. Zitvogel L, Ma Y, Raoult D, Kroemer G, Gajewski TF. The microbiome in

cancer immunotherapy: Diagnostic tools and therapeutic strategies. Science

(2018) 359:1366–70. doi: 10.1126/science.aar6918

110. Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre M-L, et al. The

commensal microbiome is associated with anti PD-1 efficacy in metastatic

melanoma patients. Science (2018) 359:104–8. doi: 10.1126/science.aao3290

111. Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC,

Karpinets TV, et al. Gut microbiome modulates response to anti–PD-

1 immunotherapy in melanoma patients. Science (2017) 359:97–103.

doi: 10.1126/science.aan4236

112. Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, et al.

Gut microbiome influences efficacy of PD-1–based immunotherapy against

epithelial tumors. Science (2017) 359:91–7. doi: 10.1126/science.aan3706.E

113. Pagès F, Mlecnik B, Marliot F, Bindea G, Ou FS, Bifulco C, et al. International

validation of the consensus Immunoscore for the classification of colon

cancer: a prognostic and accuracy study. Lancet (2018) 391:2128–39.

doi: 10.1016/S0140-6736(18)30789-X

114. Tang L, Wang K. Chronic inflammation in skin malignancies. J Mol Signal.

(2016) 11:2. doi: 10.5334/1750-2187-11-2

Frontiers in Medicine | www.frontiersin.org 15 December 2018 | Volume 5 | Article 351

https://doi.org/10.1056/NEJMoa1805131
https://doi.org/10.1186/s40425-017-0228-3
https://doi.org/10.1038/npjgenmed.2016.37
https://doi.org/10.1200/JCO.2017.72.2850
https://doi.org/10.1038/nature12477
https://doi.org/10.1016/j.mrfmmm.2004.06.057
https://doi.org/10.1073/pnas.1404341111
https://doi.org/10.1073/pnas.1213968110
https://doi.org/10.1111/nyas.12105
https://doi.org/10.3389/fimmu.2017.01848
https://doi.org/10.1200/JCO.2017.76.9901
https://doi.org/10.1056/NEJMoa1500596
https://doi.org/10.1186/s12943-018-0864-3
https://doi.org/10.3389/fimmu.2018.01474
https://doi.org/10.1371/journal.pone.0130142
https://doi.org/10.1016/j.jtho.2016.11.2228
https://doi.org/10.1038/s41598-017-04023-x
https://doi.org/10.1158/1078-0432.CCR-08-1608
https://doi.org/10.1007/s12032-010-9515-2
https://doi.org/10.1016/j.semcancer.2017.11.019
https://doi.org/10.1016/j.cell.2017.01.017
https://doi.org/10.1158/2159-8290.CD-15-0563
https://doi.org/10.1158/2159-8290.CD-16-1223
https://doi.org/10.1172/jci.insight.93433
https://doi.org/10.1172/JCI87324
https://doi.org/10.1084/jem.20130590
https://doi.org/10.1038/nature22079
https://doi.org/10.1016/j.it.2015.02.008
https://doi.org/10.1158/2159-8290.CD-14-0341
https://doi.org/10.1038/s41467-017-00608-2
https://doi.org/10.1158/1078-0432.CCR-16-0127
https://doi.org/10.1158/1078-0432.CCR-17-2386
https://doi.org/10.1158/2326-6066.CIR-16-0325
https://doi.org/10.1126/scitranslmed.aar3342
https://doi.org/10.1126/science.aar6918
https://doi.org/10.1126/science.aao3290
https://doi.org/10.1126/science.aan4236
https://doi.org/10.1126/science.aan3706.E
https://doi.org/10.1016/S0140-6736(18)30789-X
https://doi.org/10.5334/1750-2187-11-2
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Bridge et al. Biomarkers, Cytokines, and Chemokines in Skin Cancer

115. Pegram HJ, Lee JC, Hayman EG, Imperato GH, Tedder TF, Sadelain M,

et al. Tumor-targeted T cells modified to secrete IL-12 eradicate systemic

tumors without need for prior conditioning. Blood (2012) 119:4133–41.

doi: 10.1182/blood-2011-12-400044

116. Nicholas C, Lesinski GB. Immunomodulatory cytokines as

therapeutic agents for melanoma. Immunotherapy (2011) 3:673–90.

doi: 10.2217/imt.11.45

117. Weiss JM, Subleski JJ, Wigginton JM, Wiltrout RH. Immunotherapy of

cancer by IL-12-based cytokine combinations. Expert Opin Biol Ther. (2007)

7:1705–21. doi: 10.1517/14712598.7.11.1705

118. Teng MWL, Darcy PK, Smyth MJ. Stable IL-10: A new therapeutic

that promotes tumor immunity. Cancer Cell (2011) 20:691–3.

doi: 10.1016/j.ccr.2011.11.020

119. Perrot CY, Javelaud D, Mauviel A. Insights into the transforming growth

factor-β signaling pathway in cutaneous melanoma. Ann Dermatol. (2013)

25:135–44. doi: 10.5021/ad.2013.25.2.135

120. Nonomura Y, Otsuka A, Nakashima C, Seidel JA, Kitoh A, Dainichi

T, et al. Peripheral blood Th9 cells are a possible pharmacodynamic

biomarker of nivolumab treatment efficacy in metastatic melanoma patients.

Oncoimmunology (2016) 5:e1248327. doi: 10.1080/2162402X.2016.1248327

121. Miotto D, Cascio N Lo, Stendardo M, Querzoli P, Pedriali M, De

Rosa E, et al. CD8+ T cells expressing IL-10 are associated with a

favourable prognosis in lung cancer. Lung Cancer (2010) 69:355–60.

doi: 10.1016/j.lungcan.2009.12.012

122. ManninoMH, Zhu Z, XiaoH, Bai Q,WakefieldMR, Fang Y. The paradoxical

role of IL-10 in immunity and cancer. Cancer Lett. (2015) 367:103–7.

doi: 10.1016/j.canlet.2015.07.009

123. Zhang H, Wang Y, Hwang ES, He YW. Interleukin-10: an immune-

activating cytokine in cancer immunotherapy. J Clin Oncol. (2016) 34:3576–

78. doi: 10.1200/JCO.2016.69.6435

124. Martins-Green M, Petreaca M, Wang L. Chemokines and their receptors are

key players in the orchestra that regulates wound healing. Adv Wound Care

(2013) 2:327–47. doi: 10.1089/wound.2012.0380

125. Tokunaga R, Zhang W, Naseem M, Puccini A, Berger MD, Soni S,

et al. CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation

A target for novel cancer therapy. Cancer Treat Rev. (2018) 63:40–7.

doi: 10.1016/j.ctrv.2017.11.007

126. Yan Y, Cao S, Liu X, Harrington SM, Bindeman WE, Adjei AA, et al.

CX3CR1 identifies PD-1 therapy–responsive CD8+ T cells that withstand

chemotherapy during cancer chemoimmunotherapy. JCI Insight (2018)

3:97828. doi: 10.1172/jci.insight.97828

127. JenkinsMH, Brinckerhoff CE,Mullins DW. CXCR3 Signaling in BRAF(WT)

Melanoma Increases IL-8 Expression and Tumorigenicity. Chen S, editor.

PLoS ONE (2015) 10:e0121140. doi: 10.1371/journal.pone.0121140

128. Kawada K, Sonoshita M, Sakashita H, Takabayashi A, Yamaoka Y, Manabe

T, et al. Pivotal role of CXCR3 in melanoma cell metastasis to lymph nodes.

Cancer Res. (2004) 64:4010–7. doi: 10.1158/0008-5472.CAN-03-1757

129. Monteagudo C, Martin JM, Jorda E, Llombart-Bosch A. CXCR3 chemokine

receptor immunoreactivity in primary cutaneous malignant melanoma:

Correlation with clinicopathological prognostic factors. J Clin Pathol. (2007)

60:596–9. doi: 10.1136/jcp.2005.032144

130. Dhawan P, Richmond A. Role of CXCL1 in tumorigenesis of melanoma. J

Leukoc Biol. (2002) 72:9–18.

131. Liu Q, Li A, Tian Y, Wu JD, Liu Y, Li T, et al. The CXCL8-

CXCR1/2 pathways in cancer. Cytokine Growth Factor Rev. (2016) 31:61–71.

doi: 10.1016/j.cytogfr.2016.08.002

132. Müller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, et al.

Involvement of chemokine receptors in breast cancer metastasis. Nature

(2001) 410:50. doi: 10.1038/35065016

133. Byrne SN, Halliday GM. UV-Induced Chemokines as Emerging Targets for

Skin Cancer Photochemoprevention. In: Wondrak GT, editor Skin Stress

Response Pathways: Environmental Factors and Molecular Opportunities,

Cham: Springer International Publishing (2016), p. 211–34.

134. Yamazaki N, Kiyohara Y, Uhara H, Iizuka H, Uehara J, Otsuka F, et al.

Cytokine biomarkers to predict antitumor responses to nivolumab suggested

in a phase 2 study for advanced melanoma. Cancer Sci. (2017) 108:1022–31.

doi: 10.1111/cas.13226

135. Tarhini AA, Zahoor H, Lin Y, Malhotra U, Sander C, Butterfield LH, et al.

Baseline circulating IL-17 predicts toxicity while TGF-β1 and IL-10 are

prognostic of relapse in ipilimumab neoadjuvant therapy of melanoma. J

Immunother Cancer (2015) 3:39. doi: 10.1186/s40425-015-0081-1

136. Bjoern J, Juul Nitschke N, Zeeberg Iversen T, Schmidt H, Fode K, Svane

IM. Immunological correlates of treatment and response in stage IV

malignant melanoma patients treated with Ipilimumab. Oncoimmunology

(2016) 5:e1100788. doi: 10.1080/2162402X.2015.1100788

137. Koguchi Y, Hoen HM, Bambina SA, Rynning MD, Fuerstenberg RK, Curti

BD, et al. Serum immunoregulatory proteins as predictors of overall survival

of metastatic melanoma patients treated with ipilimumab.Cancer Res. (2015)

75:5084–92. doi: 10.1158/0008-5472.CAN-15-2303

138. Sanmamed MF, Carranza-Rua O, Alfaro C, O-ate C, Martín-Algarra S,

Perez G, et al. Serum interleukin-8 reflects tumor burden and treatment

response across malignancies of multiple tissue origins. Clin Cancer Res.

(2014) 20:5697–707. doi: 10.1158/1078-0432.CCR-13-3203

139. Sanmamed MF, Perez-Gracia JL, Schalper KA, Fusco JP, Gonzalez A,

Rodriguez-Ruiz ME, et al. Changes in serum interleukin-8 (IL-8) levels

reflect and predict response to anti-PD-1 treatment in melanoma and

non-small-cell lung cancer patients. Ann Oncol. (2017) 28:1988–95.

doi: 10.1093/annonc/mdx190

140. Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, et al.

Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in

cancer patients. Nature (2014) 515:563–7. doi: 10.1038/nature14011

141. Ji R-R, Chasalow SD, Wang L, Hamid O, Schmidt H, Cogswell

J, et al. An immune-active tumor microenvironment favors clinical

response to ipilimumab. Cancer Immunol Immunother. (2012) 61:1019–31.

doi: 10.1007/s00262-011-1172-6

142. Gao J, Shi LZ, Zhao H, Chen J, Xiong L, He Q, et al. Loss of IFN-γ pathway

genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy.

Cell (2016) 167:397–404.e9. doi: 10.1016/j.cell.2016.08.069

143. Chen PL, Roh W, Reuben A, Cooper ZA, Spencer CN, Prieto PA, et al.

Analysis of immune signatures in longitudinal tumor samples yields

insight into biomarkers of response and mechanisms of resistance

to immune checkpoint blockade. Cancer Discov. (2016) 6:827–37.

doi: 10.1158/2159-8290.CD-15-1545

144. Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W,

Hu-Lieskovan S, et al. Mutations associated with acquired resistance

to PD-1 blockade in melanoma. N Engl J Med. (2016) 375:819–29.

doi: 10.1056/NEJMoa1604958

145. Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman

DR, et al. IFN-γ-related mRNA profile predicts clinical response to PD-1

blockade. J Clin Invest. (2017) 127:2930–40. doi: 10.1172/JCI91190

146. Ribas A, Robert C, Hodi FS, Wolchok JD, Joshua AM, Hwu WJ,

et al. Association of response to programmed death receptor 1 (PD-1)

blockade with pembrolizumab (MK-3475) with an interferon-inflammatory

immune gene signature. J Clin Oncol. (2015) 33(Suppl. 15):3001.

doi: 10.1200/jco.2015.33.15_suppl.3001

147. Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Albright

A, et al. Relationship between immune gene signatures and clinical

response to PD-1 blockade with pembrolizumab (MK-3475) in patients

with advanced solid tumors. J Immunother Cancer (2015) 3(Suppl. 2):P80.

doi: 10.1186/2051-1426-3-S2-P80

148. Prat A, Navarro A, Paré L, Reguart N, Galván P, Pascual T, et al. Immune-

related gene expression profiling after PD-1 blockade in non–small cell lung

carcinoma, head and neck squamous cell carcinoma, and melanoma. Cancer

Res. (2017) 77:3540–50. doi: 10.1158/0008-5472.CAN-16-3556

149. Karachaliou N, Gonzalez-Cao M, Crespo G, Drozdowskyj A, Aldeguer

E, Gimenez-Capitan A, et al. Interferon gamma, an important marker

of response to immune checkpoint blockade in non-small cell lung

cancer and melanoma patients. Ther Adv Med Oncol. (2018) 10.

doi: 10.1177/1758834017749748

150. Chow LQM, Mehra R, Haddad RI, Mahipal A, Weiss J, Berger

R, et al. Biomarkers and response to pembrolizumab (pembro)

in recurrent/metastatic head and neck squamous cell carcinoma

(R/M HNSCC). J Clin Oncol. (2016) 34(Suppl. 15):6010.

doi: 10.1200/JCO.2016.34.15_suppl.6010

Frontiers in Medicine | www.frontiersin.org 16 December 2018 | Volume 5 | Article 351

https://doi.org/10.1182/blood-2011-12-400044
https://doi.org/10.2217/imt.11.45
https://doi.org/10.1517/14712598.7.11.1705
https://doi.org/10.1016/j.ccr.2011.11.020
https://doi.org/10.5021/ad.2013.25.2.135
https://doi.org/10.1080/2162402X.2016.1248327
https://doi.org/10.1016/j.lungcan.2009.12.012
https://doi.org/10.1016/j.canlet.2015.07.009
https://doi.org/10.1200/JCO.2016.69.6435
https://doi.org/10.1089/wound.2012.0380
https://doi.org/10.1016/j.ctrv.2017.11.007
https://doi.org/10.1172/jci.insight.97828
https://doi.org/10.1371/journal.pone.0121140
https://doi.org/10.1158/0008-5472.CAN-03-1757
https://doi.org/10.1136/jcp.2005.032144
https://doi.org/10.1016/j.cytogfr.2016.08.002
https://doi.org/10.1038/35065016
https://doi.org/10.1111/cas.13226
https://doi.org/10.1186/s40425-015-0081-1
https://doi.org/10.1080/2162402X.2015.1100788
https://doi.org/10.1158/0008-5472.CAN-15-2303
https://doi.org/10.1158/1078-0432.CCR-13-3203
https://doi.org/10.1093/annonc/mdx190
https://doi.org/10.1038/nature14011
https://doi.org/10.1007/s00262-011-1172-6
https://doi.org/10.1016/j.cell.2016.08.069
https://doi.org/10.1158/2159-8290.CD-15-1545
https://doi.org/10.1056/NEJMoa1604958
https://doi.org/10.1172/JCI91190
https://doi.org/10.1200/jco.2015.33.15_suppl.3001
https://doi.org/10.1186/2051-1426-3-S2-P80
https://doi.org/10.1158/0008-5472.CAN-16-3556
https://doi.org/10.1177/1758834017749748
https://doi.org/10.1200/JCO.2016.34.15_suppl.6010
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Bridge et al. Biomarkers, Cytokines, and Chemokines in Skin Cancer

151. Seiwert TY, Burtness B, Mehra R, Weiss J, Berger R, Eder JP, et al.

Safety and clinical activity of pembrolizumab for treatment of recurrent or

metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012):

an open-label, multicentre, phase 1b trial. Lancet Oncol. (2016) 17:956–65.

doi: 10.1016/S1470-2045(16)30066-3

152. O’Donnell JS, Long GV, Scolyer RA, Teng MWL, Smyth MJ. Resistance

to PD1/PDL1 checkpoint inhibition. Cancer Treat Rev. (2017) 52:71–81.

doi: 10.1016/j.ctrv.2016.11.007

153. Gabrilovich DI, Ishida T, Nadaf S, Ohm JE, Carbone DP. Antibodies

to vascular endothelial growth factor enhance the efficacy of cancer

immunotherapy by improving endogenous dendritic cell function. Clin

Cancer Res. (1999) 5:2963–70.

154. Hammer GE, Ma A. Molecular control of steady-state dendritic cell

maturation and immune homeostasis. Annu Rev Immunol. (2013) 31:743–

91. doi: 10.1146/annurev-immunol-020711-074929

155. Ferrara N, Gerber HP, LeCouter J, Kerbel RS. Angiogenesis as a therapeutic

target. Nature (2003) 438:967–74. doi: 10.1038/nature04483

156. Yuan J, Zhou J, Dong Z, Tandon S, Kuk D, Panageas KS, et al. Pretreatment

serum VEGF is associated with clinical response and overall survival in

advanced melanoma patients treated with ipilimumab. Cancer Immunol Res.

(2014) 2:127–32. doi: 10.1158/2326-6066.CIR-13-0163

157. Kageshita T, Hirai S, Ono T, Hicklin DJ, Ferrone S. Down-regulation

of HLA Class I antigen-processing molecules in malignant melanoma:

association with disease progression. Am J Pathol. (1999) 154:745–54

doi: 10.1016/S0002-9440(10)65321-7

158. Shukla SA, Rooney MS, Rajasagi M, Tiao G, Dixon PM, Lawrence MS, et al.

Comprehensive analysis of cancer-associated somatic mutations in class i

HLA genes. Nat Biotechnol. (2015) 33, 1152–8. doi: 10.1038/nbt.3344

159. Taube JM, Anders RA, Young GD, Xu H, Sharma R, McMiller TL, et al.

Colocalization of inflammatory response with B7-H1 expression in human

melanocytic lesions supports an adaptive resistance mechanism of immune

escape Sci Transl Med. (2012) 4:127ra37. doi: 10.1126/scitranslmed.3003689

160. Bauml J, Seiwert TY, Pfister DG, Worden F, Liu SV, Gilbert J, et al.

Pembrolizumab for platinum- and cetuximab-refractory head and neck

cancer: results from a single-Arm, phase II study. J Clin Oncol. (2017)

35:1542–9. doi: 10.1200/JCO.2016.70.1524

161. Segal NH, Ou S-HI, Balmanoukian AS, Fury MG, Massarelli E, Brahmer

JR, et al. Safety and efficacy of MEDI4736, an anti-PD-L1 antibody,

in patients from a squamous cell carcinoma of the head and neck

(SCCHN) expansion cohort. J Clin Oncol. (2015) 33(Suppl. 15):3011.

doi: 10.1200/jco.2015.33.15_suppl.3011

162. Ferris RL, Blumenschein G, Fayette J, Guigay J, Colevas AD, Licitra L, et al.

Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N

Engl J Med. (2016) 375:1856–67. doi: 10.1056/NEJMoa1602252

163. Saleh K, Eid R, Haddad FGH, Khalife-Saleh N, Kourie HR. New

developments in the management of head and neck cancer – impact

of pembrolizumab. Ther Clin Risk Manage. (2018) 14:295–303.

doi: 10.2147/TCRM.S125059

164. Winkler JK, Schneiderbauer R, Bender C, Sedlaczek O, Fröhling S, Penzel R,

et al. Anti-programmed cell death-1 therapy in nonmelanoma skin cancer.

Br J Dermatol. (2016) 176:498–502. doi: 10.1111/bjd.14664

165. Ghafouri-Fard S, Ghafouri-Fard S. Immunotherapy in nonmelanoma

skin cancer. Immunotherapy (2012) 4:499–510. doi: 10.2217/imt.

12.29

166. Hunt MJ, Halliday GM, Weedon D, Cooke BE, Barnerson RS. Regression

in basal cell carcinoma: an immunohistochemical analysis. Br J Dermatol.

(2018) 130:1–8. doi: 10.1111/j.1365-2133.1994.tb06873.x

167. Wong DA, Bishop GA, Lowes MA, Cooke B, Barnetson RSC, Halliday GM.

Cytokine profiles in spontaneously regressing basal cell carcinomas.

Br J Dermatol. (2001) 143:91–8. doi: 10.1046/j.1365-2133.2000.03

596.x

168. Fenton SE, Sosman JA, Chandra S. Current therapy for basal cell carcinoma

and the potential role for immunotherapy with checkpoint inhibitors. Clin

Ski Cancer (2017) 2:59–65. doi: 10.1016/j.clsc.2017.11.001

169. Afanasiev OK, Yelistratova L, Miller N, Nagase K, Paulson K, Iyer

JG, et al. Merkel polyomavirus-specific T cells fluctuate with merkel

cell carcinoma burden and express therapeutically targetable PD-1

and Tim-3 exhaustion markers. Clin Cancer Res. (2013) 19:5351–60.

doi: 10.1158/1078-0432.CCR-13-0035

170. Lipson EJ, Vincent JG, Loyo M, Kagohara LT, Luber BS, Wang H, et al. PD-

L1 expression in the merkel cell carcinoma microenvironment: association

with inflammation, merkel cell polyomavirus, and overall survival. Cancer

Immunol Res. (2013) 1:54–63. doi: 10.1158/2326-6066.CIR-13-0034

171. Dowlatshahi M, Huang V, Gehad AE, Jiang Y, Calarese A, Teague JE, et al.

Tumor-specific T cells in human merkel cell carcinomas: a possible role for

tregs and T-cell exhaustion in reducing T-cell responses. J Invest Dermatol.

(2013) 133:1879–89. doi: 10.1038/jid.2013.75

172. Nghiem PT, Bhatia S, Lipson EJ, Kudchadkar RR, Miller NJ, Annamalai

L, et al. PD-1 blockade with pembrolizumab in advanced merkel-cell

carcinoma. N Engl J Med. (2016) 374:2542–52. doi: 10.1056/NEJMoa16

03702

173. Gao J, Zhao SEN, Halstensen TS. Increased interleukin-6 expression

is associated with poor prognosis and acquired cisplatin resistance in

head and neck squamous cell carcinoma. Oncol Rep. (2016) 35:3265–74.

doi: 10.3892/or.2016.4765

174. Hoejberg L, Bastholt L, Johansen J, Jarle Christensen I, Gehl J,

Schmidt H. Serum interleukin-6 as a prognostic biomarker in

patients with metastatic melanoma. Melanoma Res. (2012) 22:287–93.

doi: 10.1097/CMR.0b013e3283550aa5

175. Soubrane C, Rixe O, Meric JB, Khayat D, Mouawad R. Pretreatment

serum interleukin-6 concentration as a prognostic factor of overall

survival in metastatic malignant melanoma patients treated with

biochemotherapy: a retrospective study.Melanoma Res. (2005) 15:199–204 .

doi: 10.1097/00008390-200506000-00009

176. Le QT, Fisher R, Oliner KS, Young RJ, Cao H, Kong C, et al. Prognostic

and predictive significance of plasma HGF and IL-8 in a phase III

trial of chemoradiation with or without tirapazamine in locoregionally

advanced head and neck cancer. Clin Cancer Res. (2012) 18:1798–1807.

doi: 10.1158/1078-0432.CCR-11-2094

177. Merhi M, Raza A, Inchakalody VP, Nashwan AJJ, Allahverdi N,

Krishnankutty R, et al. Squamous cell carcinomas of the head and

neck cancer response to programmed cell death protein-1 targeting and

differential expression of immunological markers: a case report. Front

Immunol. (2018) 9:1769. doi: 10.3389/fimmu.2018.01769

178. Singh S, Varney M, Singh RK. Host CXCR2-Dependent regulation of

melanoma growth, angiogenesis, and experimental lung metastasis. Cancer

Res. (2009) 69:411–5. doi: 10.1158/0008-5472

179. Yen HT, Chiang LC, Wen KH, Tsai CC, Yu CL, Yu HS. The expression

of cytokines by an established basal cell carcinoma cell line (BCC-1/KMC)

compared with cultured normal keratinocytes. Arch Dermatol Res. (1996)

288:157–61. doi: 10.1007/BF02505826

180. Aoki M, Pawankar R, Niimi Y, Kawana S. Mast cells in basal cell carcinoma

express VEGF, IL-8 and RANTES. Int Arch Allergy Immunol. (2003)

130:216–23. doi: 10.1159/000069515

181. Cohen RF, Contrino J, Spiro JD, Mann EA, Chen LL, Kreutzer

DL. Interleukin-8 expression by head and neck squamous cell

carcinoma. Arch Otolaryngol Neck Surg. (1995) 121:202–9.

doi: 10.1001/archotol.1995.01890020064013

182. Richards KF, Guastafierro A, Shuda M, Toptan T, Moore PS, Chang

Y. Merkel cell polyomavirus T antigens promote cell proliferation and

inflammatory cytokine gene expression. J Gen Virol. (2015) 96(Pt 12):3532–

44. doi: 10.1099/jgv.0.000287

183. Kumar V, Chaudhary N, Garg M, Floudas CS, Soni P, Chandra AB. Current

diagnosis and management of Immune Related Adverse Events (irAEs)

induced by immune checkpoint inhibitor therapy. Front Pharmacol. (2017)

8:49. doi: 10.3389/fphar.2017.00049

184. Brahmer JR, Lacchetti C, Schneider BJ, Atkins MB, Brassil KJ, Caterino JM,

et al. Management of immune-related adverse events in patients treated

with immune checkpoint inhibitor therapy: American Society of Clinical

Oncology Clinical Practice Guideline. J Clin Oncol. (2018) 4: 36(17):1714-

1768. doi: 10.1200/JCO.2017.77.6385

185. Byun DJ, Wolchok JD, Rosenberg LM, Girotra M. Cancer immunotherapy

— immune checkpoint blockade and associated endocrinopathies. Nat Rev

Endocrinol. (2017) 13:195–207. doi: 10.1038/nrendo.2016.205

Frontiers in Medicine | www.frontiersin.org 17 December 2018 | Volume 5 | Article 351

https://doi.org/10.1016/S1470-2045(16)30066-3
https://doi.org/10.1016/j.ctrv.2016.11.007
https://doi.org/10.1146/annurev-immunol-020711-074929
https://doi.org/10.1038/nature04483
https://doi.org/10.1158/2326-6066.CIR-13-0163
https://doi.org/10.1016/S0002-9440(10)65321-7
https://doi.org/10.1038/nbt.3344
https://doi.org/10.1126/scitranslmed.3003689
https://doi.org/10.1200/JCO.2016.70.1524
https://doi.org/10.1200/jco.2015.33.15_suppl.3011
https://doi.org/10.1056/NEJMoa1602252
https://doi.org/10.2147/TCRM.S125059
https://doi.org/10.1111/bjd.14664
https://doi.org/10.2217/imt.12.29
https://doi.org/10.1111/j.1365-2133.1994.tb06873.x
https://doi.org/10.1046/j.1365-2133.2000.03596.x
https://doi.org/10.1016/j.clsc.2017.11.001
https://doi.org/10.1158/1078-0432.CCR-13-0035
https://doi.org/10.1158/2326-6066.CIR-13-0034
https://doi.org/10.1038/jid.2013.75
https://doi.org/10.1056/NEJMoa1603702
https://doi.org/10.3892/or.2016.4765
https://doi.org/10.1097/CMR.0b013e3283550aa5
https://doi.org/10.1097/00008390-200506000-00009
https://doi.org/10.1158/1078-0432.CCR-11-2094
https://doi.org/10.3389/fimmu.2018.01769
https://doi.org/10.1158/0008-5472
https://doi.org/10.1007/BF02505826
https://doi.org/10.1159/000069515
https://doi.org/10.1001/archotol.1995.01890020064013
https://doi.org/10.1099/jgv.0.000287
https://doi.org/10.3389/fphar.2017.00049
https://doi.org/10.1200/JCO.2017.77.6385
https://doi.org/10.1038/nrendo.2016.205
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Bridge et al. Biomarkers, Cytokines, and Chemokines in Skin Cancer

186. Michot JM, Bigenwald C, Champiat S, Collins M, Carbonnel F, Postel-

Vinay S, et al. Immune-related adverse events with immune checkpoint

blockade: a comprehensive review. Eur J Cancer (2016) 54:139–48.

doi: 10.1016/j.ejca.2015.11.016

187. Fujisawa Y, Yoshino K, Otsuka A, Funakoshi T, Fujimura T, Yamamoto

Y, et al. Fluctuations in routine blood count might signal severe immune-

related adverse events in melanoma patients treated with nivolumab. J

Dermatol Sci. (2017) 88:225–31. doi: 10.1016/j.jdermsci.2017.07.007

188. Hopkins AM, Rowland A, Kichenadasse G, Wiese MD, Gurney H,

McKinnon RA, et al. Predicting response and toxicity to immune checkpoint

inhibitors using routinely available blood and clinical markers. Br J Cancer

(2017) 117:913–20. doi: 10.1038/bjc.2017.274

189. Oh DY, Cham J, Zhang L, Fong G, Kwek SS, Klinger M, et al. Immune

toxicities elicted by CTLA-4 blockade in cancer patients are associated with

early diversification of the T-cell repertoire. Cancer Res. (2017) 77:1322–30.

doi: 10.1158/0008-5472.CAN-16-2324

190. Fong L, Oh DY, Cham J, Zhang L, Fong G, Kwek SS, et al. T cell

repertoire diversification is associated with immune related toxicities

following CTLA-4 blockade in cancer patients. Cancer Res. (2016) 77:1322–

30. doi: 10.1158/0008-5472.CAN-16-2324

191. Das R, Bar N, Ferreira M, Newman AM, Zhang L, Bailur JK, et al. Early B cell

changes predict autoimmunity following combination immune checkpoint

blockad. J Clin Invest. (2018) 128:715–20. doi: 10.1172/JCI96798

192. Shahabi V, Berman D, Chasalow SD, Wang L, Tsuchihashi Z, Hu B, et al.

Gene expression profiling of whole blood in ipilimumab-treated patients

for identification of potential biomarkers of immune-related gastrointestinal

adverse events. J Transl Med. (2013) 11:75. doi: 10.1186/1479-5876-

11-75

193. Friedlander P, Wassmann K, Christenfeld AM, Fisher D, Kyi C,

Kirkwood JM, et al. Whole-blood RNA transcript-based models can

predict clinical response in two large independent clinical studies of

patients with advanced melanoma treated with the checkpoint inhibitor,

tremelimumab. J Immunother Cancer (2017) 5:67. doi: 10.1186/s40425-017-

0272-z

194. Duarte JDG, Parakh S, Andrews MC, Woods K, Pasam A, Tutuka C, et al.

Autoantibodies may predict immune-related toxicity: Results from a phase

I study of intralesional Bacillus Calmette-Guérin followed by ipilimumab in

patients with advanced metastatic melanoma. Front Immunol. (2018) 9:411.

doi: 10.3389/fimmu.2018.00411

195. Friedlander P, Wood K, Wassmann K, Christenfeld AM, Bhardwaj N, Oh

WK, et al. A whole-blood RNA transcript-based gene signature is associated

with the development of CTLA-4 blockade-related diarrhea in patients with

advanced melanoma treated with the checkpoint inhibitor tremelimumab. J

Immunother Cancer (2018) 6:90. doi: 10.1186/s40425-018-0408-9

196. Cabel L, Proudhon C, Romano E, Girard N, Lantz O, Stern MH,

et al. Clinical potential of circulating tumour DNA in patients receiving

anticancer immunotherapy. Nat Rev Clin Oncol. (2018) 15:639–50.

doi: 10.1038/s41571-018-0074-3

197. Pantel K. Blood-based analysis of circulating cell-free DNA and

tumor cells for early cancer detection. PLoS Med. (2016) 13:e1002205.

doi: 10.1371/journal.pmed.1002205

198. Juergens RA, Zukotynski KA, Singnurkar A, Snider DP, Valliant JF,

Gulenchyn KY. Imaging biomarkers in immunotherapy. Biomark Cancer

(2016) 8(Suppl 2):1–13. doi: 10.4137/BIC.S31805

Conflict of Interest Statement: JB is CEO and President of Parker Institute

for Cancer Immunotherapy; reports receiving commercial research funding

from Juno/Celgene; has ownership interest in Celsius Therapeutics, Rheos

Medicines, Arcus Biosciences, Solid Biosciences, Vir Biotechnology, and

Quentis Therapeutics; and is a consultant/advisory board member for Quentis

Therapeutics, Vir Biotechnology, Solid Biosciences, Arcus Biosciences, Rheos

Medicines, Celsius Therapeutics, Pfizer, and Merck.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2018 Bridge, Lee, Daud, Wells and Bluestone. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Medicine | www.frontiersin.org 18 December 2018 | Volume 5 | Article 351

https://doi.org/10.1016/j.ejca.2015.11.016
https://doi.org/10.1016/j.jdermsci.2017.07.007
https://doi.org/10.1038/bjc.2017.274
https://doi.org/10.1158/0008-5472.CAN-16-2324
https://doi.org/10.1158/0008-5472.CAN-16-2324
https://doi.org/10.1172/JCI96798
https://doi.org/10.1186/1479-5876-11-75
https://doi.org/10.1186/s40425-017-0272-z
https://doi.org/10.3389/fimmu.2018.00411
https://doi.org/10.1186/s40425-018-0408-9
https://doi.org/10.1038/s41571-018-0074-3
https://doi.org/10.1371/journal.pmed.1002205
https://doi.org/10.4137/BIC.S31805
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles

	Cytokines, Chemokines, and Other Biomarkers of Response for Checkpoint Inhibitor Therapy in Skin Cancer
	Introduction
	Mechanism of Tumor Immune Escape and Clinical Impact of Immune Checkpoints in Metastatic Skin Cancer
	Overview of Current and Emerging Standard-of-care Treatments in Metastatic Skin Cancers
	Tumor Mutational Burden, PD-L1, and Other Tumor Microenvironment-associated Biomarkers for Checkpoint Inhibitor Treatment
	Cytokines and Chemokines as Prognostic Indicators for Skin Cancer
	Cytokines and Chemokines as Biomarkers for Checkpoint Inhibitor Treatment in Malignant Skin Cancers
	TGF-β and IFN-γ
	IL-6 and IL-8

	Predictive Biomarkers for Immune-Related Adverse Events
	Novel Technologies and Assays Under Investigation
	Discussion
	Author Contributions
	Funding
	References


