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Objective: This study aimed to develop and validate a risk prediction model that can be used to identify percutaneous coronary
intervention (PCI) patients at high risk for 30-day unplanned readmission.
Patients and Methods: We developed a prediction model based on a training dataset of 1348 patients after PCI. The data were
collected from January 2020 to December 2020. Clinical characteristics, laboratory data and risk factors were collected using the
hospital database. The LASSO regression method was applied to filter variables and select predictors, and feature selection for a 30-
day readmission risk model was optimized using least absolute shrinkage. Multivariate logistic regression was used to construct
a nomogram. The performance and clinical utility of the nomogram were evaluated with a receiver operating characteristic (ROC)
curve, a calibration curve, and decision curve analysis (DCA). Internal validation of the predictive accuracy was performed using
bootstrapping validation.
Results: The predictors included in the prediction nomogram were medical insurance, length of stay, left ventricular ejection fraction
on admission, history of hypertension, the presence of chronic lung disease, the presence of anemia, and serum creatinine level on
admission. The area under the receiver operating characteristic curve for the predictive model was 0.735 (95% CI: 0.711–0.759). The
P value of the Hosmer–Lemeshow goodness of fit test was 0.326, indicating good calibration, and the calibration curves showed good
agreement between the classifications and actual observations. DCA also demonstrated that the nomogram was clinically useful.
A high c-index value of 0.723 was obtained during the internal validation.
Conclusion: We developed an easy-to-use nomogram model to predict the risk of readmission 30 days after discharge for PCI
patients. This risk prediction model may serve as a guide for screening high-risk patients and allocating resources for PCI patients at
the time of hospital discharge and may provide a reference for preventive care interventions.
Keywords: percutaneous coronary intervention, 30-day readmission, nomogram, prediction model

Background
The American Heart Association (AHA) estimated that 130 million people will suffer from cardiovascular diseases by
2035. Among these diseases, coronary artery disease (CAD) is one of the main causes of mortality. According to the
2020 China Cardiovascular Disease Report, the CAD population in China has reached 11.39 million.1,2

At present, percutaneous coronary interventions (PCIs), including balloon dilatation and stenting, constitute the most
widely used forms of revascularization among patients with CAD.3,4 After a long history of development, PCI has been
widely used in clinical practice with good efficacy and safety profiles. However, in-stent restenosis, bleeding and
swelling at the puncture site, cardiac rupture (CR), recurrent angina pectoris, acute myocardial infarction (AMI), and
chest pain may all be responsible for the multiple, repeated hospital admissions among PCI patients. Unplanned
readmissions after hospital discharge are common and costly and serve as an indication of poor health care quality
delivery; they undoubtedly increase the burden on the health care system and result in the unnecessary waste of medical

Clinical Interventions in Aging 2022:17 1013–1023 1013
© 2022 Xu et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php
and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Clinical Interventions in Aging Dovepress
open access to scientific and medical research

Open Access Full Text Article

Received: 14 April 2022
Accepted: 21 June 2022
Published: 5 July 2022

http://orcid.org/0000-0002-8735-3276
http://orcid.org/0000-0002-6814-2350
https://www.dovepress.com/terms.php
http://creativecommons.org/licenses/by-nc/3.0/
https://www.dovepress.com/terms.php
http://www.dovepress.com/permissions.php
https://www.dovepress.com


resources.5 In the United States, more than one in every five patients will be readmitted each year. The cost of
readmission after PCI accounts for 33% of the total PCI cost, which is as high as 26 billion US dollars, resulting in
a low quality of life and substantial social burden for patients. Notably, 75% of hospital readmissions in the Medicare
cohort are considered potentially preventable.6–8 Furthermore, studies have shown that the 30-day readmission rate of
patients after PCI ranges from 4.7% to 22.0%.9,10 However, the 30-day readmission rate may be underestimated because
readmissions can also occur at a hospital other than that of the index admission.

Research on readmissions focuses on two main areas, namely, the prediction of readmission risk factors and
assessment of the ability to prevent readmission. To date, there is a lack of risk-stratification tools. Therefore, we sought
to use the hospital database to collect variables related to 30-day PCI readmission. Since there are no population-based
studies on 30-day PCI readmission risk prediction models specific to the Chinese primary care population, the purpose of
this study was to develop a valid but simple risk prediction model to provide a reference for the timely screening of
patients with a high risk of readmission and for early clinical interventions.

Materials and Methods
Study Population and Design
For this study, it was assumed that a minimum of 10 variables would be entered into the final model. According to
sample size calculation requirements, a minimum of 10 events per variable were necessary for the multivariate
analysis.11,12 A total of 1348 patients were eventually included. This retrospective study used the hospital database to
obtain data on patients admitted to the Department of Cardiology at the Second Affiliated Hospital of Nanchang
University. In the study, 1760 PCI patients were included from January 2020 to December 2020, of whom 412 patients
were excluded because of incomplete clinical information or because they met the exclusion criteria, bringing the final
total to 1348 PCI patients who were eligible for participation.

The following inclusion criteria were applied: (i) Patients who met the WHO diagnostic criteria for coronary heart
disease; (ii) those who underwent diagnostic investigations, including electrocardiography, electrocardiogram (ECG), and
coronary angiography; and (iii) those who underwent a PCI procedure with complete revascularization (age ≥ 18 years).

The exclusion criteria were as follows: (i) Patients with end-stage liver disease, end-stage renal disease, or a diagnosis
of malignancy; (ii) patients with known severe mental illness or cognitive dysfunction; and (iii) patients with incomplete
clinical or laboratory data. The study was reviewed and approved by the ethics committee of the Second Affiliated
Hospital of Nanchang University (approval number: [2020](085).

Data Collection
The variables were selected according to expert opinion and a comprehensive review of the literature. The risk factors for
30-day readmission after PCI were identified, obtaining a total of 33 variables. Clinical data were collected using
a custom-designed survey and included the following: (i) general clinical data, such as patient ID, sex, age, time of
admission, method of admission (emergency department, outpatient clinic, or transfer from another hospital), types of
medical insurance, length of stay, history of smoking and history of alcohol consumption; (ii) admission clinical data
related to cardiovascular disease, namely, left ventricular ejection fraction (LVEF), number of diseased vessels, and
New York Heart Association (NYHA) heart function classification; (iii) medical history data, including comorbidities
(hypertension, diabetes, atrial fibrillation, chronic lung disease, renal insufficiency, heart failure, hyperlipidemia, periph-
eral vascular disease, stroke, anemia) and medical history (history of coronary artery bypass grafting (CABG), history of
PCI, history of gastrointestinal bleeding); (iv) related laboratory indicators obtained at the time of hospital admission,
including B-type (brain) natriuretic peptide levels (BNP), estimated glomerular filtration rate (eGFR), creatinine,
D-dimer, triglycerides (TG), serum total cholesterol (TC), high-density lipoprotein cholesterol (HDL-c), and low-
density lipoprotein cholesterol (LDL-c); and (v) scores on rating scales, namely, the activities of daily living (ADL)
scale and the (Morse) fall score. Our primary outcome was whether an index hospitalization was followed by an
unplanned readmission within 30 days. Data were extracted from the hospital database by one researcher and checked by
another; both researchers previously received unified training.
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Statistical Analysis
Normally distributed variables are described as means and standard deviations, and skewed distributional data are expressed as
medians and interquartile ranges. Count data are expressed as rates, percentages or constituent ratios. Comparisons among the
different groups were performed with Fisher’s exact test or the chi-squared test. For dimensionality reduction of the data and
variable selection, feature selection was performed with the least absolute shrinkage and selection operator (LASSO) method
to identify the optimal predictive features. The optimal parameter lambda (λ) was selected by ten fold cross-validation, the
lambda value with the smallest cross-validation error was used as the optimal value of the model, and the number of variables
corresponding to the nonzero regression coefficients at this time was counted. Subsequently, multiple logistic regression
analyses were used to identify the independent risk factors and establish a nomogrammodel. Receiver operating characteristic
(ROC) curves were generated to assess sensitivity and specificity. The Hosmer–Lemeshow goodness of fit test was used to
assess the model fit and efficacy of the risk model. Decision curve analysis (DCA) was used to estimate the clinical utility of
the proposed nomogram by calculating the net benefit at different threshold probabilities, which was calculated as follows: net
benefit = true-positive rate - false-positive rate*Pt⁄(1-Pt).13,14 Internal validation was performed by the bootstrap resampling
technique (1000 bootstrap samples). All statistical tests were 2-sided at a significance level of 0.05. SPSS version 24.0 (SPSS
Inc., Chicago, IL, USA) and R software (Version R-4.1.1; https://www.R-project.org/.) were used for all statistical analyses.

Results
Patient Characteristics
This study included 1348 patients. Overall, 107 unplanned readmissions occurred over the 30 days following discharge,
and the readmission rate was 7.94%. The patients (988 males and 360 females) had a mean (SD) age of 66.39±11.12
years (range, 28–97 years). There were three methods of admission: 400 patients via the emergency department, 907 via
outpatient readmission and 41 via transfer from another health care facility. All patient data, including general clinical
characteristics, disease, and laboratory examination data, are given in Table 1.

LASSO Regression Analysis Results
The model was considered optimal when the lambda was 0.012, and 33 features were reduced to 8 predictive variables.
These predictors were length of stay, LVEF, number of diseased vessels, hypertension, chronic pulmonary disease,
anemia, BNP level, and creatinine level. The results of LASSO regression are displayed in Figure 1.

Predictive Nomogram Development
For further analysis, the 8 features obtained by LASSO regression were included in multivariable logistic regression
models for adjustment. The logistic regression analysis results, including length of stay, number of diseased vessels,
hypertension, chronic pulmonary disease, anemia and creatinine, are shown in Table 2. Based on previous studies and its
clinical importance, LVEF was also put into the final model. A nomogram was developed and presented based on
incorporation of the above independent predictors of 30-day unplanned readmissions after PCI (Figure 2). The values for
a patient were marked on each axis, and a line was drawn perpendicular to the point axis; then, the number of points for
all variables were summed. Next, the sum was marked on the total point axis, and a line was drawn perpendicular to the
probability axis. The corresponding value on the probability axis is the probability of a 30-day readmission for that
patient.

Apparent Performance of the Risk Nomogram
The area under the ROC curve (AUC) of the nomogram was 0.735 (95% CI: 0.711–0.759) (Figure 3). At this level, the
maximal Youden Index value was 0.346, the sensitivity was 66.4%, and the specificity was 68.3%. The results indicated
that the nomogram had acceptable and favorable discriminatory ability. Additionally, good calibration was found, and the
Hosmer–Lemeshow test indicated no statistically significant difference (chi-square=9.191, df=8, P=0.326). There was
good agreement between the observed and predicted risks. In addition, internal validation was performed using the
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Table 1 Baseline Patient Characteristics

Characteristics Not Readmitted (1241) Readmitted (107) P value

Age, years, (mean±SD) 67.74 ±11.36 66.27±11.09 0.191
Sex, % 0.581

Male 912(73.49) 76(71.03)

Female 329(26.51) 31(28.97)
Admission status, % 0.229

Emergency department 361(29.09) 39(36.45)

Outpatient department 843(67.93) 64(59.81)
Transfer from other medical institutions 37(2.98) 4(3.74)

Type of medical insurance, % <0.001
None 38(3.06) 13(12.15)

Urban workers insurance 448(36.10) 55(51.40)

Urban and rural residents insurance 755(60.84) 39(36.45)
Length of stay, days, M(Q1, Q3) 6(4,8) 7(6,9) <0.001

LVEF, %, M (Q1, Q3) 67(58,74) 56(44,63) <0.001

Number of diseased vessels, % <0.001
1 550(44.32) 21(19.63)

≥2 691(55.68) 86(80.37)

NYHA functional class, % 0.480
Class 1 73(5.88) 7(6.54)

Class 2 584(47.06) 42(39.25)

Class 3 518(41.74) 52(48.60)
Class 4 66(5.32) 6(5.61)

Hypertension, % <0.001

No 494(39.81) 21(19.63)
Yes 747(60.19) 86(80.37)

AF, % 0.083

No 1175(94.68) 97(90.65)
Yes 66(5.32) 10(9.35)

DM, % 0.097

No 818(65.91) 62(57.94)
Yes 423(34.09) 45(42.06)

Chronic lung disease, % <0.001

No 1186(95.57) 93(86.92)
Yes 55(4.43) 14(13.08)

Renal insufficiency, % 0.001

No 902(72.68) 62(57.94)
Yes 339(27.32) 45(42.06)

HF history, % 0.002

No 1179(95.00) 94(87.85)
Yes 62(5.00) 13(12.15)

Hyperlipidemia, % 0.771

No 853(68.73) 75(70.09)
Yes 388(31.27) 32(29.91)

Peripheral vascular disease, % 0.248

No 589(47.46) 57(53.27)
Yes 652(52.54) 50(46.73)

Stroke, % 0.043

No 1156(93.15) 94(87.85)
Yes 85(6.85) 13(12.15)

(Continued)
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bootstrap resampling method and was found to be 0.723. The apparent performance of the nomogram to predict the risk
of 30-day unplanned readmission after PCI indicated a good predictive capability.

Clinical Utility
Moreover, considering the clinical utility of the risk model, we drew a DCA curve to calculate the clinical net benefit.
The DCA curve for the nomogram model predicting the 30-day risk of readmission after PCI is shown in Figure 4. The
DCA curves also showed that the nomogram has good clinical utility. This result indicated that the prognostic nomogram
model we constructed was accurate. The DCA showed that patients and doctors can benefit from the prediction model
when the threshold probability is greater than 2% in predicting the risk of 30-day readmission after PCI.

Discussion
The purpose of a clinical predictive model is to use the fewest easily available and low-cost predictors to predict the risk
and prognosis of a disease. Recently, nomograms have been widely used as prognostic devices for a variety of diseases.
To date, most studies have primarily focused on independent predictors of poor prognosis of patients after PCI, and only
a few clinical studies have proposed a simple risk scoring system to determine the 30-day readmission risk among PCI
patients. However, our study established a new simple nomogram. Based on the LASSO regression and logistic multiple

Table 1 (Continued).

Characteristics Not Readmitted (1241) Readmitted (107) P value

Anemia, % <0.001

No 1213(97.74) 96(89.72)

Yes 28(2.26) 11(10.28)
Prior CABG, % 0.220

No 1239(99.84) 106(99.07)

Yes 2(0.16) 1(0.93)
Prior PCI, % 0.100

No 1066(85.90) 98(91.59)

Yes 175(14.10) 9(8.41)
Gastrointestinal bleeding, % 0.699

No 1229(99.03) 105(98.13)

Yes 12(0.97) 2(1.87)
Smoking, % 0.868

No 872(70.27) 76(71.03)

Yes 369(29.73) 31(28.97)
Alcohol consumption, % 0.185

No 984(79.29) 79(73.83)

Yes 257(20.71) 28(26.17)
Activities of daily living, points, M (Q1, Q3) 60(50,65) 60(50,70) 0.997

Morse fall scale, points, M (Q1, Q3) 35(20,45) 35(22.5,45) 0.746

BNP, pg/mL, M (Q1, Q3) 109.12(40.69,347.68) 236.67(73.765,1026.22) <0.001
eGFR, mL/min, (Q1, Q3) 83.94(67.47,100.85) 75.02(57.925,94.565) 0.003

Cre, µmol/L, M (Q1, Q3) 80.11(67.75,97.07) 83.6(71.61,108.01) 0.017

D dimer, mg/IFEU, M (Q1, Q3) 0.4(0.25,0.75) 0.57(0.345,1.615) <0.001
TG, mmol/L, M (Q1, Q3) 4.4(3.64,5.21) 4.19(3.375,4.98) 0.089

TC, mmol/L, M (Q1, Q3) 1.38(0.97,2.05) 1.31(1,1.835) 0.410

HDL-C, mmol/L, M (Q1, Q3) 1.09(0.89,1.28) 1.02(0.83,1.255) 0.062
LDL-C, mmol/L, M (Q1, Q3) 2.6(2,3.26) 2.52(1.785,3.09) 0.127

Abbreviations: LVEF, left ventricular ejection fraction; AF, atrial fibrillation; DM, diabetes mellitus; HF, heart failure; CABG, coronary
artery bypass grafting; PCI, percutaneous coronary intervention; BNP, brain natriuretic peptide; eGFR, estimated glomerular filtration
rate; Cre, creatinine; TG, triglyceride; TC, total cholesterol; HDL-C, high-density lipoprotein; LDL-C, low-density lipoprotein; LOS,
length of stay.
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regression results, the risk factors for readmission within 30 days after PCI included length of stay, LVEF, number of
diseased vessels, hypertension, chronic lung disease, anemia, and creatinine level. Using the clinical results to develop
predictive models for screening high-risk populations, we presented an interpretable model based on past medical history
and preoperative variables. The apparent and internal validation of the model’s performance demonstrated good
discrimination and calibration power.
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Table 2 Multivariate Logistic Regression Analysis

Intercept and Variable Prediction Model

β OR (95% CI) P value

Intercept −3.990 0.018(0.005–0.540) <0.001

LOS, day
6–10 0.510 1.666(1.019–2.794) 0.046

11–15 0.234 1.264(0.545–2.756) 0.567

>15 0.943 2.567(0.909–6.764) 0.063
LVEF, %

35–44% 0.191 1.211(0.462–3.484) 0.707

45–49% −0.147 0.350(0.823–1.352) 0.130
≥50% −0.528 0.589(0.243–1.611) 0.267

Multivessel disease, yes vs no 0.953 2.594(1.59–4.402) <0.001

Hypertension, yes vs no 0.733 2.082(1.272–3.548) 0.005
Chronic lung disease, yes vs no 0.961 2.616(1.273–5.082) 0.006

Anemia, yes vs no 1.051 2.862(0.179–6.467) 0.014

Cre, yes vs no 0.003 1.002(1.000–1.005) 0.019

Note: β is the regression coefficient.
Abbreviations: LOS, length of stay; Cre, creatinine.
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The study showed that patients at high risk for 30-day unplanned readmission tended to spend more days in the
hospital. To the best of our knowledge, patients with shorter lengths of stay had relatively mild disease, and the majority
of those patients were low-risk patients.15 This is probably because patients with longer lengths of stay often had severe
disease and a high burden of comorbidities. Additionally, such patients were more frequently prescribed antithrombotic
and antidiabetic treatments and were more likely to have vascular, bleeding or cardiac complications.16,17 Identifying
these patients and paying close attention to their health may play a potential role in preventing early readmission of
patients after PCI.

LVEF is a critical indicator of cardiac function.18 Studies have shown that the lower the LVEF is at admission, the
higher the probability of adverse cardiovascular endpoint events is; patients with a low LVEF tend to have more severe
myocardial injury and are prone to complications of pulmonary infection and renal impairment due to a prolonged
decline in cardiac output. In particular, patients with an LVEF ≤35%, reversal of myocardial remodeling and poorer
recovery of cardiac function are more likely to undergo repeat revascularization, leading to readmission.19,20

In the present study, the results showed that compared with patients with single-vessel disease, those with multivessel
disease had a higher risk of 30-day readmission. This is consistent with the study by Yudi et al21 who revealed that
patients with multivessel disease were more likely to be older, have more severe atherosclerosis, have suboptimal
controlled comorbidities and have impaired cardiac function and poor prognosis.22

In recent years, additional studies have reached conclusions similar to those of our study: hypertension, chronic
lung disease, and anemia were high-risk factors for 30-day readmission after PCI for patients. Hypertension
negatively influences microcirculatory hemodynamics, which increases the incidence of major adverse cardiovascular
events.23,24 Moreover, chronic lung disease leads to an imbalance in oxygen supply, deterioration of pulmonary
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Figure 2 Development of a nomogram to predict 30-day unplanned readmission.
Abbreviations: LOS, length of stay; Cre, creatinine.
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function, and increased cardiac workload, which also increases the readmission risk within 30 days after PCI.25 In
addition, there are data suggesting that PCI patients with chronic obstructive pulmonary disease have a nearly
fourfold increase in the risk of readmission within 30 days.26 Hence, emphasizing the positive and substantial effect
of simultaneous pulmonary rehabilitation is important for PCI patients with pulmonary diseases. Additionally,
evidence has confirmed a correlation between anemia and cardiovascular diseases. The number of endothelial cells
in the peripheral circulation is decreased in patients with anemia compared to those who do not have any kind of
anemia, and an inflammatory response caused by myocardial necrosis results in reduced erythroid function, which
impairs vascular healing capacity and leads to poor patient prognosis. Finally, anemia contributes to unfavorable
prognosis and early readmission.27,28 To ameliorate the effect of anemia on readmission of patients after PCI,
a previous study suggests that anemia should be treated in a timely manner for patients whose hemoglobin level is
<8 g/dL.29 In summary, interventions such as transitional care management and regular follow-up strategies for PCI
patients with comorbidities must be tailored to the particular disease to reduce the incidence of 30-day readmission
and alleviate the burden on the patient.

There is also a relationship between creatinine and readmission within 30 days after PCI. Creatinine was shown to be
significantly associated with cardiovascular disease prevalence [OR=1.79 (1.47–2.20), P<0.001].30 Serum creatinine
levels can be assessed as a marker of renal function, and creatinine is normally cleared by healthy kidneys. Deteriorating
kidney function can lead to an increased serum creatinine concentration, which has predictive value for both short-term
and long-term prognosis after discharge. Therefore, careful consideration is recommended concerning the use of contrast
agents for PCI patients with high creatinine levels. In addition, adequate hydration should be given to minimize renal

Figure 3 ROC curves of the nomogram for predicting 30-day readmission risk after PCI.
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damage. Patients who are identified as having a greater risk should be further treated with other mechanical circulatory
support devices.31,32 However, whether creatinine can be used as a prognostic biomarker for patients after PCI remains
unclear pending further validation.

Moreover, our nomogram is an important priority for programs designed to reduce unplanned hospital readmissions.
As a quantitative tool for evaluating risks and benefits, nomograms can provide more objective and accurate informa-
tion to medical staff and patients to facilitate the early identification of high-risk individuals, assisting clinicians in
making a decision on the choice of postdischarge management strategy. This will also reduce the financial burden on
patients. The results of various studies show that early interventions such as medication reminders, discharge plans,
motivational telephone follow-up, multimodal strategies, real-time follow-up and monitoring of disease progression are
beneficial to prevent 30-day readmission after PCI.33–35 By evaluating patients with accurate readmission risk predic-
tion models and identifying high-risk patients, the subsequent interventional strategies can reduce the rate of early
readmission and improve the quality of medical care.36 This nomogram is helpful for providing new ideas for the
rehabilitation protocols of patients in the transitional period after PCI and is beneficial for focusing more effort and
resources on patients with a higher risk of readmission to avoid wasting health care resources to the greatest extent.
Timely evaluation may not be the final answer. The most critical question is whether to explore more effective
intervention schemes.

Limitations
This study has some limitations that need to be taken into account. First, since this is a retrospective study, it has inherent
biases and many unmeasured confounders in the collection of patients’ medical histories. Some potential variables, such
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as the experience of surgeons or the psychosocial burden on patients, were not investigated in the study. Second, there
may be a bias issue in the readmission rate. The readmission rate is probably underestimated because patients are more
likely to visit other hospitals. Finally, our nomogram was verified internally by bootstrap resampling, which affects the
external general applicability of the model to some extent. To this end, external validation is warranted. The next step is
to collect prospective data from multiple centers for external verification to increase the generalizability of the model.

Conclusion
The 30-day readmission rate is an important indicator of the quality of medical care. Readmission to the hospital within 30
days is not rare among patients after PCI. In this study, a screening tool with relatively good accuracy was developed for
medical staff to screen high-risk patients for readmission within 30 days after PCI. Further research is needed in the future.
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