
RESEARCH ARTICLE

Brain Modeling ToolKit: An open source

software suite for multiscale modeling of

brain circuits

Kael DaiID
1, Sergey L. GratiyID

1, Yazan N. BillehID
1, Richard XuID

1, Binghuang Cai1,

Nicholas CainID
1, Atle E. RimehaugID

2, Alexander J. StasikID
2, Gaute T. EinevollID

2,

Stefan MihalasID
1, Christof KochID

1, Anton ArkhipovID
1*

1 Allen Institute, Seattle, Washington, United States of America, 2 Norwegian University of Life Sciences &

University of Oslo, Oslo, Norway

* antona@alleninstitute.org

Abstract

Experimental studies in neuroscience are producing data at a rapidly increasing rate, provid-

ing exciting opportunities and formidable challenges to existing theoretical and modeling

approaches. To turn massive datasets into predictive quantitative frameworks, the field

needs software solutions for systematic integration of data into realistic, multiscale models.

Here we describe the Brain Modeling ToolKit (BMTK), a software suite for building models

and performing simulations at multiple levels of resolution, from biophysically detailed multi-

compartmental, to point-neuron, to population-statistical approaches. Leveraging the

SONATA file format and existing software such as NEURON, NEST, and others, BMTK

offers a consistent user experience across multiple levels of resolution. It permits highly

sophisticated simulations to be set up with little coding required, thus lowering entry barriers

to new users. We illustrate successful applications of BMTK to large-scale simulations of a

cortical area. BMTK is an open-source package provided as a resource supporting model-

ing-based discovery in the community.

This is a PLOS Computational Biology Software paper.

Introduction

Recent emergence of systematic large-scale efforts for comprehensive characterization of brain

cell types, their connectivity, and in vivo activity (e.g. [1–6]) is fundamentally reshaping neuro-

science research. As the new extremely rich and multimodal data become increasingly avail-

able to the community, the need is more urgent than ever to develop sophisticated modeling

approaches that could help distill new knowledge from the exuberant complexity of the brain

reflected in these datasets [7]. While computational modeling, when combined with theoretical

and experimental approaches, clearly has a lot of potential to bridge properties of single cells

with brain connectivity, neural activity, and ultimately organism behavior, building such

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008386 November 30, 2020 1 / 23

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Dai K, Gratiy SL, Billeh YN, Xu R, Cai B,

Cain N, et al. (2020) Brain Modeling ToolKit: An

open source software suite for multiscale modeling

of brain circuits. PLoS Comput Biol 16(11):

e1008386. https://doi.org/10.1371/journal.

pcbi.1008386

Editor: Daniele Marinazzo, Ghent University,

BELGIUM

Received: June 3, 2020

Accepted: September 16, 2020

Published: November 30, 2020

Copyright: © 2020 Dai et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All code and data are

available at https://github.com/AllenInstitute/bmtk

and https://portal.brain-map.org/explore/models/

mv1-all-layers.

Funding: This work was funded by the Allen

Institute (KD, SLG, YNB, RX, BC, NC, SM, CK, AA),

the Norwegian Ministry of Education and Research

through the SUURPh Programme (AER), the

Norwegian Research Council through COBRA (No.

250128) and IKTPLUSS (No. 300504) (GTE, AJS),

as well as NOTUR (No. NN4661K). The funders

https://orcid.org/0000-0002-2147-5895
https://orcid.org/0000-0001-8911-2321
https://orcid.org/0000-0001-5200-4992
https://orcid.org/0000-0002-8249-1514
https://orcid.org/0000-0002-5848-199X
https://orcid.org/0000-0002-8312-9875
https://orcid.org/0000-0003-1646-2472
https://orcid.org/0000-0002-5425-5012
https://orcid.org/0000-0002-2629-7100
https://orcid.org/0000-0001-6482-8067
https://orcid.org/0000-0003-1106-8310
https://doi.org/10.1371/journal.pcbi.1008386
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008386&domain=pdf&date_stamp=2020-12-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008386&domain=pdf&date_stamp=2020-12-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008386&domain=pdf&date_stamp=2020-12-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008386&domain=pdf&date_stamp=2020-12-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008386&domain=pdf&date_stamp=2020-12-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008386&domain=pdf&date_stamp=2020-12-10
https://doi.org/10.1371/journal.pcbi.1008386
https://doi.org/10.1371/journal.pcbi.1008386
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/AllenInstitute/bmtk
https://portal.brain-map.org/explore/models/mv1-all-layers
https://portal.brain-map.org/explore/models/mv1-all-layers


bridges has proven difficult. Some of the greatest barriers are presented by technical challenges

of constructing and simulating large and complex biologically-realistic models, integration of

different modeling approaches, and systematic sharing of models with the community. New

software tools are required to overcome these challenges and enable easy workflows for the

new generation of computational models.

One may argue that simulating a huge number of neurons by itself is not a bottleneck any

more, thanks to the availability of supercomputers and very successful software packages that

enable complex and highly parallelizable simulations, such as NEURON [8], NEST [9], GENE-

SIS [10], MOOSE [11], Brian [12], Xolotl [13], and others. However, existing simulation pack-

ages traditionally provide a programming environment for users to develop modeling/

simulation software code, rather than data-driven interfaces for interactions with model or

simulation data. To build sophisticated models, or even to enable efficient simulations, users

often need to become experts in the programming environment and languages specific to a

simulation package.

Several tools have been recently developed that address some aspects of these challenges,

e.g., NeuroConstruct [14], LFPy [15,16], BioNet [17], Open Source Brain [18], HNN [19], and

NetPyNE [20]. These tools do not necessarily provide their own simulation kernel, but instead

may rely on an existing simulation engine, such as NEURON, providing a user-friendly inter-

face to this engine. To achieve this, they take advantage of the recent developments of model-

ing file formats and universal model description languages such as NeuroML [21,22], PyNN

[23], NSDF [24], and SONATA [25].

These new developments provide great opportunities by making modeling and simulation

more accessible to neuroscientists. However, a major issue not fully addressed by existing tools

is that often it is desirable to develop and investigate models at different levels of resolution.

Multi-compartmental models, point-neuron models, and population-level models all have

their benefits and drawbacks scientifically and computationally. Depending on the questions

being explored, scientists may have to test and, ideally, release multiple versions of the model

at such different levels of resolution. But the cost of learning multiple tools can be excessively

prohibitive. To address this, we developed and present here an extensive package for multi-

scale modeling and simulation across different levels of resolution called the Brain Modeling

Toolkit (BMTK).

The BMTK extends our previously published work on the software for biophysically

detailed simulations, BioNet [17], which, at the time, was the most advanced component of the

then nascent BMTK suite. Since then, BMTK has developed into a mature ecosystem of tools

supporting construction and simulation of models at multiple levels of resolution. While exist-

ing tools typically provide an interface to only one simulation engine (for example, NetPyNE

[20] is a powerful interface specifically to the NEURON simulation engine), BMTK has been

explicitly developed to furnish interfaces to multiple simulation engines. Furthermore, these

interfaces are constructed so as to provide a similar user experience at each level of resolution,

even though these different levels are supported by different simulation engines [8,9,26].

From the implementation point of view, BMTK is a Python package that can be installed on

a personal computer, a cluster or supercomputer, or in a cloud environment. BMTK provides

a Python-based modular environment for model building and simulation, where the model

building stage is clearly separated from simulation. The workflow process adopted by BMTK

was designed to optimally support realistic and heterogeneous networks leveraging the com-

plexity of brain composition and connectivity, like empirically driven placement of synapses,

which can be computationally expensive to build. With such cases it is often useful to build a

model once and then load pre-built models from files for every new simulation. For simula-

tions, BMTK provides a user experience requiring little-to-no programming and in the

PLOS COMPUTATIONAL BIOLOGY Brain Modeling ToolKit

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008386 November 30, 2020 2 / 23

had no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1008386


majority of cases the parameters required to run and record a simulation can be added and

adjusted with a text editor. Thus, BMTK can be a useful option for scientists who might other-

wise be dissuaded from modeling due to the learning curve of mastering a new programming

language or API. However, advanced users can easily extend BMTK capabilities through their

own functions, as BMTK’s open-source Python-based design allows for enhancements in a

straightforward manner. In other words, one can use BMTK as a simple interface to harness

the power of existing simulation engines without the need for programming, or, alternatively,

as a programming environment.

The diverse capabilities of BMTK are supported by the modeling file format SONATA [25],

which is unique in that it provides a complete description of models and simulation inputs/

outputs (i.e., various properties of cells, connectivity, and activity), employs highly efficient

binary solutions for computationally demanding components of models and simulations, and

flexibly supports multiple levels of modeling abstraction. Importantly, SONATA is compatible

with the neurophysiology data format Neurodata Without Borders, or NWB [27], which

makes it easy for BMTK to interface with experimental data stored as NWB files. It should be

noted that SONATA links descriptions of point neuron models, synapses, and ion channels to

the target simulator, such as using MOD files for NEURON (as well as standard NEURON

mechanisms, e.g., ExpSyn, IntFire1) and the names of built-in/standard point neuron and syn-

apse models for NEST and PyNN. This is different from the approach of simulator-indepen-

dent languages such as NeuroML [21,22], which uses purely mathematical descriptions

leveraging pre-defined mechanisms grounded in formal LEMS descriptions. Currently,

SONATA supports the NeuroML "biophysicalProperties" and “concentrationModel” block

schema for biophysically-detailed neuronal models. Support for other NeuroML/LEMS

descriptions will be added later, as these descriptions mature. That will replace the current

pragmatic choice of some simulator-dependent descriptions in SONATA (and, hence, BMTK)

with the more general fully simulator-independent representation. All the parameters required

to completely reproduce a simulation, like the exact placement of synapses or times of incom-

ing spikes, can be saved in the SONATA or the associated parameter files. SONATA even

includes parameters for defining seeds for random generators for cases when parameters have

not been explicitly defined.

BMTK has been developed with an emphasis on complex and large-scale models and simu-

lations. As such, through its integration with the excellent tools such as NEST and NEURON,

it provides a powerful interface permitting very efficient simulations of sophisticated models at

multiple scales. This enables easy access to a broad spectrum of computational applications

leveraging the new streams of complex information about the brain. However, BMTK also eas-

ily supports simpler simulations, including small networks or single-neuron simulations.

Overall, the tool is designed for user convenience and flexibility. BMTK is provided freely to

the community as an open-source software package (https://alleninstitute.github.io/bmtk/) to

facilitate development and simulation of models and support systematic model sharing and

reproducibility.

Results

BMTK overview

BMTK is a Python-based software package (originally developed for Python 2.7 and currently

supporting Python 3.6+) for creating and simulating neural network models at multiple levels

of resolution. It is also an open-source software development kit, allowing users to modify the

existing functionality and easily add new extensions or modules. Currently BMTK contains a

PLOS COMPUTATIONAL BIOLOGY Brain Modeling ToolKit

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008386 November 30, 2020 3 / 23

https://alleninstitute.github.io/bmtk/
https://doi.org/10.1371/journal.pcbi.1008386


Builder module for creating models and four simulator modules–BioNet, PointNet, PopNet,

and FilterNet–for simulating the models at different levels of granularity (Fig 1).

The simulator modules are the application programming interfaces (APIs) to simulation
engines (Fig 1), i.e., these modules provide a Python interface to the underlying software pack-

ages that execute simulations. The BioNet module provides an interface to NEURON [8] for

simulations that involve biophysically detailed, compartmental neuronal models or point-neu-

ron models; PointNet–to NEST [9] for highly efficient point-neuron simulations; PopNet–to

the package diPDE [26], which implements a population density approach for simulations of

coupled networks of neuronal populations; and FilterNet–to BMTK’s built-in solver of filter

input-output transformations.

Besides the similarity of user experience across modeling levels of resolution, perhaps the

main advantage of BMTK to users is that one does not need to become an expert in the pro-

gramming environments of any of the individual simulation engines, even if one is building

and simulating very sophisticated biologically-realistic network models. This is achieved by

relying on the standardized data format, SONATA [25], for representing model properties and

simulation configurations, as well as inputs and outputs. Users only need to provide SONATA

files (either by building them using BMTK Builder or by getting files from existing models),

and BMTK’s simulator modules will do the rest by translating the SONATA files into model

Fig 1. Overview of BMTK. The BMTK software suite consists of several modules. The Builder module contains functions for constructing network models. The

simulator modules provide APIs to the simulation engines. BioNet enables simulations of networks consisting of biophysically detailed, multi-compartmental neuron

models by interfacing with NEURON. PointNet supports simulations of point-neuron networks via NEST. FilterNet permits simulations of arrays of filters (integrated

with the specific case of a model of visual processing by the mouse LGN). PopNet supports simulations with population-statistical models by interfacing with the DiPDE

tool. The BMTK modules can subserve multi-stage operations by writing the outputs as files in SONATA format and reading such files as inputs for the next stage of

modeling or simulation.

https://doi.org/10.1371/journal.pcbi.1008386.g001

PLOS COMPUTATIONAL BIOLOGY Brain Modeling ToolKit

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008386 November 30, 2020 4 / 23

https://doi.org/10.1371/journal.pcbi.1008386.g001
https://doi.org/10.1371/journal.pcbi.1008386


instantiations and simulations by NEURON, NEST, or other engines (Fig 2). Not only does

the SONATA format enable this simple workflow under BMTK, it also supports easy model

sharing across software packages, as SONATA is implemented in a broad range of modeling

tools, such as Blue Brain’s Brion/Brain (https://github.com/BlueBrain/Brion), pyNeuroML

[21,22], pyNN [23], and NetPyNE [20]. Moreover, SONATA’s specification for model inputs

and output (spikes and time series of membrane voltage, calcium concentration, etc.) is com-

patible via a converter with the experimental neurophysiology file format NWB [25,27].

As a result, the basic workflow under BMTK is straightforward and consistent across all lev-

els of resolution (Fig 2). Model building is achieved by scripting in Python using the BMTK

Builder module, which specify attributes of and relationships between nodes and edges in the

constructed network. This step represents the most typical approach currently in use in the

modeling field, where descriptive declarations are used to build network instantiations–often

constructing very sophisticated networks with only a few lines of code. The output of this

module is a set of SONATA files storing model instantiations. The BMTK simulator modules

(Fig 2) then run simulations utilizing the SONATA files that describe model composition,

inputs (such as incoming spikes), and simulation configuration (duration, etc.). At simulation

completion and, if needed, throughout the simulation duration, the simulators write output to

disk also in the form of SONATA files.

The BMTK output in SONATA format can be then used for analysis and visualization.

Whereas a basic visualization of spiking output or firing rates is provided with BMTK, our

design philosophy has been to leave analysis and visualization to other packages. Given that

the SONATA format is used for output files and that SONATA can be converted to NWB

Fig 2. Basic workflow that is conserved across modules of BMTK. Input SONATA files (represented symbolically as chests of

drawers) determine the composition and properties of the nodes/network, as well as incoming stimuli (spikes, firing rates,

movies) and simulation configuration. Top: the model construction stage. The BMTK Builder combines elements such as cell or

synapse models, connectivity rules, and others, via high-level specifications, instantiates the network model, and saves the

instantiation as a set of SONATA files. Bottom: simulation stage. The BMTK simulator modules take in the SONATA files as

inputs and perform simulations. The input SONATA files may be generated by the BMTK Builder (dashed arrow), any other

Builder software supporting SONATA, or from public repositories, collaborators, etc. The BMTK simulator modules produce

output, also in SONATA format, typically containing spikes and/or time series (e.g., membrane voltage in selected cells, as a

function of time). Right: the SONATA files produced by the BMTK Builder or simulator modules can be analyzed in terms of

the model structure or simulated activity (using any analysis software supporting SONATA, or the software that can read HDF5,

CSV, and other components of SONATA specification).

https://doi.org/10.1371/journal.pcbi.1008386.g002

PLOS COMPUTATIONAL BIOLOGY Brain Modeling ToolKit

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008386 November 30, 2020 5 / 23

https://github.com/BlueBrain/Brion
https://doi.org/10.1371/journal.pcbi.1008386.g002
https://doi.org/10.1371/journal.pcbi.1008386


[25,27], analysis of BMTK output is easily achieved with any package that can read SONATA

or NWB, or indeed any package that can read the HDF5 format, which underlies both SONA-

TA’s and NWB’s spikes and time series storage. Visualization of the simulated networks can

also be achieved with specialized tools as long as they can read SONATA format, which can be

easily implemented via the open source pySONATA API [25] (https://github.com/

AllenInstitute/sonata). One example of such visualization software that reads SONATA is

RTNeuron [28], which is used throughout the figures below to visualize examples of BMTK

models.

The utility and versatility of BMTK is illustrated below using several examples. First, we

describe the BMTK Builder and how it can be used to create simple or very sophisticated net-

work models. Next, we use an example of a simple network consisting of two uniform popula-

tions of neurons (excitatory and inhibitory), which we instantiate and simulate using

biophysically-detailed compartmental neuronal models in BioNet, point-neuron models in

PointNet, and neuronal populations in PopNet. Next, we describe the FilterNet module, which

permits one to process stimuli through arrays of filters, currently focusing on converting visual

stimuli to spikes that can be used as inputs to simulations of neural networks of vision. Finally,

we illustrate the power of BMTK using a variety of real-world applications: simulations of a

230,000-neuron model of mouse V1 implemented at the biophysically detailed and point-neu-

ron levels, computation of the extracellular current source density in simulated cortical tissue,

and high-throughput simulations of optogenetic perturbations to diverse cortical cell types.

Constructing models with BMTK Builder

The BMTK Builder (Fig 3) is a Python module within the BMTK package. By loading this

module, one accesses a variety of functions for building networks and saving results to files in

SONATA format. The two major types of tasks performed using the BMTK Builder are instan-

tiating network nodes and instantiating edges.

When instantiating nodes, one specifies a name for every node type as well as the number

of nodes in the type. Furthermore, optional properties of nodes can be specified, such as their

positions, types, and other attributes. Some of the attributes are reserved in SONATA format,

but otherwise any attributes can be created and assigned as users desire. Functions are pro-

vided to distribute values of node properties according to desired distributions (such as dis-

tributing cell positions uniformly in a 3D cylindrical volume).

Instantiation of edges follows similar logics. One specifies which populations of nodes

should be connected and adds attributes to those connections (edges), some of which are

reserved SONATA properties, but otherwise arbitrary attributes can be assigned. BMTK

Builder supplies basic functions for establishing probabilistic connectivity between nodes

based, for example, on distance between the nodes.

We emphasize that BMTK Builder is designed as a general framework open for extensions.

It currently provides functions that, for example, help one to distribute nodes or organize con-

nections according to certain logics, but users are encouraged to utilize their own functions as

well. This is easily achieved by the extensible Python interface of the Builder. Additional func-

tions will be added to the core library of the Builder per user feedback.

The BMTK Builder is versatile in that it can create both relatively simple network models or

highly complex and biologically realistic network models. Below, we describe simulations of

networks illustrating two such cases: a network consisting only of two neuronal populations

with random connectivity [29] and a highly sophisticated network model of mouse V1 consist-

ing of 17 cell classes distributed in space across 6 cortical layers, with multiple connectivity

rules that account for cell classes, distances, and tuning of physiological responses [30]. Both

PLOS COMPUTATIONAL BIOLOGY Brain Modeling ToolKit

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008386 November 30, 2020 6 / 23

https://github.com/AllenInstitute/sonata
https://github.com/AllenInstitute/sonata
https://doi.org/10.1371/journal.pcbi.1008386


networks were prepared using BMTK Builder (for the former model, see examples in https://

github.com/AllenInstitute/bmtk, and for the latter, see https://portal.brain-map.org/explore/

models/mv1-all-layers). It should be noted that, naturally, complexity of a model, especially of

the connectivity rules, strongly influences the computing expense required for model building.

For instance, generating the 230,000-neuron V1 model [30] can take ~100 CPU-hours or

more, depending on the connectivity rules used (note, however, that instantiating a fully actu-

alized model can be parallelized on a cluster). For cases like this, the BMTK’s approach (Figs 2

and 3) of building the model and saving it in SONATA files for subsequent simulations, rather

than rebuilding the model every time a simulation is run, is clearly beneficial.

A unique feature of BMTK enabled by the SONATA format is that models prepared for one

level of resolution can largely be reused for another. For example, a network connectivity cre-

ated by BMTK Builder for a biophysically detailed simulation contains connections between

individual cells as well as descriptions of where synapses should be located on the dendrites of

target neurons. This information is stored in SONATA files, which can be used to run a BioNet

biophysically detailed simulations. The same files, however, can be used to run a PointNet sim-

ulation, which has no representation of dendrites (all neurons are points). In the latter case,

only the cell-to-cell connectivity information is used by PointNet, whereas the dendritic

Fig 3. BMTK Builder. The Builder module is used to design and instantiate network models. On the left, examples of the Python commands used in BMTK Builder are

presented. Note that in this simple example it is assumed that user-defined connection functions “gaussian_distance” and “random_connections” are employed. The

purpose of these commands is illustrated schematically on the right. The main stages of model building workflow are defining the nodes and their attributes, defining

the connection rules, and then instantiating and saving the network.

https://doi.org/10.1371/journal.pcbi.1008386.g003

PLOS COMPUTATIONAL BIOLOGY Brain Modeling ToolKit

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008386 November 30, 2020 7 / 23

https://github.com/AllenInstitute/bmtk
https://github.com/AllenInstitute/bmtk
https://portal.brain-map.org/explore/models/mv1-all-layers
https://portal.brain-map.org/explore/models/mv1-all-layers
https://doi.org/10.1371/journal.pcbi.1008386.g003
https://doi.org/10.1371/journal.pcbi.1008386


locations are ignored. We also note that SONATA files produced by BMTK Builder can be fur-

ther edited directly, outside of BMTK, since they use well established formats such as HDF5

and CSV [25], which can be read and written by many software packages and programming

languages.

Biophysically detailed, point-neuron, and population simulations with

BioNet, PointNet, and PopNet

For simulating networks of interacting nodes, BMTK currently offers support at three levels of

resolution: biophysically detailed, compartmental models with BioNet [8,17]; point-neuron mod-

els with PointNet [9]; and population density dynamics models with PopNet [26]. In all cases, a

user provides as an input the SONATA files [25] specifying the model (either constructed with

BMTK Builder or obtained via other software, such as NetPyNE [20] or others; Fig 2) and simula-

tion configuration. The latter is supplied in text-based JSON files containing SONATA-compliant

specifications of simulation duration, paths to input and output files, etc. [25]. The BioNet, Point-

Net, or PopNet module will then interpret the files, run the simulation, and provide the output–

such as spikes or various time series, e.g., membrane voltage–also in SONATA format. One useful

functionality provided by BMTK is writing the output to disk at user-defined intervals during the

simulation. In the case of parallelized simulations each CPU core will cache intermediate results

produced on the given core, with the final results collated from data across all cores. See Docu-

mentation for more details (https://alleninstitute.github.io/bmtk/).

Because BMTK uses SONATA files to store the network, there is a small cost to simulation

instantiation due to the extra disk reads. But BMTK can take advantage of having pre-gener-

ated network files so as to optimize simulation setup for each simulation engine based on net-

work topology and hierarchy. Because BMTK must handle different types of networks it will

not always be the most efficient, but in many cases it can provide optimization techniques that

a novice or casual user would not be necessarily aware of. For multicore simulations BMTK

will automatically handle the distribution of nodes and edges across all the processors. Point-

Net can support both multi-threaded as well as multicore simulations. PointNet can also detect

when different edges share the same properties in such a way that calls to NEST’s Connect()

method are optimized by using a ‘one-to-one’ or ‘all-to-all’ connection rule, greatly reducing

the time it takes to instantiate the network.

For users with programming proficiency BMTK provides functionality to change how the

network is instantiated. Using python decorators, users can create functions to change the way

nodes and connections are instantiated. This can be useful when adding noise to a simulation

or adjusting synaptic weights. In the aforementioned V1 model [30], the network description

was built with a baseline synaptic weights depending on source and target cell-type. Then a

custom python function was written to readjust the baseline synaptic weight based on other

properties of the individual cells–allowing the modelers to quickly simulate the network under

different conditions and rules without having to rebuild the connectivity matrix.

To illustrate applications of BioNet, PointNet, and PopNet, we constructed at each of the

three levels of resolution an instance of a simple randomly connected network with 10,000

excitatory neurons and 2,500 inhibitory neurons, receiving excitatory input from 1,000 exter-

nal neurons [29] (Fig 4). This network can exhibit a variety of possible dynamical regimes

[29], with different degrees of synchrony and asynchrony between neurons and regularity of

spiking of individual neurons. Here we selected one of the possible regimes (the regime with

synchronized neuronal populations and regular spiking) for illustration at all three levels of

resolution. The implementation of this can be found at https://alleninstitute.github.io/bmtk/

examples.html#exc-inh-network-model.

PLOS COMPUTATIONAL BIOLOGY Brain Modeling ToolKit

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008386 November 30, 2020 8 / 23

https://alleninstitute.github.io/bmtk/
https://alleninstitute.github.io/bmtk/examples.html#exc-inh-network-model
https://alleninstitute.github.io/bmtk/examples.html#exc-inh-network-model
https://doi.org/10.1371/journal.pcbi.1008386


We first employed BMTK Builder to construct a 12,500-neuron network model using compart-

mental neuron representations from the published model of Layer 4 of mouse V1 [31], with 264

compartments for each excitatory and 121 compartments for each inhibitory neuron (Fig 4A).

The SONATA network files totaled 694.6 MB (including 15.6 million recurrent connections and

~125,000 feedforward connections). The neurons were interconnected with 0.1 probability and

received spiking inputs from 1,000 Poisson firing rate sources firing at the frequency of 150 Hz.

The model was simulated using BioNet, and we adjusted synaptic parameters to obtain the desired

dynamical regime. To compare with the other levels of resolution (below), we plotted the spike ras-

ters and population firing rates, which show that neurons fire in a synchronized and regular fash-

ion (Fig 4A). The population as a whole exhibits oscillations at the main frequency of ~20 Hz.

For the PointNet example, we took the model used for the BioNet simulation above and

used all of its components applicable to point-neuron simulations–such as the information

about which cell connects to which, but not where individual synapses are placed. Naturally,

parameters of neurons and of synapses (such as synaptic strengths) needed to be adjusted, as

the meaning of many of such parameters are very different between compartmental and point-

neuron models. PointNet simulations were carried out, and the synaptic weights were adjusted

to obtain the dynamical regime (Fig 4B) similar to that in the BioNet simulation above, with

the synchronized neurons emitting bursts of population activity at ~20 Hz.

Fig 4. Biophysically detailed, point-neuron, and population simulations with BioNet, PointNet, and PopNet. In all three cases, the interconnected populations of

excitatory and inhibitory neurons receive excitatory input from an external population (1,000 Poisson sources firing at the frequency of 150 Hz, replaced by a uniform

population in the PopNet case). (A) Biophysically detailed network of randomly connected excitatory and inhibitory neurons, 12,500 total. An RTNeuron visualization of

the network is shown alongside its spiking output (spikes from a small portion of the network are shown, for clarity) and the firing rate (for the whole excitatory

population) produced by the BMTK’s BioNet module. (B) The same network using the point-neuron approximation. An RTNeuron visualization and simulation output

from the BMTK’s PointNet module simulation are shown. (C) Population-based representation of the same network. A schematic of the model and the output of

population-density simulation (firing rate for the excitatory population is shown) from BMTK’s PopNet module are illustrated.

https://doi.org/10.1371/journal.pcbi.1008386.g004

PLOS COMPUTATIONAL BIOLOGY Brain Modeling ToolKit

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008386 November 30, 2020 9 / 23

https://doi.org/10.1371/journal.pcbi.1008386.g004
https://doi.org/10.1371/journal.pcbi.1008386


Finally, at the PopNet level (Fig 4C), the network was reduced to three nodes–the excitatory,

the inhibitory, and the external stimulus populations, with connections between them. After build-

ing this very simple network in BMTK Builder, we simulated it with PopNet and adjusted parame-

ters to obtain the desired dynamical regime. Since only the population rate was available here as

the output, it was impossible to judge the regularity of firing of individual neurons, but the popula-

tion activity was clearly similar to the BioNet and PointNet cases. The firing rate exhibited sharp

oscillations of population activity at ~20 Hz, with the activity reaching close to zero level between

each peak, indicating complete silence of all neurons at regular intervals. Note that, like in the

BioNet and PointNet cases, the external population here provides a constant level of activity (i.e.,

individual neurons in the external population fire spikes at irregular intervals according to Poisson

statistics, but their collective output at the population level is approximately constant at all times).

Simulations using filter arrays with FilterNet

Many models of the nervous system utilize filters–mathematical objects that take in multi-dimen-

sional data and return an output, typically by performing a convolution of the input data with cer-

tain functions. FilterNet is a module of BMTK that allows users to operate with filters. A typical

application may be processing of peripheral sensory input (Fig 5). For example, an array of filters

may be used to represent retinal cells, with the input being movies and the output being retinal

Fig 5. The FilterNet module. Top, general workflow in FilterNet. In case of a visual stimulus, a movie is processed by an array of filters distributed in the visual space.

Each filter convolves the frames of the movie with the spatial and temporal kernels, performs rectification, and outputs a time dependent firing rate representing the

response of the filter to the movie, which can be also converted to instantiations of spike trains. Bottom, illustration of inputs and outputs of FilterNet. Inputs include

specifications of parameters such as duration, frame rate, and file locations, as well as contents of the files describing the input patterns and filter properties and

distributions. The “run_filternet.py” script is used to carry out the calculations. The output may contain the time series of time-dependent firing rates for each filter and

spike trains (illustrated) generated from these time series.

https://doi.org/10.1371/journal.pcbi.1008386.g005

PLOS COMPUTATIONAL BIOLOGY Brain Modeling ToolKit

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008386 November 30, 2020 10 / 23

https://doi.org/10.1371/journal.pcbi.1008386.g005
https://doi.org/10.1371/journal.pcbi.1008386


firing rates or spikes. These output signals in turn can be used as inputs to neurons deeper in the

brain explicitly simulated using other modules of BMTK, such as BioNet or PointNet.

Like the other simulation modules of BMTK, FilterNet is an API that allows users to specify

and interact with simulations. FilterNet provides a similar user experience to BioNet, Point-

Net, and PopNet, in that users work with SONATA-formatted input files that determine func-

tional forms and parameters of the filters, whereas simulation configuration files determine

simulation parameters, such as its duration, and location of input and output files.

The current implementation of FilterNet contains the LGNModel simulator, which was

created to provide thalamocortical inputs to biologically realistic models of the mouse visual

cortex [30,31]. This simulator assumes that the input is a movie (a 3D array–two dimensions

for space and one for time) and produces the output which is a time-varying firing rate for

each filter. A filter here represents an individual cell in the Lateral Geniculate Nucleus (LGN)

of mouse thalamus, which projects to the visual cortex. Realistic parameters for such filters,

optimized based on the experimental recordings, are available online (http://portal.brain-map.

org/explore/models/mv1-all-layers). The FilterNet API can also be easily connected with user-

defined functions modeling the input-output filter relationship, which may represent various

types of inputs (for example, other sensory stimuli beyond the visual 3D arrays).

An example workflow of FilterNet with LGNModel is illustrated in Fig 5. Here, a movie

clip is provided as a 3-dimensional matrix (schematically represented by an image on the top

left). A user defines the frame rate, so that the frames can be pinned to the output time axis,

and also selects the types of the filters to be used, their numbers, and how they are distributed

in the visual space. The types of the filters and their parameters can be taken from our online

repository (http://portal.brain-map.org/explore/models/mv1-all-layers) where the filters were

optimized to match types of in vivo responses of neurons in the mouse LGN [30,32], or one

can easily replace these parameters with those of their own choosing. Each filter performs a

spatially-temporally separable convolution with the input movie array using two kernels–one

operating on the time course of the movie and the other in the visual space (frame pixels). The

result of this transformation is rectified. The output of each filter is then a time-varying firing

rate, sampled at a frequency defined by the users. FilterNet can also instantiate spike trains

from these firing rates using a Poisson process (Fig 5).

In typical applications one runs a simulation where a movie is passed through an array of

filters, each filter returning the firing rate and, potentially, a set of instantiated spike trains

(each train corresponding to a single trial). These spike trains can be used as inputs to models

of neuronal networks (see an example below of a network model of mouse V1 driven by spikes

from the LGN, Fig 6). In these applications, the filters become external nodes for other BMTK

simulations. In such applications, typically, the FilterNet simulations would be done first and

their output saved to files, and these outputs would then be reused in subsequent network sim-

ulations. The critical intermediate step of determining which filter supplies inputs to which

target neuron in the simulated network is accomplished via BMTK Builder, where users can

define functions for connecting external nodes to internal ones. The subsequent simulations

can be performed with BioNet, PointNet, or PopNet.

Examples of BMTK applications to biological problems

Finally, we present real-life examples of scientific simulations of brain circuits using BMTK.

We illustrate large-scale simulations of highly complex brain networks at different levels of res-

olution (Fig 6); computation of an extracellular electric potential, which is an observable relat-

ing the network activity with measurements of a physical signal (Fig 7); and versatile

perturbations of network components to mimic optogenetic experiments (Fig 8).

PLOS COMPUTATIONAL BIOLOGY Brain Modeling ToolKit

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008386 November 30, 2020 11 / 23

http://portal.brain-map.org/explore/models/mv1-all-layers
http://portal.brain-map.org/explore/models/mv1-all-layers
http://portal.brain-map.org/explore/models/mv1-all-layers
https://doi.org/10.1371/journal.pcbi.1008386


Biophysical and point-neuron simulations of the mouse cortical area V1

A recent study [30] integrated a wide array of experimental information on the composition

(cell class, intrinsic properties, and neuron morphologies), connection probabilities and syn-

aptic properties, as well as in vivo physiology of neuronal responses in the mouse primary

visual cortex (area V1) to construct a comprehensive model of this cortical area (Fig 6A). The

Fig 6. The biophysical and point-neuron V1 models. (A) Visualizations of the biophysical and point-neuron models. The 230,000-neuron models emulate the central

portion of the mouse V1, across the full cortical depth, containing layers 1, 2/3, 4, 5, and 6 (layer boundaries are indicated). In the top model, the core portion, ~50,000

neurons, is simulated using biophysically detailed compartmental neuronal models, and the annulus around the core using leaky integrate-and-fire (LIF) point-neuron

models. In the bottom model, both core and the annulus employ the generalized LIF neuronal models. Neurons are colored by cell class: hues of red for excitatory cells

in layers 2/3, 4, 5, and 6, and blue, cyan and green for Parvalbumin- (Pvalb), Somatostatin- (SST), and 5-hydroxytryptamine receptor 3A- (Htr3a) expressing inhibitory

cells classes. (B) Summary of firing rates and direction selectivity index (DSI) obtained from the biophysical and point-neuron simulations, vs. experimental extracellular

electrophysiology recordings, by cell class. The data were obtained from 2.5-second long presentations of drifting gratings at 8 different directions, 10 trials each. “RS”

and “FS” are experimentally determined regular- and fast-spiking cells, roughly corresponding to excitatory and Pvalb inhibitory neurons; the SST and Htr3a neurons

could not be identified from experiments. (C) Performance benchmarks and scaling of simulations and setup (including disk I/O) of the biophysical version of the V1

model using BMTK’s BioNet. The simulation involved 0.5 s presentation of gray screen and 2.5 s of a drifting grating. The time shown is the wallclock time it took to

obtain 1 second of simulated time, averaged over 3 s of simulation. The dashed lines indicate ideal scaling (relative to 125 cores, which is a typical choice for simulation

of such scale).

https://doi.org/10.1371/journal.pcbi.1008386.g006

PLOS COMPUTATIONAL BIOLOGY Brain Modeling ToolKit

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008386 November 30, 2020 12 / 23

https://doi.org/10.1371/journal.pcbi.1008386.g006
https://doi.org/10.1371/journal.pcbi.1008386


model was constructed using the BMTK Builder. It received thalamocortical inputs from the

Lateral Geniculate Nucleus (LGN) of the thalamus, which provided the external drive due to

visual stimuli (as illustrated in Fig 5 for the FIlterNet module): 17,400 filters responded to

Fig 7. Computing extracellular field potential in BMTK. A simulation using a version of the V1 model (Fig 6) with a

white full-field flash stimulus is illustrated. The BioNet module of BMTK was used to run the simulation and compute

the extracellular potential at multiple virtual electrode locations along the cortical depth; consequently, the potential

was used to obtain the Local Field Potential and Current Source Density (CSD). Top row: LFP from example

simulation and example mouse. The LFPs are found from averaging over 5 trials in the simulation and 75 trials in the

experiments. Middle row: Corresponding CSDs for the LFPs in top row. The CSD is estimated using the delta-source

iCSD method [51] assuming a column diameter of 0.8 mm for the simulation (the diameter of the core with

biophysically detailed neurons in the model) and 1.6 mm for the experiment (roughly in accordance with the diameter

of mouse V1). Bottom row: firing rates for the excitatory (“E”) and inhibitory (“I”) populations in each layer (2/3, 4, 5,

and 6). Black: experiment mean. Gray: experiment standard deviation. Blue: simulation mean. Simulation rates are

averaged over all neurons in a population and 5 trials. Experimental data are averaged over all neurons of the given type

recorded from 47 mice, 75 trials each.

https://doi.org/10.1371/journal.pcbi.1008386.g007

PLOS COMPUTATIONAL BIOLOGY Brain Modeling ToolKit

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008386 November 30, 2020 13 / 23

https://doi.org/10.1371/journal.pcbi.1008386.g007
https://doi.org/10.1371/journal.pcbi.1008386


movies (as visual stimuli) and supplied resulting spike trains as inputs to the V1 neurons.

These filters represented 14 types of LGN cells, parameterized based on experimental record-

ings from the LGN [32], and were distributed over the whole visual space. The filters were con-

nected to the V1 cells according to experimental data on anatomical and functional properties

of the LGN-to-V1 projections (e.g., [33–39]). Consequently, arbitrary movies can be used to

stimulate the model, enabling direct comparison with experimental trials that used specific

movies shown to awake mice while recording extracellular electrophysiology from V1 with the

high-throughput Neuropixles probes [40].

The model of V1 was constructed at two levels of resolution: the biophysical level (using

compartmental neuron models) and the point-neuron level. The biophysical version was in

fact a hybrid model, as the central portion of interest in the model, with ~50,000 neurons, was

represented using compartmental neuron models, whereas the remaining annulus was repre-

sented with point-neuron models (Fig 6A). The annulus’s role was primarily to provide a

smooth boundary. This hybrid model was simulated with BioNet/NEURON, relying on their

ability to handle both compartmental and integrate-and-fire types of models. The fully point-

neuron version of the model consisted of Generalized Leaky Integrate-and-Fire (GLIF)

Fig 8. Simulation of optogenetic perturbations using BMTK. The point-neuron version of the V1 model (Fig 6) is used here for illustration. Perturbations are achieved

by injecting positive or negative current into cells. (A) Raster plots from 3-second simulations (stimulus: 0.5 s gray followed by 2.5 s of a drifting grating). Simulations

without perturbation, with complete silencing of all Layer 6 excitatory cells (E6), and activation of all E6 cells (current equal to 0.5 of the rheobase of each neuron at rest is

injected) are illustrated. The perturbation here is applied throughout the course of simulation. (B) Summary of silencing individual cell classes in the V1 model, for the

same visual stimulus as in (A). The cell classes listed along the horizontal axis are silenced one by one, and the effect on each cell class (listed along the vertical axis) is

characterized using the Optogenetic Modulation Index (OMI; see Main text), averaged over 10 trials and over all cells in the class. The entries “allHtr3a”, “allPvalb”, and

“allSst” refer to simulations where, e.g., the Sst class of neurons was silenced in all layers (“allSst”). (C) Activation of Layer 6 excitatory or Pvalb inhibitory neurons, for the

same visual stimulus as in (A). Different amplitudes of perturbations are sampled. OMI is computed as in (B), and is shown for 3 select cell classes. Due to inter-laminar

projections of Layer 6 Pvalb interneurons to upper layers, activation of either Layer 6 excitatory or Layer 6 inhibitory Pvalb cells leads to the suppression of activity in

Layer 4.

https://doi.org/10.1371/journal.pcbi.1008386.g008

PLOS COMPUTATIONAL BIOLOGY Brain Modeling ToolKit

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008386 November 30, 2020 14 / 23

https://doi.org/10.1371/journal.pcbi.1008386.g008
https://doi.org/10.1371/journal.pcbi.1008386


neuronal models and was simulated with PointNet/NEST. The neuronal models were sourced

from the Allen Cell Types Database [41–43].

The two models were each other’s clones, in the sense that they used the same cell positions,

individual connections, and all other properties that were applicable to both levels of resolu-

tion (as opposed to those applicable to only one level, e.g., dendritic targeting of synapses), the

corresponding SONATA files being prepared once in BMTK Builder and then used for both

the BioNet and PointNet models. The networks consisted of ~230,000 neurons, covering all

layers of V1 from Layer 1 to Layer 6 and including 17 neuron classes [30]. The total size of the

SONATA network files was a little more than 3.9 GB. The models used cell-class-dependent,

distance-dependent, and neuron-tuning-dependent connection probability rules and synaptic

weight rules. Heavily constrained by experimental data and trained on a small sample of visual

stimuli (a single trial of 0.5 s of gray screen and same duration drifting grating), the models

generalized well to different stimuli and exhibited many similarities with the experimental

recordings. For example, they exhibited firing rates and levels of direction selectivity across

cortical layers and cell classes that were similar to experimental ones (Fig 6B). From compari-

sons of these V1 model simulations to experimental recordings, several predictions were made

with regard to the logics of connectivity between cortical cells of different classes, depending

on the functional tuning of these cells [30]. The V1 model and simulations are freely available

online (https://portal.brain-map.org/explore/models/mv1-all-layers).

Benchmarks of BioNet simulations of this 230,000-neuron V1 model (Fig 6C) show an

approximately linear scaling of both the simulation execution time and the model loading time

with the number of CPU cores. With the partition of 384 CPU cores, we observe the through-

put of approximately 1 second of simulated biological time for slightly over 1 hour of “wall

clock” (real) time. These results indicate that extensive simulations for such a large-scale and

highly detailed models are possible [30], although that does require substantial computing

resources. On the other hand, we found that the point-neuron version of the V1 model could

be simulated efficiently with PointNet on a single CPU core, providing the performance of 1

second of simulated time in approximately 3 minutes of real time. While one gains in speed

even further with parallel PointNet simulations of the V1 model, the convenience and speed of

the self-contained single-core simulations are such that typically users find them to be the pre-

ferred mode for PointNet simulations of such size. Thus, BMTK’s PointNet enables simula-

tions of large-scale models incorporating much biological complexity even with modest

computational resources.

It should be noted that the computational performance of BioNet and PointNet relies on

the excellent performance and parallelization capabilities of NEURON [8] and NEST [9].

What these BMTK modules add is the convenience and interoperability. For example,

although NEURON provides powerful parallelization environment, users typically need to

write parallel code in that environment to run their simulations. Likewise, constructing sophis-

ticated bio-realistic models in NEURON or NEST requires substantial amount of coding.

BMTK streamlines the latter part through the uniform model building operations in BMTK

Builder and obviates the former part for the users by dealing with NEURON or NEST paralleli-

zation “under the hood”, so that users do not need to write any code at all.

Computation of the extracellular electric potential

Computing the extracellular field potential in the modeled brain tissue is an important applica-

tion [7,44–49] that requires capturing the spatially distributed electric compartments and syn-

apses, as done in biophysically detailed network models. BMTK BioNet’s ability to perform

such calculations is illustrated in Fig 7 (using previously unpublished simulations).

PLOS COMPUTATIONAL BIOLOGY Brain Modeling ToolKit

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008386 November 30, 2020 15 / 23

https://portal.brain-map.org/explore/models/mv1-all-layers
https://doi.org/10.1371/journal.pcbi.1008386


BioNet allows users to compute the extracellular potential using the line-source approximation

[17,50]. The potential is then processed to obtain the low-frequency component–the local field

potential (LFP), similar to other recently developed tools providing such functionality (e.g.,

LFPy [15,16], NetPyNE [20]). BioNet allows users to set up an arbitrary number of recording

sites and distribute them in space. One can then compute the LFP from multiple electrodes

which in turn can be used to estimate the current source density (CSD) based on a suitable

CSD estimation method such as iCSD [51] or kCSD [52]. Resulting LFPs and estimated CSDs

can then be directly compared to experimental ones (Fig 7; see https://portal.brain-map.org/

explore/models/mv1-all-layers, under “Extracellular Field Potential”). Note that the CSD cor-

responds to the net transmembrane volume current density which also can be computed

directly from neural network simulations. A comparison of such a “ground-truth” CSD, found

by binning transmembrane currents into voxels, and the CSD estimated from the correspond-

ing LFP was previously done by us for a cortical column [53].

The V1 model in Fig 6 showed good agreement with experiments for firing rate metrics

such as direction selectivity. As a next step, one can use BMTK to investigate the extracellular

field dynamics. Fig 7 shows one example among a number of model configurations generated

(differing, e.g., in the strengths of connections among cell types, the ways how LGN inputs are

provided, or distribution of synapses on the neuronal arbors). The LFP, CSD and the firing

rates across the cortical layers (in response to a full-field flash stimulus) are compared with the

experimental data [40]. Note that experimental data show substantial variability across mice,

and the example from one mouse shown is not representative of all observed LFP/CSD pat-

terns. A majority of the 47 mice in this dataset, however, do contain main features seen in Fig

7: an early sink (blue CSD) in Layers 2/3-4 (L2/3-L4), which is then replaced by a source (red

CSD), and a delayed but strong sink in L5-L6.

The model captures some of these properties of CSD, though not precisely. The L2/3-4 sink

is more sustained than in the experiment, and the later source in these layers is less prominent.

The L5-L6 sink starts earlier in the simulation and is narrower along the depth dimension. The

overall magnitude of CSD peaks and troughs is also smaller in simulation than in experiment.

Nevertheless, it is reassuring that the model captures overall trends in both the dynamics of the

firing rates and the major features of CSD (Fig 7). Much further work is necessary to under-

stand how the circuit architecture determines the spiking and LFP/CSD responses. With

BMTK and the bio-realistic V1 model [30], iterations of simulations and adjustments to the

model circuit structure will shed light on this question and will lead to improved agreement

with experiments.

Applications to perturbative studies of brain circuits

BMTK also offers approaches to apply a variety of perturbations and manipulations, which

can be specified in the simulation configuration file, e.g., by providing the list of cell IDs to be

perturbed and parameterizing the perturbation function. (The scripting interface permits fur-

ther unlimited possibilities for simulating custom perturbations.) See https://alleninstitute.

github.io/bmtk/tutorial_pointnet_modeling.html.

As an example, injection of current directly into neurons is a common technique that can

be used effectively to mimic optogenetic perturbations. A follow-up study [54] to the V1

model work [30] used this technique to investigate perturbations of neurons, from single to

multiple at a time, selected according to their location, cell class, and functional properties.

Many thousands of perturbative simulations were performed using the point-neuron version

of the V1 model via the BMTK’s PointNet module. The results agreed with the recent single-

neuron optogenetics experiments [55] and suggested coexistence of efficient and robust coding

PLOS COMPUTATIONAL BIOLOGY Brain Modeling ToolKit

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008386 November 30, 2020 16 / 23

https://portal.brain-map.org/explore/models/mv1-all-layers
https://portal.brain-map.org/explore/models/mv1-all-layers
https://alleninstitute.github.io/bmtk/tutorial_pointnet_modeling.html
https://alleninstitute.github.io/bmtk/tutorial_pointnet_modeling.html
https://doi.org/10.1371/journal.pcbi.1008386


in cortical circuits [54]. Fig 8 shows a complementary set of simulations (until now, unpub-

lished) conducted as part of that project, which consist of silencing or activation of whole cell

classes, including titrated perturbations (see https://portal.brain-map.org/explore/models/

mv1-all-layers, under “GLIF_network”). Currently, BMTK offers an easy way of defining per-

turbations to either cell populations or a set of individual cells.

Fig 8A shows spiking activity in the core of the V1 model (see Fig 6) in response to visual

stimulation with a drifting grating, for a control condition and two types of perturbation to the

Layer 6 excitatory cells: complete silencing and modest activation of these neurons. With

BMTK, it is easy to sample perturbations to all cell classes in the model and characterize the

effect of each on all the other classes. This is illustrated in Fig 8B, which uses the Optogenetic

Modulation Index (OMI) to characterize the effect of perturbation. The OMI of a neuron i is

defined as:

OMIi ¼
f iperturbed � f icontrol
f iperturbed þ f icontrol

where f iperturbed and f icontrol are the firing rates of this neuron during and in the absence of pertur-

bation, respectively. Negative OMI indicates suppression of cell’s firing due to perturbation

(OMI = −1 means that the cell is fully suppressed), and positive values indicate elevated firing

due to perturbation. Mean OMIs for every cell class in Fig 8B exhibit a rich pattern of various

effects depending on the population silenced, including non-intuitive effects of silencing the

excitatory populations: e.g., silencing of excitatory populations in Layer 2/3 (E2/3) leads to

suppression of E5, but mild activation of E4 and E6.

The latter effect may reflect the cell-type specific connectivity across layers in the V1 model,

estimated using available experimental data [30]. Connections from E2/3 to inhibitory cells in

L4 are stronger and of higher probability than connections to excitatory cells; thus, suppres-

sion of E2/3 leads to disinhibition of E4. The E6 is then mildly excited, likely due to the excit-

atory connections from E4, whereas E5 is inhibited due to the relatively strong connections

from E4 to inhibitory cells in L5 and the weakening of excitatory drive from E2/3 (due to sup-

pression of E2/3). Ultimately, though, it is hard to assign a specific reason for such effects or

predict these effects simply by examining connection diagrams in this highly recurrently con-

nected system, which illustrates the need for detailed bio-realistic simulations to make quanti-

tative predictions about dynamics in such complex networks.

Furthermore, BMTK permits one to sample the magnitude of perturbation (Fig 8C), which

can be done with separate amplitudes applied for every cell, e.g., by tying the amount of

injected current to the previously measured rheobase of each cell model. Fig 8C shows the

effect of such different perturbation magnitudes applied to the E6 or i6Pvalb cell classes (i.e.,

excitatory and inhibitory Pvalb cells in Layer 6). Both perturbations lead to activation of

i6Pvalb, but in the first case E6 firing increases, whereas in the second it decreases. Non-intui-

tively, both perturbations result in suppression of activity in Layer 4. This particular effect of

Layer 6 perturbation is due to interlaminar projections from inhibitory Layer 6 Pvalb neurons

to upper layers. These results are consistent with the overall inhibitory modulation of superfi-

cial layers by Layer 6, demonstrated experimentally (Olsen et al. 2012; Bortone, Olsen, and

Scanziani 2014).

Together, these examples demonstrate the capability of BMTK to sample a wide variety of

perturbations and therefore enable extensive comparisons with experiments and biologically

meaningful predictive studies.

PLOS COMPUTATIONAL BIOLOGY Brain Modeling ToolKit

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008386 November 30, 2020 17 / 23

https://portal.brain-map.org/explore/models/mv1-all-layers
https://portal.brain-map.org/explore/models/mv1-all-layers
https://doi.org/10.1371/journal.pcbi.1008386


Discussion

The Brain Modeling ToolKit (BMTK) is a Python package that provides convenient and pow-

erful user interfaces for building and simulating computational models for neuroscience appli-

cations. Network models, from very simple to highly complex and biologically realistic, can be

constructed using BMTK Builder. BMTK’s FilterNet module provides functionality to process

multi-dimensional stimuli via arrays of filters, resulting in time series or spike trains that can

be used, e.g., as incoming stimuli for network simulations. The actual network simulations are

carried out using BMTK modules BioNet, PointNet, and PopNet, which take advantage of the

powerful simulation engines NEURON [8], NEST [9], and diPDE [26]. Through these mod-

ules, BMTK supports simulations at multiple levels of modeling resolution–from filters and

population dynamics, to point-neuron and biophysically-detailed compartmental neuronal

models.

There are multiple benefits of BMTK for users. The most standard practice in the field is to

build relatively simple networks, that can be described by a few lines of code. BMTK is fully

compatible with such a practice, as BMTK Builder supports exactly this approach. An addi-

tional benefit of modularity is provided by separating the model building and simulating

stages, so that it becomes easier to keep track of specific instantiations of models that may be

simulated with a variety of different input parameters. On the other hand, a growing area of

modeling applications is the development of very sophisticated and biologically realistic mod-

els drawing on extensive experimental datasets, and here BMTK is useful as well. BMTK

Builder enables very complex and computationally expensive approaches to constructing net-

work models, as exemplified by the model of mouse V1 described above [30] (Fig 6). The

same example also illustrates how, after constructing a model once, one can reuse many com-

ponents of the model for simulations at different levels of resolution, such as biophysical with

BioNet and point-neuron with PointNet.

Another aspect of benefits to users is the standardization of user experience. The simulation

modules of BMTK provide very similar interfaces for interacting with simulations at different

levels of resolution, whether with BioNet, PointNet, or PopNet. All steps in the modeling and

simulation processes are bound together by employing the SONATA format [25] for input

and output files. This simplifies and standardizes workflows, and also provides a backbone for

sharing models and simulations with the community. Beyond applications in BMTK itself,

SONATA ensures a wide spectrum of possibilities for sharing and reusing BMTK models with

other tools, and vice versa, since SONATA is supported by or compatible with a growing list of

software tools and standards, including NetPyNE, NeuroML, PyNN, RTNeuron, Brion/Brain,

and NWB [20–23,27,28].

Finally, BMTK enables even non-expert users to perform computationally efficient simula-

tions. The BMTK simulator modules enable simple straightforward simulations, but also har-

ness the excellent capabilities of NEURON [8] and NEST [9] to carry out very large-scale

simulations with high computational efficiency, employing parallelization techniques. The lat-

ter is an essential requirement for efficient simulations of large and biologically realistic model

networks. Previously, in many cases one had to become an expert in parallel programming

under the simulator environment and write their own parallel simulation code in that environ-

ment. BMTK implements this step for users, so that even users with no experience in program-

ming can perform highly computationally demanding simulations very efficiently. At the same

time, due to BMTK’s open-source design as a set of Python modules, those users who are

more proficient in software coding can easily implement additional capability of their choice

by interfacing their functions with BMTK.

PLOS COMPUTATIONAL BIOLOGY Brain Modeling ToolKit

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008386 November 30, 2020 18 / 23

https://doi.org/10.1371/journal.pcbi.1008386


As we showed above, BMTK is a mature tool providing ample opportunities for modeling

applications. One can build models, provide realistic inputs, such as visual inputs correspond-

ing to arbitrary movies that might be used in experiments, and perform extensive simulations

of brain networks under realistic conditions to obtain a variety of outputs (Figs. 5 and 6). Cur-

rent BMTK implementation easily supports output of spikes, membrane voltages, and vari-

ables such as calcium concentration. BioNet also permits one to simulate and save the

extracellular potential for computing such metrics as LFP and CSD (Fig 7). Importantly,

BMTK also permits a variety of perturbations applied to the simulated system, for example in

the form of current injections into neurons (Fig 8). One critical application of such capabilities

is simulation of optogenetic perturbations of brain circuits, which have become a very power-

ful tool for interrogating circuit function in experiments (e.g., [56–62]).

BMTK is intended as an open ecosystem that can grow and develop with time. While many

useful features are already available based on the initial applications, we intend to add new fea-

tures, especially driven by user feedback and requests. In addition, BMTK is an open-source

project hosted on GitHub (https://github.com/AllenInstitute/bmtk/), and users are welcome

to submit their own new features and solutions to enhance the tool’s capabilities for everyone’s

benefit. One area for improving user experience is visualization. Currently BMTK provides

basic visualization of spiking output or firing rates; more sophisticated visualizations of simu-

lation output can certainly be useful. In terms of model structure and activity visualization in

3D, other existing tools compatible with SONATA, such as RTNeuron (Hernando et al., 2013),

can be employed, but, again, native model visualization within BMTK will be a convenient

addition. Another area for improvement is post-processing and standard analysis tools for

simulation data. It may be beneficial to provide a repository of such analysis tools–e.g., includ-

ing functionality for analyses in Figs 6, 7 and 8 –as part of BMTK suite. Yet another aspect

deserving attention is support for using BMTK in the cloud environment, the demand for

which is expected to grow rapidly in the next few years. We welcome user feedback and sug-

gestions for new features of BMTK and will strive to support its further evolution driven by

such user demands.

As we continue to expand the capabilities of BMTK, we also hope to use it to drive and

develop community adopted standards. For example, formats like SONATA, or NWB with

user extensions, specify how users may define spikes or step-current stimulus with pre-gener-

ated files. And though useful in most cases, a common request is for more dynamic methods

of generating simulation stimuli. Some input types, like extracellular electrodes, are not yet

defined in the SONATA format. BMTK adopted certain ways of defining inputs and will con-

tinue to develop and test better ways to do so, yet ultimately the goal is using the lessons learnt

and incorporate such features into formats like SONATA or NWB. This will increase the life-

span and utility of BMTK and can also be utilized by other software for a rich and diverse

toolbox for neuroscientists.

In summary, we anticipate that BMTK, combined with the SONATA format, can be useful

for a broad spectrum of applications on personal computers, supercomputers, and in the cloud

environments. Our hope is that BMTK will save effort of many researchers who will be able to

focus more on their scientific research and will fuel many discoveries at the interface between

modeling, theory, and experimentation.

Acknowledgments

3-D visualizations were generated using RTNeuron with the support of the Blue Brain Project.

We are grateful to Michael Hines for many helpful discussions and suggestions. We wish to

thank the Allen Institute founder, Paul G. Allen, for his vision, encouragement, and support.

PLOS COMPUTATIONAL BIOLOGY Brain Modeling ToolKit

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008386 November 30, 2020 19 / 23

https://github.com/AllenInstitute/bmtk/
https://doi.org/10.1371/journal.pcbi.1008386


Author Contributions

Conceptualization: Kael Dai, Christof Koch, Anton Arkhipov.

Data curation: Kael Dai, Sergey L. Gratiy, Yazan N. Billeh, Richard Xu, Binghuang Cai, Atle

E. Rimehaug, Alexander J. Stasik, Anton Arkhipov.

Formal analysis: Kael Dai, Yazan N. Billeh, Richard Xu, Binghuang Cai, Atle E. Rimehaug.

Funding acquisition: Gaute T. Einevoll, Stefan Mihalas, Christof Koch, Anton Arkhipov.

Investigation: Kael Dai, Sergey L. Gratiy, Yazan N. Billeh, Richard Xu, Binghuang Cai, Nicho-

las Cain, Atle E. Rimehaug, Alexander J. Stasik.

Methodology: Kael Dai, Sergey L. Gratiy, Nicholas Cain, Anton Arkhipov.

Project administration: Gaute T. Einevoll, Stefan Mihalas, Christof Koch, Anton Arkhipov.

Resources: Gaute T. Einevoll, Stefan Mihalas, Christof Koch, Anton Arkhipov.

Software: Kael Dai, Sergey L. Gratiy, Yazan N. Billeh, Binghuang Cai, Nicholas Cain, Atle E.

Rimehaug, Alexander J. Stasik, Anton Arkhipov.

Supervision: Gaute T. Einevoll, Stefan Mihalas, Christof Koch, Anton Arkhipov.

Validation: Kael Dai, Sergey L. Gratiy, Yazan N. Billeh, Richard Xu, Binghuang Cai, Atle E.

Rimehaug.

Visualization: Kael Dai, Sergey L. Gratiy, Yazan N. Billeh, Richard Xu, Binghuang Cai, Atle E.

Rimehaug, Anton Arkhipov.

Writing – original draft: Kael Dai, Yazan N. Billeh, Anton Arkhipov.

Writing – review & editing: Kael Dai, Sergey L. Gratiy, Yazan N. Billeh, Richard Xu, Bin-

ghuang Cai, Nicholas Cain, Atle E. Rimehaug, Alexander J. Stasik, Gaute T. Einevoll, Stefan

Mihalas, Christof Koch, Anton Arkhipov.

References
1. Amunts K, Ebell C, Muller J, Telefont M, Knoll A, Lippert T. The Human Brain Project: Creating a Euro-

pean Research Infrastructure to Decode the Human Brain. Neuron. 2016; 92: 574–581. https://doi.org/

10.1016/j.neuron.2016.10.046 PMID: 27809997

2. Bouchard KE, Aimone JB, Chun M, Dean T, Denker M, Diesmann M, et al. High-Performance Comput-

ing in Neuroscience for Data-Driven Discovery, Integration, and Dissemination. Neuron. 2016; 92: 628–

631. https://doi.org/10.1016/j.neuron.2016.10.035 PMID: 27810006

3. Hawrylycz M, Anastassiou C, Arkhipov A, Berg J, Buice M, Cain N, et al. Inferring cortical function in the

mouse visual system through large-scale systems neuroscience. Proc Natl Acad Sci U S A. 2016;113.

https://doi.org/10.1073/pnas.1618558114 PMID: 27940911

4. Koch C, Jones A. Big Science, Team Science, and Open Science for Neuroscience. Neuron. 2016; 92:

612–616. https://doi.org/10.1016/j.neuron.2016.10.019 PMID: 27810003

5. Martin CL, Chun M. The BRAIN Initiative: Building, Strengthening, and Sustaining. Neuron. 2016; 92:

570–573. https://doi.org/10.1016/j.neuron.2016.10.039 PMID: 27809996

6. Vogelstein JT, Mensh B, Häusser M, Spruston N, Evans AC, Kording K, et al. To the Cloud! A Grass-

roots Proposal to Accelerate Brain Science Discovery. Neuron. 2016; 92: 622–627. https://doi.org/10.

1016/j.neuron.2016.10.033 PMID: 27810005

7. Einevoll GT, Destexhe A, Diesmann M, Grün S, Jirsa V, de Kamps M, et al. The Scientific Case for

Brain Simulations. Neuron. 2019; 102: 735–744. https://doi.org/10.1016/j.neuron.2019.03.027 PMID:

31121126

8. Carnevale N, Hines M. The NEURON Book. 1st ed. New York: Cambridge University Press; 2006.

9. Gewaltig M-O, Diesmann M. NEST (NEural Simulation Tool). Scholarpedia. 2007; 2: 1430. https://doi.

org/10.4249/scholarpedia.1430

PLOS COMPUTATIONAL BIOLOGY Brain Modeling ToolKit

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008386 November 30, 2020 20 / 23

https://doi.org/10.1016/j.neuron.2016.10.046
https://doi.org/10.1016/j.neuron.2016.10.046
http://www.ncbi.nlm.nih.gov/pubmed/27809997
https://doi.org/10.1016/j.neuron.2016.10.035
http://www.ncbi.nlm.nih.gov/pubmed/27810006
https://doi.org/10.1073/pnas.1618558114
http://www.ncbi.nlm.nih.gov/pubmed/27940911
https://doi.org/10.1016/j.neuron.2016.10.019
http://www.ncbi.nlm.nih.gov/pubmed/27810003
https://doi.org/10.1016/j.neuron.2016.10.039
http://www.ncbi.nlm.nih.gov/pubmed/27809996
https://doi.org/10.1016/j.neuron.2016.10.033
https://doi.org/10.1016/j.neuron.2016.10.033
http://www.ncbi.nlm.nih.gov/pubmed/27810005
https://doi.org/10.1016/j.neuron.2019.03.027
http://www.ncbi.nlm.nih.gov/pubmed/31121126
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1371/journal.pcbi.1008386


10. Bower J, Beeman D. The Book of GENESIS: Exploring Realistic Neural Models with the GEneral NEu-

ral SImulation System. 1st ed. New York: Springer; 1997.

11. Ray S, Bhalla U. PyMOOSE: interoperable scripting in Python for MOOSE. Frontiers in Neuroinfor-

matics. 2008. p. 6. https://doi.org/10.3389/neuro.11.006.2008 PMID: 19129924

12. Goodman D, Brette R. Brian: a simulator for spiking neural networks in Python. Frontiers in Neuroinfor-

matics. 2008. p. 5. https://doi.org/10.3389/neuro.11.005.2008 PMID: 19115011

13. Gorur-Shandilya S, Hoyland A, Marder E. Xolotl: An Intuitive and Approachable Neuron and Network

Simulator for Research and Teaching. Frontiers in Neuroinformatics. 2018. p. 87. https://doi.org/10.

3389/fninf.2018.00087 PMID: 30534067

14. Gleeson P, Steuber V, Silver RA. neuroConstruct: A Tool for Modeling Networks of Neurons in 3D

Space. Neuron. 2007; 54: 219–235. https://doi.org/10.1016/j.neuron.2007.03.025 PMID: 17442244

15. Lindén H, Hagen E, Leski S, Norheim E, Pettersen K, Einevoll G. LFPy: a tool for biophysical simulation

of extracellular potentials generated by detailed model neurons. Frontiers in Neuroinformatics. 2014. p.

41. Available: https://www.frontiersin.org/article/10.3389/fninf.2013.00041 PMID: 24474916

16. Hagen E, Næss S, Ness T V, Einevoll GT. Multimodal Modeling of Neural Network Activity: Computing

LFP, ECoG, EEG, and MEG Signals With LFPy 2.0. Frontiers in Neuroinformatics. 2018. p. 92. Avail-

able: https://www.frontiersin.org/article/10.3389/fninf.2018.00092 PMID: 30618697

17. Gratiy SL, Billeh YN, Dai K, Mitelut C, Feng D, Gouwens NW, et al. BioNet: A Python interface to NEU-

RON for modeling large-scale networks. PLoS One. 2018; 13: e0201630. https://doi.org/10.1371/

journal.pone.0201630 PMID: 30071069

18. Gleeson P, Cantarelli M, Marin B, Quintana A, Earnshaw M, Sadeh S, et al. Open Source Brain: A Col-

laborative Resource for Visualizing, Analyzing, Simulating, and Developing Standardized Models of

Neurons and Circuits. Neuron. 2019; 103: 395–411.e5. https://doi.org/10.1016/j.neuron.2019.05.019

PMID: 31201122

19. Neymotin SA, Daniels DS, Caldwell B, McDougal RA, Carnevale NT, Jas M, et al. Human Neocortical

Neurosolver (HNN), a new software tool for interpreting the cellular and network origin of human MEG/

EEG data. Ivry RB, Stolk A, Stolk A, Dalal SS, editors. Elife. 2020; 9: e51214. https://doi.org/10.7554/

eLife.51214 PMID: 31967544

20. Dura-Bernal S, Suter BA, Gleeson P, Cantarelli M, Quintana A, Rodriguez F, et al. NetPyNE, a tool for

data-driven multiscale modeling of brain circuits. Elife. 2019;8. https://doi.org/10.7554/eLife.44494

PMID: 31025934

21. Gleeson P, Crook S, Cannon RC, Hines ML, Billings GO, Farinella M, et al. NeuroML: A language for

describing data driven models of neurons and networks with a high degree of biological detail. PLoS

Comput Biol. 2010; 6: 1–19. https://doi.org/10.1371/journal.pcbi.1000815 PMID: 20585541

22. Cannon RC, Gleeson P, Crook S, Ganapathy G, Marin B, Piasini E, et al. LEMS: a language for

expressing complex biological models in concise and hierarchical form and its use in underpinning Neu-

roML 2. Front Neuroinform. 2014; 8: 79. https://doi.org/10.3389/fninf.2014.00079 PMID: 25309419

23. Davison AP, Brüderle D, Eppler J, Kremkow J, Muller E, Pecevski D, et al. PyNN: A common interface

for neuronal network simulators. Front Neuroinform. 2009;2. https://doi.org/10.3389/neuro.11.002.2009

PMID: 19198662

24. Ray S, Chintaluri C, Bhalla US, Wójcik DK. NSDF: Neuroscience Simulation Data Format. Neuroinfor-

matics. 2016; 14: 147–167. https://doi.org/10.1007/s12021-015-9282-5 PMID: 26585711

25. Dai K, Hernando J, Billeh YN, Gratiy SL, Planas J, Davison AP, et al. The SONATA data format for effi-

cient description of large-scale network models. PLOS Comput Biol. 2020; 16: e1007696. Available:

https://doi.org/10.1371/journal.pcbi.1007696 PMID: 32092054

26. Cain N, Iyer R, Koch C, Mihalas S. The Computational Properties of a Simplified Cortical Column

Model. PLoS Comput Biol. 2016;12. https://doi.org/10.1371/journal.pcbi.1005045 PMID: 27617444

27. Rubel O, Tritt A, Dichter B, Braun T, Cain N, Oliver R, et al. NWB : N 2. 0 : An Accessible Data Standard

for Neurophysiology. bioRxiv. 2019; 523035. https://doi.org/10.1101/523035

28. Hernando JB, Biddiscombe J, Bohara B, Eilemann S, Schürmann F. Practical parallel rendering of

detailed neuron simulations. EGPGV ‘13 Proceedings of the 13th Eurographics Symposium on Parallel

Graphics and Visualization. Eurographics Association PP—Aire-la-Ville, Switzerland; 2013. pp. 49–56.

https://doi.org/10.2312/EGPGV/EGPGV13/049-056

29. Brunel N. Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J

Comput Neurosci. 2000; 8: 183–208. Available: https://doi.org/10.1023/a:1008925309027 PMID:

10809012

30. Billeh YN, Cai B, Gratiy SL, Dai K, Iyer R, Gouwens NW, et al. Systematic Integration of Structural and

Functional Data into Multi-scale Models of Mouse Primary Visual Cortex. Neuron. 2020; 106: 388–403.

e18. https://doi.org/10.1016/j.neuron.2020.01.040 PMID: 32142648

PLOS COMPUTATIONAL BIOLOGY Brain Modeling ToolKit

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008386 November 30, 2020 21 / 23

https://doi.org/10.3389/neuro.11.006.2008
http://www.ncbi.nlm.nih.gov/pubmed/19129924
https://doi.org/10.3389/neuro.11.005.2008
http://www.ncbi.nlm.nih.gov/pubmed/19115011
https://doi.org/10.3389/fninf.2018.00087
https://doi.org/10.3389/fninf.2018.00087
http://www.ncbi.nlm.nih.gov/pubmed/30534067
https://doi.org/10.1016/j.neuron.2007.03.025
http://www.ncbi.nlm.nih.gov/pubmed/17442244
https://www.frontiersin.org/article/10.3389/fninf.2013.00041
http://www.ncbi.nlm.nih.gov/pubmed/24474916
https://www.frontiersin.org/article/10.3389/fninf.2018.00092
http://www.ncbi.nlm.nih.gov/pubmed/30618697
https://doi.org/10.1371/journal.pone.0201630
https://doi.org/10.1371/journal.pone.0201630
http://www.ncbi.nlm.nih.gov/pubmed/30071069
https://doi.org/10.1016/j.neuron.2019.05.019
http://www.ncbi.nlm.nih.gov/pubmed/31201122
https://doi.org/10.7554/eLife.51214
https://doi.org/10.7554/eLife.51214
http://www.ncbi.nlm.nih.gov/pubmed/31967544
https://doi.org/10.7554/eLife.44494
http://www.ncbi.nlm.nih.gov/pubmed/31025934
https://doi.org/10.1371/journal.pcbi.1000815
http://www.ncbi.nlm.nih.gov/pubmed/20585541
https://doi.org/10.3389/fninf.2014.00079
http://www.ncbi.nlm.nih.gov/pubmed/25309419
https://doi.org/10.3389/neuro.11.002.2009
http://www.ncbi.nlm.nih.gov/pubmed/19198662
https://doi.org/10.1007/s12021-015-9282-5
http://www.ncbi.nlm.nih.gov/pubmed/26585711
https://doi.org/10.1371/journal.pcbi.1007696
http://www.ncbi.nlm.nih.gov/pubmed/32092054
https://doi.org/10.1371/journal.pcbi.1005045
http://www.ncbi.nlm.nih.gov/pubmed/27617444
https://doi.org/10.1101/523035
https://doi.org/10.2312/EGPGV/EGPGV13/049-056
https://doi.org/10.1023/a%3A1008925309027
http://www.ncbi.nlm.nih.gov/pubmed/10809012
https://doi.org/10.1016/j.neuron.2020.01.040
http://www.ncbi.nlm.nih.gov/pubmed/32142648
https://doi.org/10.1371/journal.pcbi.1008386


31. Arkhipov A, Gouwens NW, Billeh YN, Gratiy S, Iyer R, Wei Z, et al. Visual physiology of the layer 4 corti-

cal circuit in silico. PLoS Comput Biol. 2018; 14: e1006535. https://doi.org/10.1371/journal.pcbi.

1006535 PMID: 30419013

32. Durand S, Iyer R, Mizuseki K, De Vries S, Mihalas S, Reid RC. A comparison of visual response proper-

ties in the lateral geniculate nucleus and primary visual cortex of awake and anesthetized mice. J Neu-

rosci. 2016;36. https://doi.org/10.1523/JNEUROSCI.1741-16.2016 PMID: 27903724

33. Lien AD, Scanziani M. Cortical direction selectivity emerges at convergence of thalamic synapses.

Nature. 2018; 558: 80–86. https://doi.org/10.1038/s41586-018-0148-5 PMID: 29795349

34. Lien AD, Scanziani M. Tuned thalamic excitation is amplified by visual cortical circuits. Nat Neurosci.

2013; 16: 1315–23. https://doi.org/10.1038/nn.3488 PMID: 23933748

35. Morgenstern NA, Bourg J, Petreanu L. Multilaminar networks of cortical neurons integrate common

inputs from sensory thalamus. Nat Neurosci. 2016; 19: 1034–1040. https://doi.org/10.1038/nn.4339

PMID: 27376765

36. Kloc M, Maffei A. Target-Specific Properties of Thalamocortical Synapses onto Layer 4 of Mouse Pri-

mary Visual Cortex. J Neurosci. 2014; 34: 15455 LP– 15465. https://doi.org/10.1523/JNEUROSCI.

2595-14.2014 PMID: 25392512

37. Ji X, Zingg B, Mesik L, Xiao Z, Zhang LI, Tao HW. Thalamocortical Innervation Pattern in Mouse Audi-

tory and Visual Cortex: Laminar and Cell-Type Specificity. Cereb Cortex. 2015; 26: 2612–2625. https://

doi.org/10.1093/cercor/bhv099 PMID: 25979090

38. Schoonover CE, Tapia J-C, Schilling VC, Wimmer V, Blazeski R, Zhang W, et al. Comparative Strength

and Dendritic Organization of Thalamocortical and Corticocortical Synapses onto Excitatory Layer 4

Neurons. J Neurosci. 2014; 34: 6746 LP– 6758. https://doi.org/10.1523/JNEUROSCI.0305-14.2014

PMID: 24828630

39. Bopp R, Holler-Rickauer S, Martin KAC, Schuhknecht GFP. An Ultrastructural Study of the Thalamic

Input to Layer 4 of Primary Motor and Primary Somatosensory Cortex in the Mouse. J Neurosci. 2017;

37: 2435 LP– 2448. https://doi.org/10.1523/JNEUROSCI.2557-16.2017 PMID: 28137974

40. Siegle JH, Jia X, Durand S, Gale S, Bennett C, Graddis N, et al. A survey of spiking activity reveals a

functional hierarchy of mouse corticothalamic visual areas. Nature. 2020; In press. https://doi.org/10.

1101/805010

41. Gouwens NW, Berg J, Feng D, Sorensen SA, Zeng H, Hawrylycz MJ, et al. Systematic generation of

biophysically detailed models for diverse cortical neuron types. Nat Commun. 2018; 9: 710. https://doi.

org/10.1038/s41467-017-02718-3 PMID: 29459718

42. Gouwens NW, Sorensen SA, Berg J, Lee C, Jarsky T, Ting J, et al. Classification of electrophysiological

and morphological neuron types in the mouse visual cortex. Nat Neurosci. 2019; 22: 1182–1195.

https://doi.org/10.1038/s41593-019-0417-0 PMID: 31209381

43. Teeter C, Iyer R, Menon V, Gouwens N, Feng D, Berg J, et al. Generalized leaky integrate-and-fire

models classify multiple neuron types. Nat Commun. 2018. https://doi.org/10.1038/s41467-017-02717-

4 PMID: 29459723

44. Einevoll GT, Kayser C, Logothetis NK, Panzeri S. Modelling and analysis of local field potentials for

studying the function of cortical circuits. Nat Rev Neurosci. 2013; 14: 770–785. Available: https://doi.

org/10.1038/nrn3599 PMID: 24135696

45. Lindén H, Tetzlaff T, Potjans TC, Pettersen KH, Grün S, Diesmann M, et al. Modeling the Spatial Reach

of the LFP. Neuron. 2011; 72: 859–872. https://doi.org/10.1016/j.neuron.2011.11.006 PMID: 22153380

46. Gold C, Henze DA, Koch C, Buzsáki G. On the Origin of the Extracellular Action Potential Waveform: A

Modeling Study. J Neurophysiol. 2006; 95: 3113–3128. https://doi.org/10.1152/jn.00979.2005 PMID:

16467426

47. Senzai Y, Fernandez-Ruiz A, Buzsáki G. Layer-Specific Physiological Features and Interlaminar Inter-

actions in the Primary Visual Cortex of the Mouse. Neuron. 2019; 101: 500–513.e5. https://doi.org/10.

1016/j.neuron.2018.12.009 PMID: 30635232

48. Buzsáki G, Anastassiou CA, Koch C. The origin of extracellular fields and currents—EEG, ECoG, LFP

and spikes. Nat Rev Neurosci. 2012; 13: 407–420. https://doi.org/10.1038/nrn3241 PMID: 22595786

49. Mitzdorf U. Properties of the Evoked Potential Generators: Current Source-Density Analysis of Visually

Evoked Potentials in the Cat Cortex. Int J Neurosci. 1987; 33: 33–59. https://doi.org/10.3109/

00207458708985928 PMID: 3610492

50. Plonsey R. The active fiber in a volume conductor. IEEE Trans Biomed Eng. 1974; BME-21: 371–381.

https://doi.org/10.1109/TBME.1974.324406 PMID: 4461667

51. Pettersen KH, Devor A, Ulbert I, Dale AM, Einevoll GT. Current-source density estimation based on

inversion of electrostatic forward solution: Effects of finite extent of neuronal activity and conductivity

PLOS COMPUTATIONAL BIOLOGY Brain Modeling ToolKit

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008386 November 30, 2020 22 / 23

https://doi.org/10.1371/journal.pcbi.1006535
https://doi.org/10.1371/journal.pcbi.1006535
http://www.ncbi.nlm.nih.gov/pubmed/30419013
https://doi.org/10.1523/JNEUROSCI.1741-16.2016
http://www.ncbi.nlm.nih.gov/pubmed/27903724
https://doi.org/10.1038/s41586-018-0148-5
http://www.ncbi.nlm.nih.gov/pubmed/29795349
https://doi.org/10.1038/nn.3488
http://www.ncbi.nlm.nih.gov/pubmed/23933748
https://doi.org/10.1038/nn.4339
http://www.ncbi.nlm.nih.gov/pubmed/27376765
https://doi.org/10.1523/JNEUROSCI.2595-14.2014
https://doi.org/10.1523/JNEUROSCI.2595-14.2014
http://www.ncbi.nlm.nih.gov/pubmed/25392512
https://doi.org/10.1093/cercor/bhv099
https://doi.org/10.1093/cercor/bhv099
http://www.ncbi.nlm.nih.gov/pubmed/25979090
https://doi.org/10.1523/JNEUROSCI.0305-14.2014
http://www.ncbi.nlm.nih.gov/pubmed/24828630
https://doi.org/10.1523/JNEUROSCI.2557-16.2017
http://www.ncbi.nlm.nih.gov/pubmed/28137974
https://doi.org/10.1101/805010
https://doi.org/10.1101/805010
https://doi.org/10.1038/s41467-017-02718-3
https://doi.org/10.1038/s41467-017-02718-3
http://www.ncbi.nlm.nih.gov/pubmed/29459718
https://doi.org/10.1038/s41593-019-0417-0
http://www.ncbi.nlm.nih.gov/pubmed/31209381
https://doi.org/10.1038/s41467-017-02717-4
https://doi.org/10.1038/s41467-017-02717-4
http://www.ncbi.nlm.nih.gov/pubmed/29459723
https://doi.org/10.1038/nrn3599
https://doi.org/10.1038/nrn3599
http://www.ncbi.nlm.nih.gov/pubmed/24135696
https://doi.org/10.1016/j.neuron.2011.11.006
http://www.ncbi.nlm.nih.gov/pubmed/22153380
https://doi.org/10.1152/jn.00979.2005
http://www.ncbi.nlm.nih.gov/pubmed/16467426
https://doi.org/10.1016/j.neuron.2018.12.009
https://doi.org/10.1016/j.neuron.2018.12.009
http://www.ncbi.nlm.nih.gov/pubmed/30635232
https://doi.org/10.1038/nrn3241
http://www.ncbi.nlm.nih.gov/pubmed/22595786
https://doi.org/10.3109/00207458708985928
https://doi.org/10.3109/00207458708985928
http://www.ncbi.nlm.nih.gov/pubmed/3610492
https://doi.org/10.1109/TBME.1974.324406
http://www.ncbi.nlm.nih.gov/pubmed/4461667
https://doi.org/10.1371/journal.pcbi.1008386


discontinuities. J Neurosci Methods. 2006; 154: 116–133. https://doi.org/10.1016/j.jneumeth.2005.12.

005 PMID: 16436298

52. Potworowski J, Jakuczun W, Łȩski S, Wójcik D. Kernel Current Source Density Method. Neural Com-

put. 2011; 24: 541–575. https://doi.org/10.1162/NECO_a_00236 PMID: 22091662

53. Pettersen KH, Hagen E, Einevoll GT. Estimation of population firing rates and current source densities

from laminar electrode recordings. J Comput Neurosci. 2008; 24: 291–313. https://doi.org/10.1007/

s10827-007-0056-4 PMID: 17926125

54. Cai B, Billeh YN, Chettih SN, Harvey CD, Koch C, Arkhipov A, et al. Modeling robust and efficient coding

in the mouse primary visual cortex using computational perturbations. Society for Neuroscience Meet-

ing 2019. Chicago; 2019. p..

55. Chettih SN, Harvey CD. Single-neuron perturbations reveal feature-specific competition in V1. Nature.

2019; 567: 334–340. https://doi.org/10.1038/s41586-019-0997-6 PMID: 30842660

56. Li N, Chen S, Guo Z V, Chen H, Huo Y, Inagaki HK, et al. Spatiotemporal limits of optogenetic manipula-

tions in cortical circuits. bioRxiv. 2019; 642215. https://doi.org/10.1101/642215

57. Li N, Chen T-W, Guo Z V, Gerfen CR, Svoboda K. A motor cortex circuit for motor planning and move-

ment. Nature. 2015; 519: 51–56. https://doi.org/10.1038/nature14178 PMID: 25731172

58. Madisen L, Mao T, Koch H, Zhuo J, Berenyi A, Fujisawa S, et al. A toolbox of Cre-dependent optoge-

netic transgenic mice for light-induced activation and silencing. Nat Neurosci. 2012; 15: 793–802.

https://doi.org/10.1038/nn.3078 PMID: 22446880

59. Carrillo-Reid L, Yang W, Kang Miller J, Peterka DS, Yuste R. Imaging and Optically Manipulating Neu-

ronal Ensembles. Annu Rev Biophys. 2017; 46: 271–293. https://doi.org/10.1146/annurev-biophys-

070816-033647 PMID: 28301770

60. Deisseroth K. Optogenetics: 10 years of microbial opsins in neuroscience. Nat Neurosci. 2015; 18:

1213–1225. https://doi.org/10.1038/nn.4091 PMID: 26308982

61. Kim CK, Adhikari A, Deisseroth K. Integration of optogenetics with complementary methodologies in

systems neuroscience. Nat Rev Neurosci. 2017; 18: 222–235. https://doi.org/10.1038/nrn.2017.15

PMID: 28303019

62. Boyden ES. Optogenetics and the future of neuroscience. Nat Neurosci. 2015; 18: 1200–1201. https://

doi.org/10.1038/nn.4094 PMID: 26308980

PLOS COMPUTATIONAL BIOLOGY Brain Modeling ToolKit

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008386 November 30, 2020 23 / 23

https://doi.org/10.1016/j.jneumeth.2005.12.005
https://doi.org/10.1016/j.jneumeth.2005.12.005
http://www.ncbi.nlm.nih.gov/pubmed/16436298
https://doi.org/10.1162/NECO%5Fa%5F00236
http://www.ncbi.nlm.nih.gov/pubmed/22091662
https://doi.org/10.1007/s10827-007-0056-4
https://doi.org/10.1007/s10827-007-0056-4
http://www.ncbi.nlm.nih.gov/pubmed/17926125
https://doi.org/10.1038/s41586-019-0997-6
http://www.ncbi.nlm.nih.gov/pubmed/30842660
https://doi.org/10.1101/642215
https://doi.org/10.1038/nature14178
http://www.ncbi.nlm.nih.gov/pubmed/25731172
https://doi.org/10.1038/nn.3078
http://www.ncbi.nlm.nih.gov/pubmed/22446880
https://doi.org/10.1146/annurev-biophys-070816-033647
https://doi.org/10.1146/annurev-biophys-070816-033647
http://www.ncbi.nlm.nih.gov/pubmed/28301770
https://doi.org/10.1038/nn.4091
http://www.ncbi.nlm.nih.gov/pubmed/26308982
https://doi.org/10.1038/nrn.2017.15
http://www.ncbi.nlm.nih.gov/pubmed/28303019
https://doi.org/10.1038/nn.4094
https://doi.org/10.1038/nn.4094
http://www.ncbi.nlm.nih.gov/pubmed/26308980
https://doi.org/10.1371/journal.pcbi.1008386

