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Inferring potential landscapes from noisy
trajectories of particles
within an optical feedback trap

J. Shepard Bryan IV,1 Prithviraj Basak,2 John Bechhoefer,2,* and Steve Pressé1,3,4,*

SUMMARY

While particle trajectories encode information on their governing potentials, po-
tentials can be challenging to robustly extract from trajectories. Measurement er-
rors may corrupt a particle’s position, and sparse sampling of the potential limits
data in higher energy regions such as barriers. We develop a Bayesian method to
infer potentials from trajectories corrupted by Markovian measurement noise
without assuming prior functional form on the potentials. As an alternative to
Gaussian process priors over potentials, we introduce structured kernel interpo-
lation to theNatural Scienceswhich allows us to extend our analysis to large data-
sets. Structured-Kernel-Interpolation Priors for Potential Energy Reconstruction
(SKIPPER) is validated on 1D and 2D experimental trajectories for particles in a
feedback trap.

INTRODUCTION

Determining potentials governing particle dynamics is of fundamental relevance to materials science

(Deringer et al., 2019; Handle and Sciortino, 2018; Oh et al., 2022), biology (Makarov, 2015; Wang and Fer-

guson, 2016; Wang et al., 1997; Chu et al., 2013; Kang and Liu, 2021; Wu et al., 2021), and beyond (Garcı́a

et al., 2018; Dudko et al., 2006; Preisler et al., 2004; La Nave et al., 2002). For example, shapes of energy

landscapes provide reduced dimensional descriptions of dynamics along reaction coordinates (Wang

and Ferguson, 2016; Wang and Verkhivker, 2003; Chu et al., 2013) and key estimates of thermodynamic

and kinetic quantities (Hänggi et al., 1990; Berezhkovskii et al., 2017; Bessarab et al., 2013). Shapes of en-

ergy landscapes also provide key insight intomolecular function such as the periodic three-well potential of

the FoF1-ATP synthase rotary motor (Wang and Oster, 1998; Toyabe et al., 2012) and the asymmetric, lin-

early periodic potentials responsible for kinesin’s processivity (Kolomeisky and Fisher, 2007). In a different

class of applications, fundamental experimental tests of statistical physics (Proesmans et al., 2020;Wu et al.,

2009) often employ potentials with deliberately complex shapes created from feedback traps based on

electrical (Cohen, 2005; Gavrilov et al., 2013), optical (Kumar and Bechhoefer, 2018a; Albay et al., 2018),

or thermal forces (Braun et al., 2015), or optically generated with phase masks (Hayashi et al., 2008) or

spatial light modulators (Chupeau et al., 2020).

Inferring naturally occurring energy landscapes or verifying artificially created potentials demands a

method free of a priori assumptions on the potential’s shape. This requirement rules out many commonly

used methods devised for harmonic systems (Neuman and Block, 2004; Berg-Sørensen and Flyvbjerg,

2004; Jones et al., 2015; Gieseler et al., 2021) or alternative, otherwise-limited, methods to deduce poten-

tials from data (Reif, 2009; Türkcan et al., 2012; Garcı́a et al., 2018; Wang et al., 2019; Frishman and Ron-

ceray, 2020; Yang et al., 2021; Stilgoe et al., 2021). For example, some methods (Reif, 2009; Türkcan

et al., 2012) necessarily rely on binned data, relating potential energies to Boltzmann weights or average

apparent force, thereby limiting the frequency of data in each bin and requiring that equilibrium be

reached before data acquisition. Other methods assume stitched locally harmonic forms (Garcı́a et al.,

2018). Still others use neural networks (Wang et al., 2019) to deduce potentials; the uncertainty originating

frommeasurement error and data sparsity is then not easily propagated to local uncertainty estimates over

the inferred potential.

In previous work (Bryan IV et al., 2020), we introduced a method starting from noiseless one-dimensional

time series data to infer effective potential landscapes without binning, or assuming a potential form,
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even in the case of limited sampling, while admitting full posterior inference (and thus error bars or, equiv-

alently, credible intervals) over any candidate potentials arising from sparse data. Our method was, how-

ever, fundamentally limited to one dimension (because of the poor scaling of the computation with respect

to the dataset size). As such, the method could not distinguish the effects of inherent stochasticity in the

dynamics due to temperature, say, and noise introduced from the measurement apparatus. It would there-

fore be helpful to develop a method capable of discriminating between both noise sources and learning

features of both just as the perennial hidden Markov model achieves for discrete state spaces (Rabiner

and Juang, 1986; Sgouralis and Pressé, 2017).

Here, we introduce a method to infer potentials from noisy, multidimensional data often sampled in a

limited fashion. We take advantage of tools from Bayesian nonparametrics to place priors on potentials

assuming no prior functional forms for these potential. To do so, we introduce structured-kernel-interpo-

lation Gaussian processes (Wilson and Nickisch, 2015) (SKI-GP) to the Natural Sciences in order to circum-

vent the otherwise-prohibitive computational scaling of widely used Gaussian processes. In our applica-

tion, we utilize the power of SKI-GP to create Structured-Kernel-Interpolation Priors for Potential Energy

Reconstruction (SKIPPER). SKIPPER can be inferred from trajectories while meeting all the following criteria

simultaneously: 1) no reliance on binning or pre-processing, 2) no assumed analytic potential form, 3) in-

ferences drawn from posteriors, allowing for spatially nonuniform uncertainties to be informed by local

density of available data in specific regions of the potential (e.g., fewer data points around barriers), 4)

treatment of multidimensional trajectories, 5) rigorous incorporation of measurement noise through likeli-

hoods, and 6) compatible with lightly sampled trajectories. No other existing method meets all six criteria

simultaneously.

This work serves the dual role of a method for inferring potentials with SKIPPER, as well as a demonstration

of how to incorporate SKI-GPs into an inference framework. In particular, we demonstrate how to construct

an effective kernel matrix for an unknown variable (the potential landscape) and how to directly sample the

variable from a conditional posterior.

RESULTS

We benchmark SKIPPER on experimental data on a double-well potential and show that we can accurately

infer the shape of the potential. We then show that SKI-GP allows us to explore 2D time series data (pre-

viously infeasible due to large amounts of data using a naive GP). We finally apply SKIPPER to trajectories in

a high-barrier landscape where traces are too short to reach equilibrium. A demonstration on data from a

simple harmonic well, a complicated 2D potential, and robustness tests over parameters of interest can be

found in the SI (Bryan IV et al., 2022).

For testing the accuracy and effectiveness of SKIPPER, we simultaneously collected two measurements of

each trajectory, one using a detector with low measurement noise and one using a second detector with

higher measurement noise as shown in section. We refer to the low-noise trajectory as the ‘‘ground truth’’

trajectory, although it itself is subject to a small amount of measurement noise. For each experiment, we

impose a potential on the particle using our feedback trap. We refer to this applied potential as the

‘‘ground truth’’ potential, although it may differ from the actual potential the particle experiences due to

errors in the feedback trap setup, as well as experimental limitations such as drift.

Demonstration on simulated data

We started by analyzing simulated trajectories from a simple harmonic well. Results are shown in Figure 1.

Each column shows the inferred potential (top row) and inferred trajectory (bottom row) for each dataset

analyzed. We provide uncertainties and ground truth estimates for both the potential and trajectory. Addi-

tionally, for sake of comparison, we also show the potential estimated using the Boltzmann method (Bryan

IV et al., 2020; Reif, 2009) (discussed in section). We highlight that the Boltzmann method does not provide

trajectory estimates. By contrast, SKIPPER infers those positions obscured by noise.

Figure 1 shows that the ground truth potential and trajectory fall within our error bars (credible interval) for

all datasets up to ND = 7. At ND = 7, the inferred potential develops bumps where it is unable to infer the

trajectory accurately, resulting in a 2 nm shift of the potential well minimum. On the other hand, the Boltz-

mann method (see earlier discussion) does well in the low-noise case (Figure 1, left column) but fails as the

noise introduced grows (Figure 1, right column). This is expected, as measurement noise broadens the
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position histogram and thereby the potential. Using SKIPPER, the estimate of the potential drops at the

edges of the spatial region sampled by the particle, since the high-potential edges are rarely visited by

the particle. We thus have insufficient information through the likelihood to inform those regions, and

the inferred potential reverts back to the prior (set at 0, as described earlier).

In addition to inferring estimates for the potential energy landscape and trajectory, we also estimate the

magnitude of the measurement noise for each experiment. Figure 2 shows the inferred measurement noise

magnitudes obtained from SKIPPER for each single-well experiment, with the mean of our PDFs within 5%

of the ‘‘ground truth’’ measurement, for each dataset analyzed.

Next, to show the full utility of SKIPPER, we analyzed simulated data from a complicated 2D potential with

wells in the shape of a winky face. The winky face was constructed from a grid of Gaussian wells with po-

tential energy corresponding to the pixels of a winky face. The winky face is 133 13 pixels, where each pixel

is 10 nm wide. The eyes and mouth are about 2 kT less than the rest of the face. The white space around the

face has potential energy above 20 kT, to ensure that the particle stays inside the face. We simulated a

50,000 data point trace of a particle moving along the winky face.

Figure 3 shows results on this potential. Note that potential energies greater than 5 kT and potential en-

ergies in areas where the particle is not encountered are displayed as white background. In the top row

of Figure 3, when measurement noise is small compared to the size of the face (1 vs 130 nm), both

SKIPPER and the Boltzmann method are able to reconstruct a potential energy landscape that is recogniz-

ably a winky face. However, with moderate noise (s = 5 nm), SKIPPER is able to pick up the fine detail in the

face that is missed by the Boltzmann method (Figure 3 middle row). In the case of high noise (s = 10 nm),

SKIPPER’s advantage over the Boltzmann method is more dramatic, as SKIPPER’s reconstruction is still

recognizably a winky face, whereas the Boltzmann method’s reconstruction not only fails to resemble a

face but also overestimates the width of the face (Figure 3 bottom row).

Robustness tests on simulated data

In order to probe SKIPPER’s robusteness with respect to parameters of interest, we demonstrate SKIPPER

on data simulated with a single-well potential analyzed under different circumstances.

First, we tested SKIPPER’s robustness with respect to the number of data points on simulated data. Sup-

plementary figure SI-1 shows the results on simulated data. Trivially, when the trajectory is so short that

the particle does not travel across the well (N = 50 as in Fig. SI-1 left panel), we cannot infer the shape

Figure 1. Demonstration on data from a harmonic potential

Here, we analyze four datasets with increasingmeasurement noise. For each dataset, we plot the inferred potential in the top row along with the ground truth

and the results of the Boltzmann method. We plot the inferred trajectory with uncertainty against the ground truth in the bottom row. For clarity, we zoom

into a region of the trajectory (200 ms–201 ms). Measurement noise is added by increasing the optical density of the ND filter. The optical densities of the

sub-figures A, B, C, and D are 0, 0.3, 0.5, and 0.6, respectively. Each trace contains 50,000 data points.
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of the potential. When the particle samples the entire well (N = 500 as in Fig. SI-1 s panel), we infer the gen-

eral shape of the potential, but the inference is highly impacted by small stochastic anomalies. See for

example the far right of the potential, where a few higher- and lower-than-expected thermal kicks at the

right side of the well caused SKIPPER to infer a second well. For reasonable inference, a few thousand

points suffice (N = 5000 in Fig. SI-1, third panel). When there are tens of thousands of data points (N =

50; 000 in Fig. SI-1), our inferred potential almost exactly overlaps with the ground truth.

We then tested SKIPPER’s robustness with respect to measurement noise in order to probe the regime in

which SKIPPER can be used. Supplementary figure SI-2 shows the results. SKIPPER was robust to measure-

ment noise for the four values of measurement noise variance chosen, but could not reproduce the poten-

tial energy landscape when the magnitude of the noise was of the same order as the maximum range of the

particle. Even so, when the magnitude of the noise was up to 10% the maximum range of the particle (s =

10 nm), we nonetheless inferred the potential energy landscape accurately.

Double well

We analyzed data from a real particle in a double-well potential. Results are shown in Figure 4. Each column

shows the inferred potential (top row) and inferred trajectory (bottom row) for each dataset analyzed. We

provide uncertainties and ground truth estimates for both the potential and trajectory. Additionally, for

sake of comparison, we also show the potential estimated using the Boltzmann method (Bryan IV et al.,

2020; Reif, 2009). Briefly, the Boltzmann method, as outlined in the SI (Bryan IV et al., 2022), assumes that

the bead localizations are sampled from the Boltzmann distribution and derives an estimate of the poten-

tial in discretized bins of space from the log of the relative frequency the bead is seen in each bin. We high-

light that the Boltzmann method does not provide trajectory estimates. By contrast, SKIPPER infers those

positions obscured by noise. Figure 4 shows that the ground truth potential and trajectory fall within the

estimated range even when the measurement noise is so large that the particle is occasionally seen in

the wrong well (Figure 4, top right panel). Both SKIPPER and the Boltzmann method slightly overestimate

the potential of the left well at the lowest noise level, because the (short) trajectory spends too much time

in the right well, leaving the left well undersampled.

2D single well

Next, we analyzed data from a real particle in a 2D harmonic potential. Results are shown in Figure 5. For clarity,

wedo not showuncertainties, trajectories, or Boltzmann-method estimates for the 2Dplot, but wedo show them

for a 1D potential slice. Despite the added complexity in inferring the potential in full 2D at once, our estimates

fall within uncertainty in regions where data are appreciably sampled, even at high measurement noise.

Trajectories with limited sampling

One advantage of SKIPPER is that it does not rely on equilibrium assumptions. As such, we can analyze trajec-

tories initiating from far from equillibrium conditions and with limited sampling such that the particle does not

reach equillibrium in the duration of the sampling. To demonstrate this, we created real datasets where the

Figure 2. Inferred noise levels from experiments on harmonic well

We analyze four datasets with increasing measurement noise. For each dataset, we plot the probability density function of the inferred magnitude of the

noise against a vertical line representing the best estimate inferred using the calibration techniques outlined earlier, with a shaded pink region representing

the uncertainty in the calibrations establishing ‘‘ground truth.’’ Measurement noise is added by increasing the optical density of the ND filter, thereby

decreasing the light intensity incident on the QPD. The optical densities of sub-figures (A, B, C, and D) are 0, 0.3, 0.5, and 0.6, respectively. Each trace

contains 50,000 data points.
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particle starts at the top of the potential well and ‘‘rolls off’’ to either side. The trajectories are short (5ms), so that

the particle does not reach equilibrium during the time trace. By including the likelihoods from 100 such trajec-

tories into our posterior, we gain information on either side of the well and can recreate the full potential, even

though each individual trajectory is initiated from the top and samples only one well.

In the first four panels of Figure 6, we illustrate 4 of 100 trajectories used to reconstruct the potential. We

note that all trajectories start from the top of the barrier (defined as x = 0), and none of the trajectories fully

sample both wells.

As all trajectories start from the top of the well, we collect a disproportionally large number of data

at the top of the well. Indeed, for our 10 kT barrier with roughly 50,000 samples, we would not expect

Figure 3. Demonstration on 2D winky face potential

Here, we show results from inference on a 2D potential with wells in the shape of a winky face. The left column shows the

ground truth potential energy landscape. The middle column shows inference using SKIPPER. The right column shows

inference using the Boltzmann histogram method. The top row analyzes data simulated with 1 nm measurement noise.

The middle row analyzes data simulated with 5 nm measurement noise. The bottom row analyzes data simulated with

10 nm measurement noise. Note that in our display pixels with potential energy greater than 5 kT are white.

Figure 4. Demonstration on data from a double-well potential

We analyze four datasets with increasing measurement noise. For each dataset, we plot the inferred potential in the top row alongside the ground truth and

results of the Boltzmann method. We plot the inferred trajectory against the ground truth in the bottom row. For clarity, we zoom into a region of the

trajectory (200 ms–201 ms). Measurement noise is added by increasing the optical density of the ND filter. The optical densities of the sub-figures (A, B, C,

and D) are 0, 0.3, 0.5, and 0.7, respectively. Each trace contains 50,000 data points.
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to see any samples at the top of barrier in an experiment taken after the bead had reached

equilibrium. Despite this extreme oversampling, SKIPPER is able to infer the height of the barrier to

within 15% accuracy (SKIPPER predicts an 8.6 kT barrier; the barrier of the design potential is 10 kT ).

Our error bar at the top of the barrier in Figure 6 is artificially low because every trajectory initiates

from the top.

DISCUSSION

In conclusion, inferring potential landscapes is a key step toward providing a reduced dimensional

description of complex systems (Wang et al., 2019; Chmiela et al., 2017; Espanol and Zuniga, 2011; Izvekov

and Voth, 2005; Manzhos et al., 2015). Here, we go beyond existing methods by providing a means of ob-

taining potentials, among multiple other quantities, from time series data corrupted by measurement

noise. We do so by efficiently learning the potential from the rawest form of data, point-by-point. That

is, we achieve this without data pre-processing (e.g., binning), assuming an analytical potential form,

nor requiring equilibrium conditions. As SKIPPER is Bayesian, it allows for direct error propagation to

the final estimate of the inferred potential shape. In other words, SKIPPER differs from others assuming

analytic potential forms (Pérez-Garcı́a et al., 2021) or projection onto basis functions (Frishman and Ron-

ceray, 2020), as well as methods relying on neural nets (Manzhos et al., 2015) that cannot currently prop-

agate experimental uncertainty or provide error bars reflecting the amount of data informing the potential

at a particular location. Importantly, unlike the Boltzmann method (Reif, 2009), SKIPPER does not invoke

any equilibrium assumption and can consider trajectories initiated from positions not sampled from an

equilibrium distribution. This feature is especially relevant in studying landscapes with rarely sampled re-

gions of space and, in particular, far from equilibrium.

SKIPPER analyzes time-independent potential energy landscapes. Realistic potentials may however vary

with time (Sánchez-Sánchez et al., 2019; León-Montiel and Quinto-Su, 2017). For this reason, it may be ad-

vantageous to adapt our framework to handle time-varying potentials. This can be done by either treating

the potential as a Markov process where the potential is allowed to vary slightly each frame (Williams and

Figure 5. Demonstration on data from a 2D harmonic potential

Top row: three datasets with increasing measurement noise. Each column shows the inferred potential results along with the ground truth potential for a

different dataset. At the top, we show the inferred potential and ground truth plotted in 2D. Bottom row: 1D slice taken through the middle of the potential.

Measurement noise is added by increasing the optical density of the ND filter. The optical densities of ND filter used in the sub-figures (A, B, and C) are 0.0,

0.3, and 0.7, respectively.
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Rasmussen, 2006), or by extending the placement of inducing points into a time dimension, and adapting

the kernel function accordingly.

In this work, we assume a Gaussian noise model, but we can, in principle, utilize different noise models by

substituting Equation 4 for the desired model. As SKI-GP is general and the measurement noise model can

be tuned, moving forward we could apply modified SKIPPER algorithms to map potential landscapes from

force spectroscopy (Gupta et al., 2011) or even single molecule fluorescence energy transfer (Kilic et al.,

2021; Sgouralis et al., 2018), with applications to inferring protein conformational dynamics or binding ki-

netics (Schuler and Eaton, 2008; Chung and Eaton, 2018; Sturzenegger et al., 2018; Pressé et al., 2013,

2014). In inferring smooth potentials, we would move beyond the need to require discrete states inherent

to traditional analyses paradigms such as hidden Markov models (Rabiner and Juang, 1986; Sgouralis and

Pressé, 2017).

Beyond inferring potentials, we believe that SKI-GPs may become a powerful tool within the Natural

Sciences especially in cases, such as this one, where we deal with noisy and abundant data while

learning continuous functions from data. The SKI-GP prior shifts the computational burden from inferring

the potential at every data point, to inferring the potential at select inducing points allowing the

computation time to scale cubically with the number of inducing points rather than cubically with

the number of data points. As the number of inducing points required to create a detailed map

of the potential is often far less than the number of data points, this allows for significant computational

cost reduction. Furthermore, as the inducing points are static, they allow for pre-computation of

the kernel matrix despite the fact that locations of the data points change at each iteration of the

Gibbs sampler. As demonstrated in this work, SKI-GPs can be used to accurately and tractably map fields

of variables. Such fields are ubiquitous in nature, including temperature maps (Aigouy et al., 2005), op-

tical absorption coefficient maps (Yuan and Jiang, 2006), and diffusion coefficient maps (Taylor and Bu-

shell, 1985; Weistuch and Pressé, 2017). We believe that this work can serve as a demonstration for how

to incorporate SKI-GPs into inference frameworks that can be extended beyond potential learning.

Limitations of the study

The model formulation requires that potentials are time independent and measurement noise is Gaussian

distributed. The time scales and drag coefficient are assumed to be large enough to approximate motion

with overdamped Langevin dynamics.

Figure 6. Demonstration of data from experimental trajectories with limited sampling

We reconstruct a potential by analyzing many short (500 data points) trajectories with limited sampling. The left four panels show four of the 100 small data

segments used to reconstruct the potential. Each trajectory starts at the top of the potential and rolls off to either side. The far right shows the inferred

potential plotted with uncertainty overlaid on the ground truth potential and the potential inferred using the Boltzmann method. For comparison, the

inferred and ground truth energy landscapes were shifted so that the lowest point is set to 0 kT .
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Hariadi, R.F., and Pressé, S. (2019). A bayesian
nonparametric approach to single molecule
forster resonance energy transfer. J. Phys. Chem.
B 123, 675–688.

ll
OPEN ACCESS

iScience 25, 104731, September 16, 2022 9

iScience
Article

http://refhub.elsevier.com/S2589-0042(22)01003-3/sref9
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref9
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref9
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref9
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref10
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref10
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref10
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref10
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref11
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref11
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref11
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref11
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref11
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref12
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref12
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref12
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref13
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref13
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref13
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref13
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref14
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref14
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref14
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref15
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref15
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref15
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref15
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref16
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref16
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref16
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref16
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref17
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref17
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref17
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref18
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref18
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref18
https://doi.org/10.48550/arXiv.1402.1412
https://doi.org/10.48550/arXiv.1402.1412
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref20
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref20
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref20
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref20
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref20
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref21
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref21
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref21
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref21
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref21
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref22
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref22
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref22
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref23
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref23
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref23
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref23
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref23
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref24
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref24
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref24
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref24
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref24
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref24
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref25
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref25
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref25
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref25
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref25
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref25
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref26
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref26
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref26
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref27
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref27
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref27
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref28
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref28
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref28
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref28
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref29
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref29
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref29
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref29
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref29
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref30
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref30
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref30
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref31
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref31
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref32
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref32
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref32
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref33
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref33
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref33
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref33
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref34
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref34
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref34
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref34
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref35
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref35
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref35
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref36
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref36
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref36
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref37
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref37
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref37
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref37
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref37
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref38
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref38
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref38
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref39
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref39
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref39
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref40
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref40
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref41
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref41
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref41
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref41
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref42
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref42
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref42
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref43
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref43
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref43
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref43
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref43
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref44
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref44
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref45
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref45
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref45
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref45
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref45
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref46
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref46
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref46
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref46
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref46
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref46
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref47
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref47
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref47
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref47
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref48
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref48
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref48
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref49
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref49
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref49
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref49
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref49
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref50
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref50
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref50
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref51
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref51
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref51
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref52
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref52
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref53
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref53
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref53
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref53
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref54
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref54
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref54
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref55
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref55
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref55
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref55
http://refhub.elsevier.com/S2589-0042(22)01003-3/sref55


Sgouralis, I., and Pressé, S. (2017). Icon: an
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METHOD DETAILS

Experimental apparatus

The experiment is done on a modified version of the feedback optical tweezer used in various stochastic

thermodynamics experiments involving virtual potentials (Kumar and Bechhoefer, 2018a, 2020). The sche-

matics of the setup are provided in Fig. SI-3. We used a continuous-wave diode-pumped laser (HÜBNER

Photonics, Cobolt Samba, 1.5 W, 532 nm) and a custom-built microscope to construct the optical trap

on a vibration-isolation table (Melles Griot). We split the laser into a trapping-beam and a detection-

beam using a 90:10 beam splitter. The trapping beam then passes through a pair of acousto-optic deflec-

tors (DTSXY-250-532, AA Opto Electronic), which allows us to deflect the beam in the orthogonal XY plane.

We can steer the angle of the beam and also its intensity using analog voltage-controlled oscillators

(DFRA10Y-B-0-60.90, AAOpto Electronic). We increase the beam-diameter using a two-lens system in tele-

scopic configuration to overfill the back aperture of the trapping microscope objective (MO1 in Figure S3).

Then a 4f relay system images the steering point of the AOD on the back aperture of MO2. A water-immer-

sion, high-numerical-aperture objective (MO2, Olympus 60X, UPlanSApo, NA = 1.2) is used for trapping

1.5 m diameter spherical silica beads (Bangs Laboratories) in aqueous solution (SC).

The detection beam is passed through a half-wave plate (/2), so that its polarization is orthogonal to the

trapping beam, to avoid unwanted interference. It is focused using a low-numerical-aperture microscope

objective (MO1, 40X, NA = 0.4) antiparallel to the trapping objective MO2. The loosely focused detection

beam (compared to the trapping beam) has a larger focal spot and offers a high linear range for the posi-

tion detection. We can also adjust the detection plane using a 4f relay lens system. The forward scattered

detection beam from the trapped bead is collected by the trapping objective MO2 and transmitted

through the polarizing beam splitter (PBS). The PBS reflects the trapping beam and thus separates the

detection beam. We also place another linear polarizer (P) after the PBS to minimize the amount of leaked

trapping laser. The detection beam is then separated using a beam splitter on a pair of quadrant

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Igor Pro 9 WaveMetrics https://www.wavemetrics.com

Numba 0.55.2 Numba https://numba.pydata.org/

PotentialLearner Zenodo https://doi.org/10.5281/zenodo.6680638

Data Zenodo https://doi.org/10.5281/zenodo.6680673
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photodiodes (QPD, First Sensor, QP50-6-18u-SD2). We control the intensity of the detection beam on

QPD1 by placing a neutral density filter (ND) of desired strength and thus control the signal-to-noise ratio

(SNR) on QPD1.

A red LED (660nm, Thorlabs, M660L4) illuminates the trapped particle for imaging onto a camera. The light

from the LED enters the detection object through a long-pass filter (LPF, cutoff wavelength 585 nm, Ed-

mond Optics) which reflects the detection beam. The collected illumination light is separated by a

short-pass filter (SPF, cutoff wavelength 600 nm, Edmond Optics) and reflected onto a camera (FLIR

BFS-U3-04S2M�CS).

Using a LabView program, we digitize the analog signal from the pair of QPDs by a field programmable

gate array (FPGA, National Instruments, NI PCIe-7857). The voltage signals are then calibrated as position

signals using aQPD-AOD-cameramethod (Kumar and Bechhoefer, 2018b). The FPGA runs the control loop

and uses a programmed feedback rule to send the appropriate control signal to the AODs.

Measurement noise

Here we discuss the estimation of measurement noise for our experimental setup. Briefly, we obtain an es-

timate of the noise by recording two simultaneous trajectories of a particle and finding the difference be-

tween the trajectories. As both measured trajectories should be equal in the limit of zero noise, we can

interpret any deviation between the measured trajectories as coming from noise.

We start by applying a triangle wave voltage of frequency 1.6 Hz to the AOD, to move a bead linearly along

the x axis. We record the beads motion at 100 kHz using two simultaneous detectors giving output x1ðtÞ
and x2ðtÞ, respectively. We demonstrate this idea in Figure S4A. Figure S4B shows that the difference

x1 � x2 follows a Gaussian distribution. The mean of the Gaussian distribution shown in Fig. SI-4B, has a

nonzero value of 0:28G0:02 nm, which arises from nonlinear calibration errors in the two detectors. In Fig-

ure S4C, we verify that the autocorrelation is flat, indicating that each position measurement has indepen-

dent measurement noise.

To calculate the variance of the measurement noise, we denote the SD of the detectors s1 and s2,

respectively. For Gaussian distributed measurement noise x1 � x2 is also Gaussian, with variance equal

to s2x1 +s2x2 .

We can fit the power spectral density of x1 � x2 with the aliased Lorentzian expression for discretely

sampled times series (Berg-Sørensen and Flyvbjerg, 2004). Because the measurement noise is Gaussian,

we add a noise term to the fitting function. Thus we can estimate the noise of each trajectory by integrating

the noise term over the frequency domain. From this, we estimate standard deviations of noise in x1 and x2
as 3:1G0:3 nm and 3:8G0:4 nm, respectively.

Data acquisition

We performed experiments using a feedback optical tweezer, whose details are given in section and have

been described in previous work (Kumar and Bechhoefer, 2018a). Briefly, we trap a silica bead of 1.5 m

diameter using an optical tweezer, which creates a harmonic well without feedback. By applying feedback,

we change the shape of the potential to a double well along one of the axes. We measure the position of a

bead with two different quadrant photodiodes (QPD) simultaneously to give us two trajectories (x1 and x2)

with two different values of signal-to-noise (SNR) as explained in the section). One detector has high SNR

and is used for feedback to create the desired virtual potential (Jun and Bechhoefer, 2012); the other has an

adjustable SNR and is used to explore inferences from measured signals with lower SNR. We reduce the

SNR in the other detector by placing neutral density (ND) filters of increasing optical density (OD) in front

of it. Thus, we can use SKIPPER on the same trajectory over two different experimental SNRs and compare

performance. We estimate the measurement noise and SNR in each detector from the noise floor of the

power spectrum (see section).

QUANTIFICATION AND STATISTICAL ANALYSIS

Concretely, our goal is to use noisy positional measurements, y1:N, to infer all unknowns: 1) the potential at

each point in space, Uð ,Þ (with UðxÞ denoting the potential evaluated at x); 2) the friction coefficient, z;
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3) the magnitude of the measurement noise, s2 (under a Gaussian noise model); and 4) the actual position

at each time, x1:N. Toward achieving our goal, we construct a joint posterior probability distribution over all

unknowns. As our posterior does not admit an analytic form, we devise an efficient Monte Carlo strategy to

sample from it.

Dynamics

We describe the dynamics of the particle with an overdamped Langevin equation (Zwanzig, 2001),

z _x = f ðxÞ+ rðtÞ (Equation 1a)

f ðxÞ = � VUðxÞ; (Equation 1b)

where xðtÞ is the possibly multidimensional position coordinate at time t; _xðtÞ is the velocity; fðxÞ is the force

at position xðtÞ; and z is the friction coefficient. The forces acting on the particle include positional forces

fðxÞ expressed as the gradient of a conservative potential, fðxÞ = � VUðxÞ. The stochastic (thermal) force,

rðtÞ, is defined as follows:

ðrðtÞÞ = 0 (Equation 2a)

CriðtÞrjðt0ÞD = 2zkTdðt � t 0Þdij (Equation 2b)

where C ,D denotes an ensemble average over realizations, T is the temperature of the bath and k is Boltz-

mann’s constant. Under a forward Euler scheme (LeVeque, 2007) for Equation (1a) with time points given by

tn = nDt, each position, given its past realization, is sampled from a normal distribution

xn+ 1jxn; fð , Þ; z � N

�
xn +

Dt

z
f ðxnÞ;g2I

�
: (Equation 3)

In words, ‘‘the position xn+ 1 given quantities xn; fð ,Þ; and z is sampled from a Normal distribution with

mean xn + Dt
z
fðxnÞ and variance g2 = 2DtkT

z
I.’’

As is typical for experimental setups, we use a Gaussian noise model and write

ynjxn;s
2 � N

�
xn;s

2I
�
: (Equation 4)

In words, the above reads ‘‘yn given quantities xn; s2 is drawn from a normal.’’ Here s2 is the measurement

noise variance. In Equation (4), the measurement process is instantaneous, i.e., assumed to be faster than

the dynamical time scales. Our choice of Gaussian measurement model here can be modified at minimal

computational cost (e.g., (Hirsch et al., 2013)) if warranted by the data, provided the final measurement

noise model is stationary and each measurement depends only on the position at that time level.

Probabilities

Next, from the product of the likelihood (Pðy1:NjUð ,Þ;z;x1:N;s2Þ) and the prior (PðUð ,Þ;z;x1:N;s2Þ), we obtain

the posterior over all unknowns

P�Uð , Þ; z; x1:N; s
2jy1:N

�
f P�y1:NjUð , Þ; z; x1:N;s

2
�P�Uð , Þ; z; x1:N;s

2
�
: (Equation 5)

The likelihood is derived from the noise model provided in Equation (4). By contrast, the prior is informed

by the Langevin dynamics, as we see by decomposing it as follows:

P�Uð , Þ; z; x1:N;s
2
�

= Pðx2:Njx1;Uð , Þ; zÞPðx1jUð , Þ; zÞðUð , ÞÞPðzÞP
�
s2
�
: (Equation 6)

The first term on the right-hand side of Equation (6) follows from Equation (1), while we are free to choose

the remaining priors, PðUð ,ÞÞ, Pðx1jUð ,Þ;zÞ, PðzÞ, and Pðs2Þ.

Important considerations dictate the prior on the potential. First, the potential may assume any shape (and,

as such, is modeled nonparametrically) although it should be smooth (i.e., spatially correlated). A Gaussian

process (GP) prior (Williams and Rasmussen, 2006) allows us to sample continuous curves with covariance

provided by a pre-specified kernel. However, naive GP prior implementations are computationally prohib-

itive, with time and memory requirements scaling as the number of data points cubed (Bryan IV et al., 2020;

Williams and Rasmussen, 2006).

These size-scaling issues can be resolved by adopting an SKI-GP (Wilson and Nickisch, 2015; Wilson et al.,

2015; Titsias, 2009; Gal and van der Wilk, 2014) prior for the potential, Uð ,Þ. The SKI-GP prior is a
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hierarchical structure, where the potential at all points is interpolated according to M chosen inducing

points at fixed locations, xu1:M, and where the values of the potential at the inducing points are themselves

drawn from a GP, as seen in section.

We note that under this model, we shift the focus from inferringUð ,Þ to inferring u1:M fromwhich we recover

Uð ,Þ and fð ,Þ with a modified kernel matrix (see section).

Choices for priors on x1, z and s2 are less critical and chosen for computational convenience alone. For

Pðx1jUð ,Þ;zÞ, we are free to choose any prior and select

Pðx1jUð , Þ; zÞ = N
�
x1;0;Q

2
�
: (Equation 7)

For the friction, z, we select a gamma distribution for which support on the positive real axis is assured.

That is,

z � Gammaðaz;bzÞ: (Equation 8)

Lastly, for the noise variance, s2, we place an inverse-gamma prior

s2 � InvGammaðas2 ;bs2 Þ: (Equation 9)

The inverse-gamma prior is chosen because it is conjugate to the likelihood, meaning that we may directly

sample from the posterior constructed by the prior multiplied by the likelihood (Bishop, 2006). The vari-

ables, Q, az, bz, as2 , and bs2 are hyperparameters that we are free to choose, and whose impact on the ul-

timate shape of the posterior reduces as more data are collected (Gelman et al., 2013; Sivia and Skilling,

2006).

Modified kernel matrix

Here we show how to calculate the force at an arbitrary test location using the structured kernel interpola-

tion Gaussian process. We first derive the force for one-dimensional potentials exactly and then briefly

explain how to generalize to higher dimensions. In order to calculate the force given u1:M, we write

f ðxÞ = � d

dx
UðxÞ (Equation 10a)

= � d

dx
K yK� 1u1:M (Equation 10b)

= K �K� 1u1:M (Equation 10c)

K � = � d

dx
K y (Equation 10d)

K �
ij = � d

dx
K
�
x; xum

�
(Equation 10e)

=
h2

[ 2

�
x � xum

�
exp

 
� 1

2

�
x � xum

[

�2
!

; (Equation 10f)

where K� is now the covariance between the potential evaluated at the inducing points and the force eval-

uated at a test location, and we have assumed the kernel follows the familiar squared exponential form (Wil-

liams and Rasmussen, 2006).

To generalize to higher dimensions, we will need to calculate the force in each dimension separately. For

example, to find the force in the k direction at a test point, x,

f kðxÞ = � d

dxk
UðxÞ (Equation 11)

= � d

dxk
K yK� 1u1:M (Equation 12)

= K �kK� 1u1:M (Equation 13)

K�k
ij =

h2

[ 2

�
xk � xu;km

�
exp

�
� 1

2

����x � xu
m

[

����
2�

: (Equation 14)
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Inference

As our posterior does not assume an analytical form, we devise an overall Gibbs sampling scheme (Bishop,

2006) to draw samples from it. Within this scheme, we start with an initial set of values for the parameters

(zð0Þ;sð0Þ;xð0Þ1:N;Uð,Þð0Þ) and then iteratively sample each variable holding all others fixed (Geman and Geman,

1984). Here, we show the conditional probabilities used for our Gibbs sampling algorithm.

Positions

The distribution for x1:N is simple. If we sample each xn one at a time,

Pðx1ju1:M; x2:NÞ fN

�
x1;0;

2tkT

z

�

3 N

�
x2; x1 +

t

z
f ðx1Þ;2tkT

z

�

3 N
�
y1; x1;s

2
�

(Equation 15)

Pðxnju1:M; x1:n� 1Þ fN

�
xn; xn� 1 +

t

z
f ðxn� 1Þ; 2tkT

z

�

3 N

�
xn+ 1; xn +

t

z
fðxnÞ; 2tkT

z

�

3 N
�
yn; xn; s

2
�

(Equation 16)

PðxNjju1:M; x1:N� 1Þ fN

�
xN; xN� 1 +

t

z
f ðxN� 1Þ; 2tkT

z

�

3 N
�
yN; xN; s

2
�
:

(Equation 17)

Although these equations look Gaussian, they are not (except the last one), since we have to remember that

fn = fðxnÞ is a function of xn. Thus, direct sampling is not possible, and we can only sample positions using a

Metropolis-Hastings algorithm (Bishop, 2006).

Potential

Following the logic outlined in our previous manuscript (Bryan IV et al., 2020), we can infer the potential. For

now, we focus on one-dimensional data.

We fully write the prior on positions, x2:NjUð ,Þ; x1; z as

Pðx2:Njfð , Þ; x1Þ = N

�
tv1:N� 1;

t

z
f 1:N� 1;

2tkT

z
I

�
(Equation 18)

fN

�
f 1:N� 1; zv1:N� 1;

2zkT

t
I

�
(Equation 19)

where fn = fðxnÞ and vn = ðxn+ 1 � xnÞ=t. Substituting in Equation 10d, we get,

= N

�
K �K� 1u1:M; zv1:N� 1;

2zkT

t
I

�
(Equation 20)

fexp

�
� 1

2

�
zv1:N� 1 � K �K� 1u1:M

�T t

2zkT
I
�
zv1:N� 1 � K �K� 1u1:M

��
(Equation 21)

fexp

�
� 1

2

t

2zkT
uT
1:MK

� 1K �TK �K� 1u1:M +
1

2

2t

2kT
vT
1:N� 1K

�K� 1u1:M

�
(Equation 22)

fexp

�
� 1

2

�
u1:M � M� 1b

�T
M
�
u1:M � M� 1b

��
(Equation 23)

fN
�
u1:M;M

� 1b;M� 1
�

(Equation 24)

where we have used matrix completing the square, with

b =
t

2kT
K� 1K �T v1:N� 1 (Equation 25)

M =
t

2zkT
K� 1K �TK �K� 1: (Equation 26)
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Combining with the prior, we get

Pðu1:Mjx1:NÞ fN
�
u1:M;M

� 1b;M� 1
�
Nðu1:M;0;KÞ (Equation 27)

fN
�
u1:M;

�
K� 1 +M

�� 1�
K� 10 + MM� 1b

�
;
�
K� 1 +M

�� 1
�

(Equation 28)

= Nðu1:M; ~m; ~KÞ (Equation 29)

~m =
t

2kT

�
K� 1 +

t

2zkT
K� 1K �TK �K� 1

�� 1

K� 1K �T v1:N� 1 (Equation 30)

~K =
�
K� 1 +

t

2zkT
K� 1K �TK �K� 1

�� 1

: (Equation 31)

For multidimensional trajectories, we separate the likelihood into the forces experienced along each

trajectory,

Pðx2:Njf ð , Þ; x1Þ f
YD
d

N

�
fd1:N� 1; zv

d
1:N� 1;

2zkT

t
I

�
; (Equation 32)

where d is the dimension index and D is the number of dimensions. A convenient choice of indexing allows

us to sample the potential directly, even with multidimensional trajectories. It consists of ‘‘flattening out’’

our multidimensional force, velocity and kernel arrays into one-dimensional vectors, and ‘‘flattening out’’

the multidimensional kernel matrices into a matrix.

The convenient choice is as follows: Let the firstN indices of all variables be reserved for values concerning

the N measurements in the first dimension, then the N+ 1 through 2N indices be reserved for values con-

cerning the N measurements in the second dimension, and continue this pattern until all D3N measure-

ments have been accounted for. For example, define f to be a vector such that f1 is the force at the first

time level along the first dimension, f2 is the force at the first time level along the second dimension, .,

fD + 1 is the force at the first time level along the second dimension, fD + 2 is the force at the second time level

along the second dimension, and so forth. By utilizing this pattern for f , v, and K �, we can sample the po-

tential directly using Equation (29).

Friction coefficient

The conditional probability for the friction coefficient is the product of Equations (3), (7) and (8)

Pðzjx1:N;Uð,ÞÞ fGammaðz;az;bzÞN
�
x1;0;

2tkT

z

�

3
YN
n = 2

N

�
xn; xn� 1 +

t

z
f ðxn� 1Þ; 2tkT

z

�
;

(Equation 33)

which cannot be simplified into any known elementary distribution. We therefore sample, z using aMetrop-

olis Hastings algorithm (Bishop, 2006).

Measurement noise

As our inverse gamma prior for s2, Equation (9) is conjugate to our likelihood, our conditional probability for

s2 can be simplified to an inverse gamma distribution (Gelman et al., 2013; Sivia and Skilling, 2006)

P�s2
��y1:N; x1:N

�
= InvGamma

�
as2 +

N

2
;bs2 +

1

2

X
jxn � ynj2

�
: (Equation 34)

Boltzmann method

In the Results section, we compare to the Boltzmann method (Reif, 2009). The Boltzmann method, as

opposed to the other existing methods, has the advantage that it is physically intuitive (it is derived

from thermodynamics). It does not assume a potential shape a priori and therefore can be used for non-

harmonic potentials. Its main limitation, in not treating measurement noise, is a limitation of all other

competing methods.

The Boltzmann method uses the Boltzmann distribution from thermodynamics, which relates the potential

in a region of space to the fraction of time that the particle will be seen in that region,
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Ui f � kT log
�
pi

�
(Equation 35)

where Ui is the potential of region i and pi is the fraction of the time that the particle spent in region i.

A limitation of the Boltzmannmethod is that the presence of measurement noise implies that the fraction of

time that a particle was seen in a region, pi, does not equal the fraction of time that the particle was in the

region. As a consequence, measurement noise will smear the shape of the inferred potential over the range

of the measurement noise (see Figure 5).
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