
����������
�������

Citation: Rabbani, N.; Xue, M.;

Thornalley, P.J. Hexokinase-2-Linked

Glycolytic Overload and

Unscheduled Glycolysis—Driver of

Insulin Resistance and Development

of Vascular Complications of

Diabetes. Int. J. Mol. Sci. 2022, 23,

2165. https://doi.org/10.3390/

ijms23042165

Academic Editor:

Dumitru Constantin-Teodosiu

Received: 9 January 2022

Accepted: 14 February 2022

Published: 16 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Hexokinase-2-Linked Glycolytic Overload and Unscheduled
Glycolysis—Driver of Insulin Resistance and Development of
Vascular Complications of Diabetes
Naila Rabbani 1,*, Mingzhan Xue 2 and Paul J. Thornalley 2,*

1 Department of Basic Medical Science, College of Medicine, Qatar University Health, Qatar University,
Doha P.O. Box 2713, Qatar

2 Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University,
Qatar Foundation, Doha P.O. Box 34110, Qatar; mxue@hbku.edu.qa

* Correspondence: n.rabbani@qu.edu.qa (N.R.); pthornalley@hbku.edu.qa (P.J.T.); Tel.: +974-7479-5649 (N.R.);
+974-7090-1635 (P.J.T.)

Abstract: The recent discovery of the glucose-induced stabilization of hexokinase-2 (HK2) to proteol-
ysis in cell dysfunction in model hyperglycemia has revealed a likely key initiating factor contributing
to the development of insulin resistance and vascular complications in diabetes. Consequently, the
increased flux of glucose metabolism without a change in the expression and activity of glycolytic en-
zymes produces a wave of increased glycolytic intermediates driving mitochondrial dysfunction and
increased reactive oxygen species (ROS) formation, the activation of hexosamine and protein kinase C
pathways, the increased formation of methylglyoxal-producing dicarbonyl stress, and the activation
of the unfolded protein response. This is called HK2-linked glycolytic overload and unscheduled
glycolysis. The conditions required to sustain this are GLUT1 and/or GLUT3 glucose uptake and
the expression of HK2. A metabolic biomarker of its occurrence is the abnormally increased depo-
sition of glycogen, which is produced by metabolic channeling when HK2 becomes detached from
mitochondria. These conditions and metabolic consequences are found in the vasculature, kidneys,
retina, peripheral nerves, and early-stage embryo development in diabetes and likely sustain the
development of diabetic vascular complications and embryopathy. In insulin resistance, HK2-linked
unscheduled glycolysis may also be established in skeletal muscle and adipose tissue. This may
explain the increased glucose disposal by skeletal uptake in the fasting phase in patients with type 2
diabetes mellitus, compared to healthy controls, and the presence of insulin resistance in patients
with type 1 diabetes mellitus. Importantly, glyoxalase 1 inducer—trans-resveratrol and hesperetin in
combination (tRES-HESP)—corrected HK2-linked glycolytic overload and unscheduled glycolysis
and reversed insulin resistance and improved vascular inflammation in overweight and obese sub-
jects in clinical trial. Further studies are now required to evaluate tRES-HESP for the prevention and
reversal of early-stage type 2 diabetes and for the treatment of the vascular complications of diabetes.

Keywords: hexokinase-2; hyperglycemia; glycolysis; diabetes; diabetic complications;
insulin resistance; methylglyoxal; glyoxalase 1

1. Introduction: Human Hexokinase-2—Overview of Molecular Characteristics and
Subcellular and Tissue Expression

Hexokinase-2 (HK2; EC:2.7.1.1) is one of four isozymes of hexokinase in mammalian
metabolism that catalyze the first step of glucose metabolism, the conversion of glucose
to glucose-6-phosphate (G6P): Glucose + MgATP→ G6P + MgADP. That is, hexokinases
interact with glucose and the magnesium Mg2+ complex of ATP [1]. Uniquely, HK2 has a
second glucose-binding active site [1]. This additional active site contains a degradation
motif that binds heat shock protein cognate 70 (HSC70) and directs HK2 for proteolysis
by chaperone-mediated autophagy [2]. Human HK2 is a monomeric protein of molecular
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mass 100 kDa and KM for glucose of 340 µM [1]. HK2 is normally localized mostly
to the external surface of mitochondria [3] and is found in the particulate extracts of
tissues [4]. The N-terminal domain of HK2 binds to voltage-dependent anion channel
protein (VDAC), located within the outer mitochondrial membrane and acting as a conduit
for ATP and for the supply of HK2-catalysed reaction [5,6]. HK2 is the major isozyme
of hexokinase in skeletal muscle and adipose tissue. It also has significant expression,
along with hexokinase-1 (HK1), in vascular cells, as well as the kidneys, the retina, and
Schwann cells in the peripheral nerves; it is also the major hexokinase isozyme expressed in
early-stage embryogenesis [7,8]. HK2 has high expression levels in many types of human
tumor, together with increased expressions of phosphofructokinase (PFK), other glycolytic
enzymes, and glucose-6-phosphate dehydrogenase (G6PD). This supports increased flux
through glycolysis for tumor growth without an increase in the intermediates of early-
stage glycolysis [9,10]. The promoter of HK2 in tumors is often hypomethylated, which
is associated with the dysregulation of transcription—including the direct binding of
glucose to increase expression [11,12]. Tumor cell lines may exhibit the direct induction
of HK2 expression by glucose, whereas non-malignant human cells in primary culture
do not [11,13]. The use of tumor cell lines to study dysfunctional metabolism in model
hyperglycemia may therefore give misleading outcomes. The genetic polymorphism of
HK2 was studied as a possible factor linked to the risk of developing type 2 diabetes
mellitus (T2DM) in the Finnish population, but no significant association was found [14,15].
A novel genetic polymorphism of HK2 was found in Pima Indians—a Native American
tribe with a high prevalence of T2DM—but it displayed no significant association with risk
of T2DM [16].

2. Hexokinase-2-Linked Glycolytic Overload and Unscheduled Glycolysis

In studies of metabolic dysfunction supporting dicarbonyl stress induced by high
glucose concentrations in human aortic endothelial cells and human periodontal ligament
fibroblasts in primary culture, we discovered that the increased glucose metabolism driving
metabolic dysfunction in model hyperglycemia was mediated by glucose-induced stabi-
lization of HK2 to proteolysis, producing HK2-linked glycolytic overload [13,17]. This was
corrected by off-target effects of glyoxalase 1 (Glo1) inducer, trans-resveratrol, and hes-
peretin in combination (tRES-HESP) [13,17]. In this review, we describe this and evidence
that the hypothesis of HK2-linked glycolytic overload and unscheduled glycolysis are
likely key initiators of metabolic dysfunction, contributing to the development of vascular
complications of diabetes, diabetic embryopathy, and insulin resistance.

During periods of high glucose concentration in the cytosol, the degradation motif
of HK2 is masked by increased active site occupancy by glucose. This stabilizes HK2
to proteolysis, increasing HK2 protein abundance and activity [13,17], and increasing
flux of glucose metabolism without any change in other glycolytic enzyme activities and
expression—generating a wave of increased glycolytic intermediates through early-stage
glycolysis. The consequences of this are:

(i) Increased levels of G6P, which displaces HK2 from mitochondria, impairing the
disposal of ATP—causing mitochondrial membrane hyperpolarization, mitochondrial
dysfunction, and the increased formation of reactive oxygen species (ROS) [3,18–20];

(ii) Increased fructose-6-phosphate and activation of the hexosamine pathway, increasing
enzymatic protein glycosylation [19,20];

(iii) Increased formation of glycerol-3-phosphate and formation of diacylglycerol, with
the consequent activation of protein kinase C (PKC) [19,20];

(iv) Increased glyceraldehyde-3-phosphate (GA3P) and dihydroxyacetonephosphate (DHAP),
leading to the increased formation of methylglyoxal and dicarbonyl stress [13,19,20];

(v) Increased metabolic channeling of G6P for glycogen synthesis as a consequence of the
displacement of HK2 from mitochondria [3] (Figure 1).
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Figure 1. Glycolytic overload and unscheduled glycolysis in hyperglycemia. Key: red arrows—dys-
functional metabolism in unscheduled glycolysis. Metabolic intermediates in glycolysis from GA3P 
to pyruvate have been omitted for clarity. Abbreviations: DHAP, dihydroxyacetonephosphate; F-6-
P, fructose-6-phosphate; F-1,6-bis-P, fructose-1,6-bisphosphate; G-6-P, glucose-6-phosphate; GA3P, 
glyceraldehyde-3-phosphate; HK1, hexokinase-1; HK2, hexokinase-2; MCT 1–4, monocarboxylate 
transporters 1–4; MG, methylglyoxal; ROS, reactive oxygen species; VDAC, voltage-dependent an-
ion channel. 

In primary cultures of human aortal endothelial cells and periodontal ligament fibro-
blasts, the flux of glucose metabolism was increased ca. twofold in model hyperglycemia 
[13,17]. A similar effect was found previously in bovine aortal endothelial cells in culture 
[21]. 

Under normal metabolic regulation and in short periods of increased plasma glucose 
concentration, the increased flux of glucose metabolism through glycolysis at sites of vas-
cular complications is restricted by saturation of HK1 and HK2. This also applies for ex-
tended periods of increased plasma glucose concentration for tissues with predominantly 
only HK1 expression—such as the brain. When increased flux of glucose metabolism in 
skeletal muscle and adipose tissue occurs in response to insulin, regulatory activation 
and/or the increased expression of glycolytic enzymes occurs such that steady-state levels 
of glycolytic intermediates remain unchanged or are increased modestly [22]. Responses 
to insulin include: increased activity of glucose transporter GLUT4, increased expression 

Figure 1. Glycolytic overload and unscheduled glycolysis in hyperglycemia. Key: red arrows—
dysfunctional metabolism in unscheduled glycolysis. Metabolic intermediates in glycolysis from
GA3P to pyruvate have been omitted for clarity. Abbreviations: DHAP, dihydroxyacetonephos-
phate; F-6-P, fructose-6-phosphate; F-1,6-bis-P, fructose-1,6-bisphosphate; G-6-P, glucose-6-phosphate;
GA3P, glyceraldehyde-3-phosphate; HK1, hexokinase-1; HK2, hexokinase-2; MCT 1–4, monocarboxy-
late transporters 1–4; MG, methylglyoxal; ROS, reactive oxygen species; VDAC, voltage-dependent
anion channel.

In primary cultures of human aortal endothelial cells and periodontal ligament fi-
broblasts, the flux of glucose metabolism was increased ca. twofold in model hyper-
glycemia [13,17]. A similar effect was found previously in bovine aortal endothelial cells in
culture [21].

Under normal metabolic regulation and in short periods of increased plasma glu-
cose concentration, the increased flux of glucose metabolism through glycolysis at sites of
vascular complications is restricted by saturation of HK1 and HK2. This also applies for
extended periods of increased plasma glucose concentration for tissues with predominantly
only HK1 expression—such as the brain. When increased flux of glucose metabolism
in skeletal muscle and adipose tissue occurs in response to insulin, regulatory activa-
tion and/or the increased expression of glycolytic enzymes occurs such that steady-state
levels of glycolytic intermediates remain unchanged or are increased modestly [22]. Re-
sponses to insulin include: increased activity of glucose transporter GLUT4, increased
expression and activity of HK2, increased activity of 6-phosphofructo-2-kinase/fructose-2,6-
bisphosphatase (increasing allosteric regulator, fructose-2,6-bisphosphate), and thereby of
phosphofructokinase, and increased expression and activity of glyceraldehyde-3-phosphate
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dehydrogenase (GA3PD) [23–26]. With the prolonged increase of glucose metabolism and
moderate increases in G6P, the nuclear translocation of the Mondo A/Mlx/G6P transcrip-
tion factor complex increases the expression of a battery of glycolytic and lipogenic genes
with a functional carbohydrate response element (ChRE) [27–29]. This provides a fur-
ther level of regulation of gene expression in early-stage glycolysis. The paralog protein,
Mondo B, or carbohydrate response element binding protein (ChREBP), is dominant in
the liver and adipose tissue [30]. Through this regulatory control, an increase in flux in
glucose uptake and metabolism occurs without marked increases in G6P, F6P, or triosephos-
phates [22], avoiding mitochondrial dysfunction and the activation of hexosamine, PKC,
and dicarbonyl stress pathways. This is regulated, “scheduled glycolysis”, and avoids
metabolic dysfunction. By contrast, HK2-linked glycolytic overload is unscheduled glycol-
ysis and the multiple pathways of metabolic dysfunction thereby activated are linked to
the vascular complications of diabetes, diabetic embryopathy, and ischemia-reperfusion
injury, as reviewed previously [31] and presented below for the first time in relation to
insulin resistance.

3. Hexokinase-2-Linked Glycolytic Overload versus Oxidative Stress as an Initiator of
Metabolic Dysfunction in Hyperglycemia

For ca. 20 years, the “mitochondrial dysfunction-linked oxidative stress in vascular cells with
GLUT1-dependent glucose uptake” hypothesis has been the leading hypothesis proposed to
explain the initiation of metabolic dysfunction in hyperglycemia driving the development
of vascular complications of diabetes [32]. The increased formation of ROS in vascular
cells in hyperglycemia also occurs through the activation of vascular NADPH oxidase
(NOX) and the increased expression and uncoupling of endothelial nitric oxide synthase
(NOS3), stimulated by upstream activation of PKC [33–35]. The hypothesis implicated
increased glucose metabolism in hyperglycemia as a driver of mitochondrial and metabolic
dysfunction but provided no explanation as to how the saturation of one or both of the two
hexokinase isozymes found at the sites of development of vascular complications, HK1 and
HK2, is circumvented. A prediction of this hypothesis was that the antioxidant treatment of
vascular complications of diabetes would provide effective therapy. However, clinical trials
of the antioxidant treatment of the vascular complications of diabetes have been disap-
pointing, showing no or limited benefits. Examples include vitamin E therapy in the Heart
Outcomes Prevention Evaluation (HOPE) and Microvascular Outcomes Prevention Evalua-
tion (MICROHOPE) studies [36] and studies of α-lipoic acid in diabetic neuropathy [37].
The hypothesis also provided no explanation for why the peripheral nerves and brain both
suffer cytosolic hyperglycemia in diabetes—as indicated by increased Nε-fructosyl-lysine
content of protein extracts of sciatic nerve and brain in experimental diabetes [38]—but
dysfunction and pathogenesis is found predominantly in the neurons of peripheral nerves
and not in the brain [39]. The hypothesis of HK2-linked glycolytic overload provides an
explanation for all these unresolved features of pathogenic mechanisms and therapy.

In the “HK2-linked glycolytic overload and unscheduled glycolysis” hypothesis, the cyto-
plasmic hyperglycemia-induced stabilization of HK2 to proteolysis provides the initiating
mechanism of increased glucose metabolism, circumventing the substrate saturation of
hexokinases (Figure 1). Antioxidant therapy may be ineffective because mitochondrial
dysfunction and the formation of ROS are not the initiators of metabolic dysfunction but are
rather among multiple downstream effects of the initiating process. Finally, HK2 expression
occurs in Schwann cells in peripheral neurons but has very low expression in the neurons
of the central nervous system (CNS), providing a rationale for why the brain is resistant and
the peripheral nervous system is sensitive to hyperglycemia-induced metabolic dysfunction
in diabetes [40,41]. Both peripheral and CNS neurons suffer cytosolic hyperglycemia in
diabetes, with GLUT1 and GLUT3 glucose uptake, but only Schwann cells have significant
expressions of HK2 and are susceptible to HK2-linked glycolytic overload [31]. Impaired
functional support of Schwann cells for axons of peripheral neurons may mediate the
development of diabetic neuropathy [39,42].
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In the HK2-linked glycolytic overload and unscheduled glycolysis hypothesis, effec-
tive therapy can be provided by decreasing HK2 expression to protein abundance and
activity levels found in normoglycemia. This was achieved with tRES-HESP—a synergistic
combination of two dietary bioactive compounds optimized to induce the expression of
Glo1 via activation and the binding of transcription factor Nrf2 to a functional antioxidant
response element (ARE) in the GLO1 gene [43,44]. A further Nrf2-mediated effect was
induction of the expression of G6PD—also an ARE-linked gene. This decreases cellular
G6P, decreasing the Mondo A/Mlx/G6P-dependent expression of HK2, thereby correcting
HK2 protein to normal levels in high glucose concentration (Figure 2). Under treatment
with tRES-HESP, human aortal endothelial cells and periodontal ligament fibroblasts were
cultured in high glucose concentrations with minimal metabolic dysfunction [13,17]. This
offers a new approach for the prevention and treatment of insulin resistance, the vascular
complications of diabetes, and diabetic embryopathy.
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Figure 2. Alleviation of HK-2-linked unscheduled glycolysis by induction of glucose-6-phosphate
dehydrogenase expression. Red-tipped arrows: potentially damaging effects; green arrows, Glo1
inducer, tRES-HESP, effect. G6PD, glucose-6-phosphate dehydrogenase; LDH-A, lactic dehydro-
genase, isoform A; PFKBP3, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, isoform 3;
R5P, ribose-5-phosphate; ROS, reactive oxygen species; VDAC, voltage-dependent anion channel [31].

4. Evidence of Hexokinase-2 Linked Glycolytic Overload Occurring at Sites of
Vascular Complications of Diabetes

An inspection of previous studies reveals widespread evidence for HK2-linked gly-
colytic overload involvement in the development of endothelial dysfunction in diabetes,
and vascular complications of diabetes —diabetic nephropathy, diabetic retinopathy and
diabetic neuropathy, and diabetic embryopathy (Table 1). The increased basal expression
of HK2 in dermal fibroblasts cultured from patients with type 1 diabetes mellitus (T1DM)
was also linked to the rapid progression of diabetic nephropathy, suggesting that basal
HK2 expression may be a risk predictor of the progression of vascular complications of dia-
betes [45]. The constituent cell types exhibiting the criteria for susceptibility to HK2-linked
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glycolytic overload are: vascular endothelial cells; mesangial cells, podocytes, and tubular
epithelial cells of the kidney; endothelial cells, Muller cells, and pericytes of the retina; and
Schwann cells of the peripheral nervous system [13,46–49]. Early-stage embryonic cells—
up to day 10 post-conception for mouse embryos—have mainly glucose uptake by GLUT1
and GLUT3 and HK2-linked glycolysis [7,50]. From days 2 to 10 post-conception of embryo
development, glucose metabolism is mainly anaerobic glycolysis—predisposing embryo
development to dysregulation in the early-stage glycolysis during this period [51]. All the
features of HK2-linked glycolytic overload have been reported for early-stage embryos
in high-glucose concentration cultures and experimental diabetic embryopathy [7,52–55].
There is evidence, therefore, that HK2-linked glycolytic overload occurs at the sites of
vascular complications and early-stage embryo in diabetes and this likely contributes to
hyperglycemia-linked pathogenesis developing therein in diabetes. Similar pathogenesis,
of lower severity, is expected in prediabetes, consistent with the low risk and presence of
vascular complications and embryo malformations in prediabetes [56,57].

Table 1. Evidence for hexokinase-driven glycolytic overload and unscheduled glycolysis in insulin
resistance, vascular complications of diabetes, and diabetic embryopathy.

Pathogenesis Tissue/Cell Type Indications References

Insulin resistance
(skeletal muscle) Skeletal muscle myocytes

1. HK2 expression.
2. Downstream metabolic dysfunction (DS,

HP, MD, OS, PKC)
[58–62]

Insulin resistance
(adipose tissue)

Adipose tissue,
insulin-resistant 3T3-L1

adipocytes in vitro

1. HK2 expression
2. Increased glycogen deposition in

adipose tissue
3. Downstream metabolic dysfunction (DS,

MD, OS, PKC)

[63–67]

Diabetic endothelial
dysfunction Endothelial cells

1. Increased glucose metabolism in
hyperglycemia through stabilization of
HK2 to proteolysis

2. Glycogen accumulation induced by high
glucose concentration in vitro and
hyperglycemia in vivo

3. Downstream metabolic dysfunction (DS,
HP, MD, OS, PKC)

[13,19,20,68]

Diabetic nephropathy
Renal mesangial, cells,
podocytes, and tubular

epithelial cells

1. Increased HK2 protein in human
mesangial cell by high glucose
concentration in vitro

2. Abnormal glycogen deposition in
proximal and renal tubules

3. Downstream metabolic dysfunction (DS,
HP, MD, OS, PKC)

[46,69–73]

Diabetic neuropathy Schwann cells (also dorsal
root ganglia and sciatic nerve)

1. Increased HK2 in hyperglycemia
2. Glycogen accumulation in association

with demyelination and axonal
degeneration in clinical
diabetic neuropathy

3. Downstream metabolic dysfunction (DS,
MD, OS)

[41,74–78]
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Table 1. Cont.

Pathogenesis Tissue/Cell Type Indications References

Diabetic retinopathy
Muller cells, endothelial cells

and pericytes (also
intact retina)

1. HK2 expression in human retina
2. Abnormal glycogen accumulation
3. Downstream metabolic dysfunction (DS,

HP, MD, OS, PKC)
[47,73,79–82]

Diabetic embryopathy
Early-stage embryo (typically

rat embryo,
day 9–11 gestation)

1. HK2-dependent glucose metabolism.
2. Increased embryo glycogen content after

culture in high glucose concentration
in vitro

3. Downstream metabolic dysfunction (DS,
HP, MD, OS, PKC)

[7,52–55,83]

Abbreviations: DS, dicarbonyl stress; HP, hexosamine pathway; MD, mitochondrial dysfunction; OS, oxidative
stress; PKC, protein kinase C pathway.

Increased deposition of glycogen was a surprising mechanistic biomarker of HK2-
linked glycolytic overload [13]. Increased glycogen deposition was found previously
in experimental diabetes in renal proximal and distal tubules, linked to diabetic kidney
disease, and in the retina, linked to diabetic retinopathy [84,85]. It was also found in
Schwann cells in experimental and clinical diabetic neuropathy and linked to severity of
nerve damage [86,87]. Increased glycogen deposition was also found in corneal neurons
in diabetes [88] and in early-stage embryos incubated in high glucose concentrations [83].
Glycogen deposition at the sites of vascular complication in diabetes and early-stage
embryogenesis in hyperglycemia linked to pathogenesis has hitherto been an inexplicable
phenomenon; now, however, it is a prediction of, and consistent with, the HK2-linked
glycolytic overload hypothesis.

5. Evidence for Hexokinase-2 Linked Unscheduled Glycolysis in Insulin Resistance
and the Development of Type 2 Diabetes

Insulin resistance in skeletal muscle is considered to be the primary initiating metabolic
defect driving the development of T2DM; it is often present many years before diabetes
develops [89,90]. Pancreatic beta-cells respond with compensatory increased secretion of
insulin, producing hyperinsulinemia. This stresses beta-cell metabolism, insulin production,
and glucose homeostasis. Eventually, the hypersecretion of insulin leads to beta-cell failure,
with the development of persistent hyperglycemia and the onset of T2DM. Insulin resistance
is defined as “a reduced response of target tissues (to insulin), compared with subjects with normal
glucose tolerance” [91]. The main target tissues of insulin are skeletal muscle, liver tissues,
and adipocytes. Skeletal muscle is the predominant site of insulin-mediated glucose uptake
in the postprandial state. Hence, the dysfunction of glucose uptake and metabolism by
skeletal muscle has a major impact on glucose homeostasis [92].

In human skeletal muscle, HK2 is the major hexokinase isozyme—accounting for
ca. 60% of hexokinase activity in the soluble fraction and 90% hexokinase activity in the
particulate fraction bound to mitochondria. Insulin increases the expression of HK2 in
skeletal muscle [93] and the binding of HK2 to mitochondria, likely by increasing phos-
phorylation by protein kinase B—also called Akt [94,95]. HK2 mRNA, protein and activity
were decreased in patients with T2DM [96], presumably as a consequence of decreased
insulin responsiveness and regulation of HK2 expression. We note that to establish un-
scheduled glycolysis, it is not necessary for the absolute metabolic flux through glycolysis
to be relatively high—which occurs in naïve muscle with insulin treatment [97]. Rather, the
critical feature is increased glucose uptake by GLUT1 and metabolism, and glucose-linked
proteolysis stabilization of HK2 occurring without other regulatory signaling—such as
likely occurs when fasting plasma glucose (FPG) is increased.
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Given the expression of GLUT1 in human skeletal muscle [98,99], muscle may be
susceptible to HK2-linked unscheduled glycolysis when FPG is increased; this can thereby
initiate metabolic dysfunction, leading to insulin resistance. Supporting evidence is de-
scribed below.

a. Overexpression of GLUT1 in skeletal-muscle-induced impairment of insulin-responsive glu-
cose uptake

Studies of transgenic mice with overexpression of GLUT1 in skeletal muscle showed
there was a 3–4 fold increase in basal glucose uptake and no stimulation of glucose uptake
by insulin in skeletal muscle, relative to wild-type control mice, whereas wild-type controls
had a 2–3 fold increase in glucose uptake in response to insulin [100]. The investigators,
Mueckler et al., commented: “Although blood glucose levels are reduced and fuel metabolism in
general is altered in the transgenic animals, we could detect no detrimental effect of these changes
on the mice” [100]. On further examination, the same group characterized the mechanism
of impaired insulin stimulation of skeletal muscle in GLUT1-overexpressing mice: there
was impaired recruitment of GLUT4 for glucose transport by insulin [101]. They explored
the mechanism and found that it involved increased hexosamine pathway activity [102].
Increased hexosamine pathway activity is an expected consequence of HK2-linked unsched-
uled glycolysis [31]. The impaired recruitment of GLUT4 for increased glucose transport
in response to insulin is one of the characteristics of clinical insulin resistance [103]. By
contrast, the overexpression of GLUT4 enhanced insulin sensitivity [104].

The overexpression of GLUT1 in skeletal muscle is expected to increase the in situ rate
of uptake of glucose in the fasting state, mimicking the effect of increased FPG with normal
GLUT1 expression. This suggests that increased glucose uptake in the fasting phase, in the
absence of increased insulin and recruitment of GLUT4 glucose transporters, may drive
the development of impaired GLUT4 responsiveness to insulin—conditions sustaining
HK2-linked unscheduled glycolysis.

There is evidence of the decreased expression of GLUT1 in the skeletal muscle of
patients with T2DM, but the effect of increased FPG more than compensates for this to
produce an increased rate of whole body glucose utilization in the fasting state [99]. It is,
perhaps, hitherto surprising that patients with T2DM and insulin resistance may exhibit
increased glucose metabolism in skeletal muscle in the fasting state, compared to healthy
controls. HK2-linked unscheduled glycolysis explains this.

b. Partial knockdown of hexokinase-2 (HK2 (−/+)) in mice improved glucose tolerance in the
late stage of glucose challenge

In mice with heterozygous deletion of HK2, there were indications of improved glucose
tolerance in the late stage of intraperitoneal glucose load. HK2(+/−) mice had lower plasma
glucose and insulin concentrations at 60 min after glucose challenge [105]. The benefits of
decreased HK2 on the glucose tolerance test are expected to develop at the late stage of the
glucose challenge because the stabilization of HK2 by glucose produces a time-dependent
increase in HK2 protein abundance linked to metabolic dysfunction. This surprising finding
was presented without explanation and requires further investigation. Lower basal levels
of HK2 may provide resistance to unscheduled glycolysis. The heterozygous knockdown
of HK2 can be viewed as a genetic control to counter the approximate doubling of HK2 in
high-glucose concentration-induced unscheduled glycolysis [13,17].

c. Overexpression of hexokinase-2 in skeletal muscle of mice impaired uptake of glucose on a high
fat diet in hyperinsulinemic euglycemic clamp studies

Transgenic mice overexpressing HK2 in their skeletal muscle were generated [106].
Subsequent studies with standard and high-fat diet (HFD) feeding [107] showed that fasting
blood glucose was increased in HFD compared with standard diet-fed wild-type mice
but not in transgenic HK2-overexpressing mice. In hyperinsulinemic euglycemic clamp
studies, the index of glucose uptake, Rg, was reported for gastrocnemius, superficial vastus
lateralis and soleus muscle during saline and insulin infusions. There was no difference
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in Rg when saline alone was infused, whereas it was increased during insulin infusion
in all muscles regardless of genotype or diet. For insulin-stimulated glucose uptake, the
overexpression of HK2 increased Rg in all muscles, compared to wild-type controls, of
standard-diet-fed mice. The authors report that HFD feeding “blunted insulin-stimulated Rg”
and “HK2 overexpression was unable to correct the impaired response”. Whilst this is correct, in
the HK2 transgenic mice, there was a ca. 60–70% decrease in Rg (p < 0.05) with HFD feeding,
compared to standard-diet feeding, whereas in the wild-type mice, there was a small, ca.
10–30%, decrease in Rg with HFD feeding, compared to standard diet feeding with no
significance reported—Figure 4 of Ref. [107]. This indicates that HK2 overexpression
impaired insulin-stimulated glucose uptake. It may be that the authors did not describe
this as it was an unexpected effect, counter to their hypothesis that “impaired muscle glucose
uptake resulting from high-fat feeding would be exposed in high flux states and could be corrected by
HK2 overexpression” [107]. The concentration of G6P in skeletal muscle was increased in the
sedentary state with overexpression of HK2 in the HFD-fed mice [107]. This is consistent
with the occurrence of HK2-linked unscheduled glycolysis in the fasting state and the
impairment of insulin-stimulated glucose uptake by muscle measured in clamp studies.
Increased HK2 expression in the normal diet may improve clamp glucose uptake through
high basal levels of glucose phosphorylation together with insulin and other regulatory
transcriptional control of glycolytic enzymes.

A further relevant study focused on the skeletal muscle glucose uptake and metabolism
in mice with overexpression of both GLUT1 and HK2 in their skeletal muscle. These mice
had 3.2 fold increased G6P concentrations and 7.5 fold increased glycogen levels in their
skeletal muscle on a standard diet. There was no change in basal or insulin-stimulated
whole-body glucose disposal [108]. In this transgenic model, skeletal muscle is chronically
exposed to increased G6P, which is expected to induce the increased transcription of
glycolytic enzymes through Mondo A/Mlx/G6P signaling. This negates the unscheduled
glycolysis that occurs when HK2 abundance occurs without an increase in the transcription
and activity of other glycolytic enzymes. In HK2-overexpressing mice (with a 7 fold increase
in skeletal muscle HK2 protein [108]), it is expected that there will be a marked increase of
HK2 in the cytosol detached from the mitochondria. This non-mitochondrial HK2 increases
metabolic channeling for glycogen synthesis in both the fasting and prandial phases [3,13].
This may explain the observed increased glycogen deposition in skeletal muscle in this
transgenic model.

d. Downstream metabolic signaling in skeletal muscle and adipose tissue in insulin resistance
resembles HK2-linked unscheduled glycolysis

The metabolic dysfunction characteristic of HK2-linked unscheduled glycolysis is
found in insulin resistance in skeletal muscle: hyperpolarization of mitochondria and
increased ROS formation, increased hexosamine pathway activity, and activation of PKC
and dicarbonyl stress [58–61]. Similar effects have been recorded in adipose tissue—apart
from the activation of the hexosamine pathway [63–67]. For the abnormal deposition of
glycogen as a biomarker of HK2-linked unscheduled glycolysis, this is confounded by the
decreased insulin signaling in insulin resistance in skeletal muscle and the dysregulation
of insulin-stimulated glycogen deposition [91,109]. However, increased glycogen deposi-
tion was found in adipose tissue in an animal model of insulin resistance and in clinical
obesity [67,110] (Table 1).

Currently, insulin resistance has no well-evidenced and accepted causative mecha-
nism and has been called a “malady without a mechanism” [103]. HK2-linked unscheduled
glycolysis may provide a missing contributory mechanism. The current hypotheses of
the mechanism of insulin resistance do not explain points a–c above. It has been pro-
posed that glucose entering muscle cells via GLUT4 is only available for glycolysis and
glycogen synthesis, whereas glucose entering by GLUT1 is available for other processes
contributing to insulin resistance, such as the hexosamine pathway [111]. However, the
glucose released from GLUT1 and GLUT4 transporters inside muscle cells is a common
glucose pool. The HK2 unscheduled glycolysis hypothesis explains these observations
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through the entry of glucose via GLUT1 independent of insulin, leading to increased HK2
through stabilization to proteolysis and a wave of increased glycolytic intermediates. By
contrast, entry of glucose via GLUT4 stimulated by insulin, with a concomitant stimulation
of HK2 expression, phosphofructokinase activity, and the expression of other glycolytic and
glycogenic enzymes, produces increased flux through glycolysis and glycogen synthesis
without marked increases in steady-state glycolytic intermediates—as discussed in [31].
The stabilization of HK2 to proteolysis with increased glucose metabolism and a related
increase in G6P and Mondo A/Mlx/G6P signaling may play a key role in the nutrient
sensing of skeletal muscle in fasting and insulin-resistant states. Indeed, Mondo A is also
known to be a contributary factor to the development of insulin resistance through its
increasing of the expression of thioredoxin interacting protein (TXNIP) [112], impairment
of insulin signaling, and increasing of lipogenesis [113,114].

From the hypothesis of HK2-linked unscheduled glycolysis in the development of
insulin resistance, two key predictions follow.

Prediction 1. Increased fasting plasma glucose concentration is an expected risk predictor for the
development of insulin resistance and T2DM.

There is, indeed, clinical evidence to support this. Increase in FPGs measured approxi-
mately 3 years apart was a risk predictor of development of increased insulin resistance and
T2DM, independent of change in 2 h plasma glucose in an oral glucose tolerance test [115].
FPG was also linked to both hepatic and extrahepatic insulin resistance [116].

Prediction 2. Insulin resistance is an expected characteristic of subjects with increased fasting
plasma glucose, including patients with T1DM.

The increased FPG found in patients with T1DM is expected to induce insulin resis-
tance. Indeed, studies by DeFronzo et al. found that insulin resistance was a prominent
feature of patients with T1DM, linked mainly to insulin resistance in peripheral tissues,
particularly skeletal muscle [92,117]. This was independent of changes in the insulin-
sensitizing hormone, adiponectin [118]. Hitherto, no explanation has been proposed
for this.

Further studies are now required to explore evidence for this hypothesis. A related
new approach to the treatment of insulin resistance is tRES-HESP, which corrects HK2-
linked unscheduled glycolysis [13,17]. In overweight and obese subjects in the Healthy
Aging Through Functional Food (HATFF) clinical trial [44], this treatment corrected insulin
resistance and therefore offers a new route to the prevention, reversal, and treatment
of T2DM.

6. How May Glyoxalase 1 Inducer, trans-Resveratrol, and Hesperetin Prevent the
Development of Vascular Complications of Diabetes and Correct Insulin Resistance in
Skeletal Muscle and Adipose Tissue?

tRES-HESP was developed through the optimization of the induction of Glo1 expres-
sion using a screen of dietary bioactive compounds and synergistic combinations, thereby
activating Nrf2 and increasing Glo1 transcription by binding to a functional ARE of the
GLO1 gene [43,44]. Increased concentrations of MG and MG-mediated protein glycation
produce increased misfolding of proteins and activation of the unfolded protein response
(UPR) [13,17,119]. Protein glycation by MG is particularly damaging because it often
occurs in the functional sites of proteins, producing misfolding and inactivation. It also
targets chaperonin complexes and proteasome subunits, which are required for correct
protein folding and removal of damaged proteins, respectively. That is, protein glycation
by MG also impairs the activities of proteins that correct misfolding or target degradation-
misfolded proteins [13]. Further evidence of the impact of MG on protein misfolding
includes the increased Golgi-to-endoplasmic reticulum retrograde transport and ubiquitin
E3 ligases involved in misfolded protein degradation in fibroblasts under dicarbonyl stress
in high glucose concentrations [17], likely supporting endoplasmic reticulum-associated
protein degradation of misfolded proteins in the UPR [119]. The prevention of protein
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glycation by MG by increasing the expression of Glo1 is a therapeutic strategy to pre-
vent and slow the development of the vascular complications of diabetes, as reviewed
in [120]. However, in correcting HK2-linked glycolytic overload, tRES-HESP may have
a more profound therapeutic response by normalizing multiple pathways of metabolic
dysfunction in high glucose concentration by addressing the initiating source of biochemi-
cal dysfunction (Figures 1 and 2). For example, with tRES-HESP treatment, human aortal
endothelial cells maintained normal levels of glucose metabolism when cultured in high
glucose concentrations [13]. No other treatment previously proposed for the vascular
complications of diabetes produced this. This new approach to therapy may be more
effective because it addresses the likely initiating mechanism of the hyperglycemia-linked
mechanisms contributing to the development of the vascular complications of diabetes.

From the hypothesized contribution of HK2-linked unscheduled glycolysis to the de-
velopment of insulin resistance, the activation of the UPR provides a key contributory role,
increasing the expression of established mediators of insulin resistance, TXNIP and tumor
necrosis factor-α (TNFα). In UPR activation, inositol requiring enzyme-1α (IRE1α) stabi-
lizes TXNIP mRNA to increase its expression and activity [121]. TXNIP decreases glucose
uptake by GLUT4 in skeletal muscle, pancreatic beta-cell mass, and insulin secretion, and
increases hepatic gluconeogenesis [122–124]. Inflammatory signaling mediated through
X box-binding protein 1 (XBP1) of the UPR increases histone H3 lysine 4 methyltrans-
ferase, SET7/9, increasing the expression of p65 in the NF-κB system and inflammatory
mediators [125,126], including TNFα—a key contributor to insulin resistance in skeletal
muscle [127,128]. The correction of insulin resistance by tRES-HESP in overweight and
obese subjects in the HATFF study correlated with improvements in the expression of
TXNIP and TNFα [129].

tRES-HESP also increased the expression of G6PD, decreasing cellular levels of G6P,
thereby decreasing the transcriptional action of Mondo A/Mlx/G6P and the expression
of HK2 [13]. If HK2-linked unscheduled glycolysis contributes to insulin resistance, de-
creases in HK2 expression are expected to decrease insulin resistance and improve glucose
tolerance. Decreases in Mondo A/Mlx/G6P transcriptional activity are also expected to de-
crease the expression of other ChRE-linked genes—TXNIP, lipogenic enzymes, and others
(Figure 2)—which may improve glucose tolerance and decrease insulin resistance [113,130].
Interestingly, functional genomic studies with tissue-selective activation of Nrf2 (by partial
knockdown of Keap1) in the obesogenic HFD-fed mouse model of insulin resistance indi-
cated that the selective activation of Nrf2 in skeletal muscle and the liver corrected insulin
resistance and dysglycemia, respectively [131]. There is the expectation, therefore, that the
activation of Nrf2 by tRES-HESP will also produce both of these responses, which was
found in the HATFF study [44].

We have proposed that tRES and HESP synergize to activate Nrf2 through the up-
stream inhibition of phosphodiesterase (PDE) [132] and the activation of protein kinase
A (PKA) [133], respectively (Figure 3). The Nrf2 system is a constitutive translocational
oscillator, with oscillations of Nrf2 moving in and out of the cell nucleus, increasing in
frequency when activated [134]. HESP likely drives increased Nrf2 oscillation frequency
through the activation of PKA and Fyn kinase downstream at ≥1 µM [44,133,135], and
tRES decreases the acetylation-driven nuclear inactivation of Nrf2 by increasing in situ
activity by inhibiting cAMP phosphodiesterases, activating AMP-activated protein kinase
(AMPK), and increasing NAD+ and the in situ activity of sirtuin-1 [132], with HESP also
synergizing for AMPK activation and sirtuin-1 through the PKA pathway [132,133,136].

There are multiple pharmacological synergisms of tRES and HESP, including the
activation of sirtuin-1 (Sirt1) by both increased provision of NAD+ cofactor and activa-
tory phosphorylation by PKA. The activation of Sirt1 and AMPK may also contribute
to the correction of insulin resistance by Glo1 inducer. The activation of AMPK is con-
sidered to mediate the health-beneficial effects of exercise and caloric restriction, and to
contribute to the mechanism of action of metformin—a widely used drug in the treatment of
T2DM [137,138]. Metformin is not a competent activator of Nrf2 clinically: the peak plasma
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concentration of metformin is ca. 20 µM, whereas the activation of Nrf2 by metformin
occurs in the concentration range of 600–2700 µM [139,140]. Metformin improves dysg-
lycemia in patients with T2DM mainly by decreasing hepatic glucose production [141]. This
is likely through a PKA-dependent mechanism [142], as well as through some improvement
in the insulin sensitivity of peripheral tissues by mechanisms that remain unclear [143]. It
is interesting to speculate that, through the improvement of dysglycemia, metformin may
decrease HK2-linked unscheduled glycolysis and thereby contribute to partial improve-
ment in insulin resistance and the prevention of the vascular complications of diabetes. As
an indication of its ability to decrease metabolic dysfunction and its likely activation of the
UPR, metformin decreased plasma MG concentration in patients with T2DM [144].
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7. Concluding Remarks

HK2-linked glycolytic overload and unscheduled glycolysis offers an improved hy-
pothesis to explain metabolic dysfunction contributing to the development of insulin
resistance and the vascular complications of diabetes. A dietary supplement treatment,
tRES-HESP, has already been developed and evaluated to exploit this hypothesis with
beneficial effects in overweight and obese subjects in correcting insulin resistance and
improving dysglycemia and vascular inflammation [44,129]. Further studies are now re-
quired to evaluate tRES-HESP for the prevention and early-stage reversal of T2DM and the
treatment of the vascular complications of diabetes.
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