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ABSTRACT
Background. Exosomes are microvesicles that actively participate in signaling mecha-
nisms and depending on their content can contribute to the development of different
pathologies, such as diabetes and cardiovascular disease.
Objective. The aim of this study was to evaluate the association of cystatin C, CD26,
and CD14 proteins in serum exosomes from patients with Type 2 Diabetes (T2D),
metabolic syndrome (MetS), and atherogenic index of plasma (AIP).
Methods. Serum exosomes were isolated by ultracentrifugation from 147 individuals
with and without diabetes. Both anthropometric and metabolic parameters were
registered from everyone. The levels of exosomal proteins cystatin C, CD26, and
CD14 were quantified by ELISA. The association between protein levels and T2D or
atherogenic risk factors was analyzed by linear regression and generalized regression
models.
Results. We observed a significant correlation of increased glucose with elevated levels
of Cystatin C, and an effect of T2D on the levels of CD26 (β= 45.8 pg/µg; p= 0.001)
and CD14 (β= 168 pg/µg; p< 0.001) compared to subjects without T2D. CD14 was
significantly related to T2D, metabolic syndrome, glucose, and the Atherogenic Index
of Plasma (AIP). Additionally, we observed a significant effect of metabolic syndrome
MetS on the increase of exosomal Cystatin C and CD14.
Conclusions. T2D may contribute to the increase of CD14 protein contained in
exosomes, as well as to the predisposition of atherogenic events development due to its
relationship with the increase in serum triglyceride concentrations and the AIP score.
Finally, the increased levels of CD14 and Cystatin C in exosomes are related to MetS.
The analysis of exosome contents of diabetic patients remains an incipient field, so
extensive characterization is crucial for their use as biomarkers or to analyze their
possible contribution to diabetic complications.
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INTRODUCTION
Diabetes is a group of metabolic diseases characterized by hyperglycemia caused by defects
in insulin secretion or its action. The chronic hyperglycemia of diabetes is associated
with long-term damage, dysfunction, and the failure of different organs (American
Diabetes Association, 2020). It has been described that the presence of insulin resistance,
hypertriglyceridemia, low levels of high-density lipoprotein-cholesterol (HDL-c), increased
blood pressure, and central adiposity, are factors that comprise a pathological condition
called metabolic syndrome (MetS), a condition that promotes the development of type
2 diabetes (T2D) and cardiovascular disease (CVD) (Akbar et al., 2019). The main
components of metabolic syndrome include obesity, high blood pressure, high blood
triglycerides, low levels of HDL cholesterol, and insulin resistance (Swarup et al., 2022).
According to the International Diabetes Federation (IDF), metabolic syndrome is present if
the patient has central obesity plus at least two of the following four factors: ≥triglycerides
150milligrams per deciliter of blood (mg/dL), reduced high-density lipoprotein cholesterol
(HDL-c) less than 40mg/dL inmenor less than 50mg/dL inwomen, elevated fasting glucose
of ≥l00 mg/dL, or blood pressure values of systolic ≥130 mmHg and/or diastolic ≥85
mmHg (Alberti, Zimmet & Shaw, 2005). Furthermore, T2D is associated with the presence
of premature atherosclerosis, which plays an important role in the development of the
impaired cardiac function, myocardial infarction, and stroke, therefore, an increase in
morbidity and mortality due to CVD (Poznyak et al., 2020; Viigimaa et al., 2020; Kučuk et
al., 2021). The atherogenic lipoprotein profile is an important risk factor for coronary artery
disease, while the atherogenic index of plasma (AIP) is an index composed of triglycerides
and high-density lipoprotein cholesterol. AIP has been used to quantify blood lipid levels
and is commonly used as an optimal indicator of dyslipidemia and associated diseases (Zhu
et al., 2018).

It has been documented that the presence of biomolecules transported by exosomes has
been related to the onset and progression of CVD, thus the emergence of the potential use
of exosomes as novel therapeutic targets or biomarkers (Kučuk et al., 2021).

Exosomes are extracellular vesicles (EV) with a size ranging from 30–100 nm, and
they are secreted by nearly all cell types under specific pathophysiological conditions.
They are the result of the fusion of the multivesicular bodies of endosomal origin with
the plasma membrane and have been found in almost all body fluids. It is known that
exosomes are key mediators in cell-to-cell communication, acting as transporters of
proteins and different classes of RNA (mRNA; lncRNA, and miRNA), or even small
amounts of DNA (Kalluri & LeBleu, 2020; Doyle & Wang, 2019; Mathieu et al., 2019; Lu
et al., 2019; O’Brien et al., 2020). Their biogenesis mechanism and the selective packaging
of proteins, lipids, and several RNA types are not completely understood (O’Brien et al.,
2020). Exosomes are characterized by markers such as Alix, HSP70, and the CD9, CD81,
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and CD63 tetraspanins (Jeppesen et al., 2019). Diverse studies have shown that the number
of circulating EVs are increased in patients with insulin resistance, atherosclerosis, obesity,
T2D, and vascular complications (Dini et al., 2020; Peng, Liu & Xu, 2020). Some proteins
related to an increased risk of cardiovascular disease are transported in microvesicles,
including CD26, CD14, and cystatin C, the latter being a protein inhibitor of cysteine
proteases (Dini et al., 2020; Peng, Liu & Xu, 2020; Vijay et al., 2018; Yamamoto et al., 2013;
Chung et al., 2018). CD26 (dipeptidyl peptidase-4) is a ubiquitously expressed glycoprotein
with a catalytic activity that promotes the inactivation of peptides or the generation of new
bioactive peptides, thus regulating diverse biological processes (De et al., 2018; Matteucci
& Giampietro, 2009; Röhrborn, Wronkowitz & Eckel, 2015). CD26 plays an essential role
in glucose metabolism by regulating insulin secretion. This glycoprotein rapidly degrades
GLP-1 (a member of the incretin family), thus decreasing glucose-dependent insulin
secretion. It is also known that CD26 is elevated in T2D (Drucker & Nauck, 2006). CD14 is
a membrane glycoprotein anchored to glycosylphosphatidylinositol (GPI), with a soluble
fraction, and it is constitutively expressed in monocytes/macrophages and neutrophils (Liu
et al., 2020). Additionally, CD14 levels have been associated with subclinical vascular
disease and CVD risk in older adults (Reiner et al., 2013). The relationship among Cystatin
C, CD26, and CD14 proteins with atherogenic and cardiovascular risk has already been
described in EVs in non-diabetic people and other populations (Kranendonk et al., 2014;
Kanhai et al., 2013). In fact, numerous proteins contained in EVs and exosomes that are
altered in T2D have been described, but interest was focused on Cystatin C, CD26, and
CD14 proteins which have been related to cardiovascular complications in the diabetic
population. The studies on the content of exosomes in diabetic people are still incipient
therefore is relevant to its analysis. The aim of this study was to analyze the effect of T2D,
metabolic syndrome, and the atherogenic index of plasma on the levels of cystatin C, CD26,
and CD14 proteins in serum exosomes.

MATERIALS & METHODS
Study participants
Seventy-three individuals with and 74 without T2D were enrolled for this study, which
was approved by the Ethics Committee of the Autonomous University of Guerrero (#CB-
004/17). Participants, men, and women not genetically related, 30–65 years old, were native
residents of Guerrero, Mexico, and provided signed informed consent. Measurements of
weight, height, waist circumference (WC), and blood pressure (BP)were performed on each
participant. Subjects who used lipid-lowering drugs, had excessive alcohol consumption,
were active smokers, had any disease different from T2D, or were pregnant women were
excluded from the study.

Biochemical assays
Venous blood samples were obtained from participants after a 12 h fasting. Serum levels
of glucose, cholesterol, triglycerides, high-density lipoprotein cholesterol (HDL-c), and
low-density lipoprotein cholesterol (LDL-c) were determined using enzymatic colorimetric
methods with commercially available kits (Spinreact, S.A., Girona, Spain). The atherogenic

Pérez-Macedonio et al. (2022), PeerJ, DOI 10.7717/peerj.13656 3/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.13656


index of plasma (AIP) was determined using the method proposed byDobiásová & Frohlich
(2001).

Exosome isolation by ultracentrifugation
The blood samples were centrifuged at 2,000× g for 10 min; then the serum was separated
and stored at−80 ◦C until used. Subsequently, 500 µL of serumwere, mixed with 700 µL of
PBS1x and centrifuged at 120,000× g for 2 h in OptimaTM MAXUltracentrifuge (Beckman
Coulter, Life Sciences, IN, USA). The exosome pellet was washed with PBS, centrifuged
at 120,000× g for 90 min, and resuspended either with PBS or lysis buffer depending on
subsequent application.

Protein quantification assays
The exosome pellet was resuspended in 100 µL of RIPA buffer (25 mM Tris-HCl [pH
7.6], 150 mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS, 1 mM EDTA), and
protease inhibitors (Santa Cruz Biotechnology, TX, USA). Protein content was determined
using the PierceTM BCA Protein Assay Kit (Thermo Fisher Scientific, MA, USA). Briefly,
standards or the exosome extract were placed in a 96-well plate with 200µL of BCAworking
reagent according to the manufacturer’s instructions, and the plate was incubated at 37 ◦C
for 30 min. Subsequently, absorbance at 562 nm was measured on a plate reader DTX-880
(Beckman Coulter, CA, USA).

Transmission electron microscopy (TEM)
A total of 10 µL of exosome samples were loaded on formvar coated carbon grids and
incubated for 2 min. The drops were removed, and the exosomes were fixed with 5 µL of
2.5% v/v glutaraldehyde in 0.1M PBS. Then the carbon grid was washed. After removing
the water, the grid was stained with 5 µL of 1% uranyl acetate for 1 min. The images
were obtained using a JEM-1400 TEM (JEOL, Ltd., Tokyo, Japan). Counting of exosomes
was performed using the TEM Exosome Analyzer software as well as the images obtained
in TIFF format as described by Kotrbová, et al. (Kranendonk et al., 2014; Kotrbová et al.,
2019).

Western blot
A total of 40 µg of total protein of exosome lysate were separated by 10% SDS-PAGE
and transferred to PVDF membranes. The membranes were blocked with Tris-Buffered
Saline solution containing 0.05% Tween (TBS-T) and 5% non-fat dry milk and incubated
overnight with the primary antibodies anti-CD9 (# MA1-80307, 1:5,000; Invitrogen,
Thermo Fisher, MA, USA), anti-CD63 (# sc-5275 1:1,000; Santa Cruz Biotechnology, CA,
USA) and anti-CD81 (# MA5-13548; Invitrogen, Thermo Fisher, MA, USA) at 4 ◦C. Then,
the membranes were washed three times with TBS-T and incubated with HRP conjugated
secondary antibodies (1:30,000 donkey anti-rabbit IgG-HRP sc-2313; 1:50,000 donkey
anti-mouse IgG-HRP sc-2314; InvitrogenTM; Thermo Fisher, MA, USA) for 90 min.
The membranes were washed again and incubated with an enhanced chemiluminescence
substrate (SuperSignalTM West Femto Maximum Sensitivity Substrate; ThermoFisher
Scientific, MA, USA). The immunoreactivity signal was revealed by chemiluminescence
(ChemiDocTM; Bio-Rad Laboratories, Inc., CA, USA).

Pérez-Macedonio et al. (2022), PeerJ, DOI 10.7717/peerj.13656 4/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.13656


Quantification of cystatin C, dipeptidyl peptidase 4 (CD26), and CD14
proteins from exosomes
Protein quantification of exosomes was performed by Human Cystatin C Quantikine
ELISA according to the manufacturer’s instructions: (R&D Systems, Minneapolis, MN,
USA), Human ELISA Kit DPP4/CD26, and Human ELISA Kit CD14 (Thermo Fisher
Scientific, MA, USA) were used to quantify cystatin C, CD26 and CD14, respectively.
Briefly, 50 µL of isolated exosomes were resuspended in RIPA, added to each well, and
incubated at 4 ◦C for 3 h; then, the plate was washed and 200 µL of conjugated protein
was added and incubated with the substrate. Finally, the stop solution was added to each
well, and absorbance was measured at 450 nm in a microplate reader MultiskanTM (GO;
Thermo Fisher Scientific, Waltham, MA, USA).

Statistical analysis
For the descriptive statistics, we employed mean values with standard deviations (SD)
and medians with interquartile ranges (IQR), for the continuous variable normally and
non-normally distributed, respectively. Comparison of frequencies means, and medians
between groups was done using Chi-square, Student t, and Mann–Whitney U tests,
respectively. The effect of T2D, metabolic syndrome, the number of its components, or
of each of the atherogenic risk factors studied on exosomal protein levels was evaluated
separately by generalized linear models (GLM), obtaining beta coefficients and 95%
confidence intervals, assuming a normal (Gaussian) dispersion. The models were adjusted
for the confounding variables of age and gender of the subjects studied. p values <0.05
were considered statistically significant. Statistical analysis was performed using STATA
ver. 15.1 statistical software.

RESULTS
Demographic and clinical characteristics of the analyzed population
The average age of the participants was 50 years, individuals with T2D were significantly
older, and the percentage of women was higher in the two groups analyzed (86.4%). Of the
73 patients diagnosedwith T2DM, 66 had drug treatment and seven had no drugs for disease
control. The drugs used by the participants for diabetes control were metformin, insulin,
glibenclamide, acarbose, and sitagliptin. T2D patients exhibited a significant increase in
systolic blood pressure (SBP) (p< 0.001) and diastolic blood pressure (DBP) (p= 0.049), as
well as in serum glucose levels (p< 0.001), cholesterol (p= 0.013), triglycerides (p= 0.036)
and low HDL-c levels (p= 0.018). Diabetes patients had a higher AIP (p= 0.005), as well
as a significant increase in the levels of the CD14 (<0.001) and CD26 (0.033) proteins
(Table 1). A comparison of exosomal protein concentrations between controlled and
uncontrolled T2D individuals was performed, however, no significant differences were
observed.

Exosomes characterization
To confirm the presence of exosomes obtained from the serum of participants with
and without T2D, the visualization and identification of exosomes were performed by
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Table 1 Demographic and clinical characteristics of study groups.Data are reported as medians (p25th–p75th) or n (%).

Characteristic Total
n= 147

Without T2D
n= 74 (50.3%)

With T2D
n= 73 (49.7%)

P

Gender, n (%)
Male 20 (13.6) 7 (9.5) 13 (17.8) 0.14a

Female 127 (86.4) 67 (90.5) 60 (82.2)
Age (years) 50 (45–56) 48 (42–53) 53 (48–58) <0.001b

MetS, n (%) 67 (45.6) 21 (28.4) 46 (63.0) <0.001a

AO, n (%) 94 (64) 43 (58.1) 51 (69.9) 0.14a

SBP (mmHg) 118 (107–129) 114 (104–121) 123 (112–134) <0.001b

DBP (mmHg) 71 (64–78) 68 (62–77) 72 (66–80) 0.049b

Glucose (mg/dL) 94 (82–117) 86 (80–97) 116 (89–205) <0.001b

Cholesterol (mg/dL) 218.5± 52.2 229.2± 48.7 207.8± 53.7 0.013a

Triglycerides (mg/dL) 155 (118–204) 145 (107–187) 170 (129–214) 0.036b

HDL-c (mg/dL) 47.7 (38.3–56.8) 51 (41.3–59.4) 44.3 (36.5–52) 0.018b

LDL-c (mg/dL) 132 (103.4–157.4) 135 (103.9–154.7) 129 (101.6–159.1) 0.68b

AIP 0.16 (0.04–0.32) 0.10 (−0.05–0.25) 0.21 (0.07–0.38) 0.005b

Low risk (AIP < 0.11), n (%) 60 (42.9) 38 (54.3) 22 (31.4) 0.024
Intermediate risk (AIP 0.11–0.21), n (%) 20 (14.2) 8 (11.4) 12 (17.1)
Increased risk (AIP > 0.21), n (%) 60 (42.9) 24 (34.4) 36 (51.5)
Cystatin C× 10−2 (ng/µg) 98.1 (94.6–102) 98 (94.6–101.6) 102 (94.6–105.1) 0.13b

CD26 (pg/µg) 78 (44.5–102.5) 67.8 (39.7–101.4) 85.3 (57.5–116.2) 0.033b

CD14 (pg/µg) 153 (61–286) 97.6 (31–192) 246 (94.3–400) <0.001b

Notes.
aChi-square test
bMann Whitney
T2D, Type 2-diabetes; MetS, Metabolic syndrome; AO, Abdominal obesity; SBP, Systolic blood pressure; DBP, Diastolic blood pressure; HDL-c, High-density lipoprotein-
cholesterol; LDL-c, Low-density lipoprotein-cholesterol; AIP, Atherogenic index of plasma.
Most individuals with T2D had polytherapy consisting of metformin and insulin (36.4%), followed by metformin monotherapy (25.8%) and insulin monotherapy (22.7%),
while the remaining percentage consisted of glibenclamide alone and polytherapy.

transmission electron microscopy (TEM). Exosomes showed the characteristic ‘‘cup-
shaped’’ morphology, and a variety of sizes was observed (Fig. 1A). Interestingly, exosomes
from individuals without T2D had an approximate diameter of 100 nm, while exosomes
from individuals with T2D were smaller (50 to 70 nm) (Figs. 1A–1C). However, the former
showed a lower number of exosomes per field (2 in average), while the latter showed a
higher number (11 exosomes per field in average). (Fig. 1E). We also perform total protein
quantification after we verified the presence of the exosomal markers CD63, CD81, and
CD9 tetraspanins in both groups (Fig. 1F).

Correlation between exosomal proteins and atherosclerotic risk
factors
Our population data showed that 28.4% of the individuals without T2D had metabolic
syndrome, determined by decreased HDL-c levels (44.3%) and glucose values ≥ 100
mg/dL but less than 126 mg/dL (which is a diagnosis of diabetes), and 34.3% showed
and increased risk (AIP > 0.21). Due to this, we decided to perform a correlation analysis
in all the individuals studied between exosomal proteins and different atherosclerotic
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Figure 1 Exosomes characterization. (A) Exosome characterization. Exosomes were isolated by ultra-
centrifugation from serum samples and observed by electron microscopy. (A and B) Exosomes from the
serum of individuals without diabetes at different magnifications; (C) and (D) Exosomes from the serum
of patients with Type 2 Diabetes (T2D) (E) Exosomes quantification. (F) Identification of CD9, CD81,
and CD63 proteins in exosomes from serum. Western blot of CD9, CD81, and CD63 constitutive proteins
of exosomes. The first lane corresponds to the Molecular Weight Marker (MWM), in the following lanes
(1, 2, and 3), there are samples of participants without Type 2 Diabetes (without T2D) are observed, while
in the last three lanes, there are the bands of participants with T2D.

Full-size DOI: 10.7717/peerj.13656/fig-1

risk factors using Spearman’s correlation. Cystatin C was significantly correlated with
CD14 (p= 0.001), with the number of MetS components (p= 0.007), and with serum
glucose concentration (p= 0.025). On the other hand, CD14 tetraspanin had a positive
correlation with the number of MetS components (p< 0.001), with both systolic and
diastolic blood pressure (p≤ 0.01), serum glucose (p< 0.001) and triglyceride (p= 0.004)
levels, and with the atherogenic index of plasma (p= 0.008) (Table 2). However, when
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Table 2 Correlation between exosomal proteins and different atherosclerotic risk factors in all the in-
dividuals studied.

Factor Cystatin C CD26 CD14

r p r p r p

Cystatin (ng/µg)
CD26 (pg/µg) 0.144 0.09
CD14 (pg/µg) 0.269 0.001 0.099 0.25
Components of MetS 0.233 0.007 0.025 0.78 0.364 <0.001
BMI, kg/m2 0.065 0.46 0.064 0.47 0.124 0.16
SBP, mmHg 0.087 0.32 −0.074 0.39 0.220 0.011
DBP, mmHg 0.055 0.53 −0.056 0.53 0.224 0.010
Glucose, mg/dL 0.196 0.025 0.023 0.79 0.376 <0.001
Triglycerides, mg/dL 0.153 0.08 0.007 0.94 0.253 0.004
Cholesterol, mg/dL 0.148 0.09 −0.046 0.59 −0.055 0.53
HDL-c, mg/dL 0.010 0.91 −0.097 0.27 −0.111 0.21
LDL-c, mg/dL 0.063 0.48 −0.004 0.96 0.065 0.46
AIP score 0.112 0.20 0.053 0.55 0.232 0.008

Notes.
r, Spearman’s regression coefficient; MetS, Metabolic syndrome; BMI, Body mass index; SBP, Systolic blood pressure;
DBP, Diastolic blood pressure; HDL-c, High-density lipoprotein-cholesterol; LDL-c, Low-density lipoprotein-cholesterol;
AIP, Atherogenic index of plasma.

performing this same correlation analysis by the study group, significant correlations were
only identified in individuals with T2D between Cystatin C levels, CD14 and CD26 and
MetS components, and CD14 levels with glucose levels (Table 3), possibly due to a loss in
the statistical power of the test. Notwithstanding the significant correlations mentioned
before, except for the correlations between the levels of cystatin C and CD14 (r = 0.269),
or of CD14 with the number of MetS components (0.364) and with the blood glucose levels
(r = 0.376), the other correlations could be considered weak or uncorrelated. However,
due to the discussion that exists about the use of cut-off points for correlation coefficient
interpretation, some of these cut-off points are arbitrary and inconsistent, therefore it has
been suggested to be cautious in their interpretation and this should be done in the context
of the investigated problem. It has been shown that in the clinical setting it is not usual to
find strong correlations, mainly due to the variability in biological processes (Schober, Boer
& Schwarte, 2018). In this regard, we identified potential clinical relationships between
exosomal proteins and cardiovascular risk factors, including the correlation between
cystatin C with MetS components, and CD14 with AIP (Fig. S1), relationships that we
propose should be further investigated.

Exosomal protein concentration (CD26, CD14, and cystatin C)
Significant differences were identified between the concentrations of CD26 (p= 0.033)
and CD14 (p< 0.001) proteins in individuals with T2D compared with controls (Fig. 2).
Otherwise, there were no significant differences in cystatin C concentrations between the
two groups analyzed.
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Table 3 Correlation between exosomal proteins and different atherosclerotic risk factors by study group.

Factor Without T2D With T2D

Cystatin C CD26 CD14 Cystatin C CD26 CD14

r P r P r P r P r P r P

Cystatin (ng/µg)
CD26 (pg/µg) 0.249 0.05 0.044 0.72
CD14 (pg/µg) 0.205 0.10 0.041 0.75 0.319 0.009 0.054 0.67
Components of MetS 0.012 0.92 −0.064 0.61 0.218 0.08 0.393 0.001 −0.060 0.64 0.126 0.31
BMI, kg/m2

−0.073 0.56 −0.017 0.17 0.137 0.27 0.158 0.20 0.229 0.06 −0.020 0.87
SBP, mmHg −0.109 0.38 −0.129 0.30 0.192 0.12 0.200 0.11 −0.199 0.11 −0.023 0.86
DBP, mmHg −0.125 0.31 −0.054 0.67 0.186 0.13 0.156 0.21 −0.142 0.26 0.099 0.43
Glucose, mg/dL 0.172 0.17 0.032 0.80 0.148 0.24 0.084 0.50 -0121 0.33 0.280 0.023
Triglycerides, mg/dL 0.165 0.19 −0.052 0.68 0.188 0.13 0.106 0.40 −0.019 0.88 0.162 0.19
Cholesterol, mg/dL 0.125 0.32 0.020 0.87 0.002 0.99 0.197 0.11 −0.085 0.50 0.020 0.87
HDL-c, mg/dL 0.224 0.07 0.029 0.82 0.007 0.96 −0.181 0.15 −0.189 0.13 −0.098 0.44
LDL-c, mg/dL 0.167 0.18 0.170 0.17 0.072 0.56 −0.065 0.60 −0.188 0.13 −0.003 0.98
AIP score 0.016 0.90 −0.060 0.63 0.131 0.30 0.150 0.23 0.108 0.39 0.146 0.24

Notes.
r, Spearman’s correlation coefficient; MetS, Metabolic syndrome; BMI, Body mass index; SBP, Systolic blood pressure; DBP, Diastolic blood pressure; HDL-c, High-
density lipoprotein-cholesterol; LDL-c, Low-density lipoprotein-cholesterol; AIP, Atherogenic index of plasma.

Figure 2 Differences in the levels of cystatin C, CD26, and CD14 proteins contained in exosomes by
the study group. A significant increase in CD26 and CD14 levels are shown in individuals with type 2 dia-
betes (T2D) compared to individuals without T2D.

Full-size DOI: 10.7717/peerj.13656/fig-2
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Table 4 Effect of type 2 diabetes, metabolic syndrome, and atherogenic risk factors on exosomal protein levels.

Factor Cystatin-C× 10−2

(ng/µg) β (95% CI)
p CD26 (pg/µg) β

(95% CI)
p CD14 (pg/µg) β

(95% CI)
p

T2D 3.1 (−3.5, 9.7) 0.359 45.8 (18.2, 73.4) 0.001 168 (103, 232) <0.001
MetS 8.8 (2.5, 15.1) 0.006 9.3 (−16.8, 35.3) 0.486 77.5 (10.4, 144.6) 0.024
AO 1.1 (−6.0, 8.2) 0.768 5.4 (−24, 34.9) 0.718 54.2 (−22.4, 131) 0.166
BP ≥ 130/85 mmHg 9.3 (2.1, 16.6) 0.012 −16.8 (−47.6, 13.9) 0.283 45 (−35.4, 125.4) 0.273
Glucose ≥ 100 mg/dL 6.0 (−0.4, 12.4) 0.064 5.0 (−21.7, 31.7) 0.714 126 (59.2, 192.7) <0.001
TG ≥ 150 mg/dL 2.2 (−3.9, 8.4) 0.477 5.7 (−19.8, 31.1) 0.663 48.5 (−17.6, 114.5) 0.150
Cholesterol ≥ 200 mg/dL 0.9 (−5.4, 7.2) 0.778 −8.2 (−34.4, 18.1) 0.542 −30 (−98.3, 38.4) 0.391
HDL-c < 40 M or 50 F mg/dL 3.4 (−3.0, 9.7) 0.297 25 (−1.4, 51.4) 0.063 26.2 (−42.8, 95.2) 0.456
LDL-c ≥ 130 mg/dL −3.4 (−9.6, 2.9) 0.294 −2.5 (−29, 24) 0.855 −39 (−107, 29) 0.259
AIP score 11.8 (−1.2, 24.8) 0.076 46.8 (−8.1, 101.7) 0.095 167.4 (26.5, 308.3) 0.020

Notes.
Generalized linear models adjusted for age and gender.
β, Regression coefficient; CI, confidence interval; T2D, Type 2-diabetes; MetS, Metabolic syndrome; AO, Abdominal obesity; BP, Blood pressure; TG, Triglycerides;
HDL-c, High-density lipoprotein-cholesterol; M, Male; F, Female; LDL-c, Low-density lipoprotein-cholesterol; AIP, Atherogenic index of plasma.

Relationship between exosomal proteins and atherogenic risk
We analyzed the effect of T2D, metabolic syndrome (MetS), and atherogenic risk on the
concentration of exosomal proteins using linear regression models adjusted for age and
gender. We identified a significant effect of T2D on the increase in the concentrations of
the CD26 (p= 0.001) and CD14 (p< 0.001) proteins, and of the AIP on the levels of the
CD14 (p= 0.020) protein.

Additionally, we observed a significant effect of MetS (p= 0.006) and high blood
pressure (p= 0.012) on the increase of cystatin C levels, and MetS (p= 0.024) and glucose
(p≤ 0.001) on the increase of CD14 (Table 4).

DISCUSSION
People with type 2 diabetes have a higher cardiovascular risk compared to non-diabetic and
cardiovascular complications attributable to atherosclerosis is a major cause of mortality
in diabetic persons (Viigimaa et al., 2020; Eid et al., 2019; Strain & Paldánius, 2018).
Therefore, it is relevant to characterize predictive biomarkers of the development of T2D,
as well as cardiovascular complications. Recently, it has been proposed that extracellular
vesicles such as exosomes play an important role in the pathogenesis and progression
of T2D and CVD. Although the mechanisms by which exosomes can contribute to
pathophysiological events are not yet known.

In the present study, we evaluated the effect or association of T2D and atherogenic
risk factors with the protein levels of cystatin C, CD26, and CD14 contained in the serum
exosomes. Cystatin C is a protein that inhibits cysteine proteases which are constantly
produced and excreted by all nucleated cells (Vijay et al., 2018). Some studies show that
cystatin C has a close relationship with atherosclerotic disease and that it is also a good
marker of glomerular filtration rate, a marker even better than creatinine (Shankar &
Teppala, 2011). Our results showed a trend of higher levels of cystatin C in the exosomes of

Pérez-Macedonio et al. (2022), PeerJ, DOI 10.7717/peerj.13656 10/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.13656


the T2Dgroup comparedwith the control group. Also, we found a significant increase in this
protein with the increase in BP (p= 0.012). This data agrees with the relationship between
serum cystatin C and hypertension among adults without clinically recognized chronic
kidney disease (Shankar & Teppala, 2011). Metabolic syndrome (MetS) is characterized
by several metabolic risk factors and is associated with the development of atherosclerotic
cardiovascular disease and T2D in adults. We found a relationship between MetS and
exosomal Cystatin C, which agreed with Kranendonk et al. they reported that the high
levels of cystatin C contained in EV were associated with a high prevalence of metabolic
syndrome (Kranendonk et al., 2014). Several studies indicate that cystatin C is a receptor
antagonist of TGF-β, which causes the inhibition of the signaling of this anti-inflammatory
cytokine, leading to the inhibition of the protective role of TGF-β. In addition, it is known
that an imbalance between the expression of cathepsins and their endogenous inhibitor
cystatin C is one of the most important mechanisms in atherogenesis (Prats et al., 2010;
Vidak et al., 2019; Arpegård et al., 2008).

The CD26 protein or dipeptidyl peptidase IV in its soluble form (sCD26/DPP-IV) has
been shown to play a role in the regulation of glycemia, as well as in the development
of atherosclerosis (Cahn, Cernea & Raz, 2016). The increase in CD26 activity in healthy
individuals has been proposed as a predictor of metabolic syndrome and insulin resistance,
which are necessary factors for the development of T2D. Thus, it is considered a new
biomarker for these two conditions (Yang et al., 2014). In this study, individuals with T2D
had a significant increase in CD26 (p= 0.001) contained in exosomes compared with the
controls. However, we did not find a significant relationship between CD26 protein and
other atherogenic risk factors. A possible explanation for this may be that, even though in
diabetic individuals an increase in CD26 levels has been found to correlate with insulin
resistance, CD26 is a glycoprotein with several functions, among which is the regulation
of the activity of chemokines and cytokines, molecules that play an important role in the
development of atherosclerosis and cardiovascular disease (Ngetich et al., 2021), and this
was not evaluated in this work.

Regarding CD14, we found a significant increase of this protein in exosomes from
patients with T2D and MetS, this could be related to the inflammatory state that
characterizes both metabolic alterations. We also identified a significant relationship
between the AIP score with the CD14 protein. Our results differ from those reported by
Kranendonk et al. who found that the levels of CD14 contained in extracellular vesicles
were associated with a reduction in T2D development relative risk (Kranendonk et al.,
2014). The high levels of CD14 in exosomes from T2D patients may have an impact on
the inflammatory activity of adipose tissue and insulin resistance, as has been shown
by Fernández-Real et al. (2011), who reported that CD14 is an essential factor for the
development of T2D. Also, it is known that CD14 is expressed by monocytes and that these
play a crucial role in the inflammation promoted by obesity and insulin resistance (Shitole
et al., 2019; De Courten et al., 2016). In addition, CD14 has been linked to the development
of atherosclerosis, because the extracellular vesicles secreted by monocytes that express this
protein can induce endothelial damage in vitro (Aharon, Tamari & Brenner, 2008).
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The presence of CD14 in microvesicles was documented previously by Kanhai et al.
(2013) they reported that protein levels of CD14, F2 serpin, and cystatin C in microvesicles
were associated with an increased risk for new cardiovascular events and mortality in
patients with CVD. Our results suggest that individuals with T2D presented an altered
molecular content that may have functional repercussions or indicate altered physiology of
cells releasing exosomes to the bloodstream. However, one of the limitations of our study is
that we do not know the cell type from which the exosomes present in the bloodstream are
derived. Extracellular vesicles are a heterogeneous class of nanovesicles, this heterogeneity
is represented by several characteristics such as size, membrane composition, and cargo
(Kalluri & LeBleu, 2020; Doyle & Wang, 2019; Jeppesen et al., 2019). Another limitation is
the proportion of women and men, however, this does not represent an issue, since the
models were adjusted for age and gender to avoid a biased estimator.

Cystatin C, CD26, and CD14 proteins have been widely described in serum and
plasma of individuals with disorders such as diabetes, cardiovascular diseases, and
kidney failure, among others (Yamamoto et al., 2013; Chung et al., 2018; De et al., 2018;
Röhrborn, Wronkowitz & Eckel, 2015; Reiner et al., 2013). However, the analysis of these
proteins inside extracellular vesicles is scarce. Characterization of the proteomic content
of exosomes is relevant and of interest for the study of the functional effect of exosomes
on cell communication and the exosome’s role in the development of comorbidities in
T2D. The advantages of exosomal proteomic profile analysis are that the biomolecules
contained in the exosomes are more stable, and they are preserved to a greater extent since
their degradation is prevented. Another advantage is that the exosomal protein content
characterization can be performed in more detail, allowing the identification of proteins
with potential use as disease biomarkers, which are often in low abundance and readily
masked by high abundant proteins in serum or plasma. Likewise, the proteomic profile of
exosomes can provide information about the cells of origin. Themain disadvantage of using
exosomal proteins as biomarkers is that there is not a well-established protocol for their
isolation (Raimondo et al., 2011; Mosquera-Heredia et al., 2021; Boukouris & Mathivanan,
2015).

In the present work, we confirmed for the first time the presence of the CD14, CD26, and
Cystatin C proteins specifically in exosomes and their relationship to metabolic alterations.
On the other hand, the Atherogenic Index of Plasma (AIP) is a good marker of atherogenic
dyslipidemia that predicts the risk of CVD because it reflects the relationship between
protective and atherogenic lipoproteins (Kranendonk et al., 2014). Our findings revealed a
significant difference in the AIP in individuals with diabetes that presented an increased
atherogenic risk (>0.210) compared with the controls who presented an intermediate
atherogenic risk (0.110–0.209). This is supported by similar data reported by Anjum et
al. (2018) showing that individuals with T2D have an increased atherogenic risk (0.73 ±
0.23) and that the increase in serum triglyceride levels and the decrease in serum c-HDL
levels comprised the most common lipid abnormalities. Even though our sample size is
limited, our findings are robust and reliable, and allow us to confirm the association of
CD14 protein with DT2. Furthermore, we found that Cystatin C and CD14 in exosomes are
related to MetS. The analysis of exosome contents of diabetic patients remains an incipient
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field, so the extensive characterization of these types of microvesicles is necessary for their
use as biomarkers or to analyze their functional impact in several tissues and therefore
contribution to diabetic complications.

CONCLUSIONS
In conclusion, our study provides evidence that T2D may contribute to the increase of
CD14 protein contained in exosomes, as well as to the predisposition of atherogenic events
development due to its relationship with the increase in serum triglyceride concentrations.
Also, the levels of CD14 contained in exosomes were associated with systolic and diastolic
blood pressure, as well as with serum concentrations of glucose, triglycerides, and the
AIP score. Finally, the increased levels of CD14 and Cystatin C in exosomes are related to
MetS.
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