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Abstract
Objective To assess significant liver fibrosis by multiparametric ultrasomics data using machine learning.
Materials and Methods This prospective study consisted of 144 patients with chronic hepatitis B. Ultrasomics—high-throughput
quantitative data from ultrasound imaging of liver fibrosis—were generated using conventional radiomics, original radiofrequency
(ORF) and contrast-enhancedmicro-flow (CEMF) features. Three categories of features were explored using pairwise correlation and
hierarchical clustering. Features were selected using diagnostic tests for fibrosis, activity and steatosis stage, with the histopathological
results as the reference. The fibrosis staging performance of ultrasomics models with combinations of the selected features was
evaluated with machine-learning algorithms by calculating the area under the receiver-operator characteristic curve (AUC).
Results ORF and CEMF features had better predictive power than conventional radiomics for liver fibrosis stage (both p < 0.01).
CEMF features exhibited the highest diagnostic value for activity stage (both p < 0.05), and ORF had the best diagnostic value for
steatosis stage (both p < 0.01). The machine-learning classifiers of adaptive boosting, random forest and support vector machine
were found to be optimal algorithms with better (all mean AUCs = 0.85) and more stable performance (coefficient of variation =
0.01–0.02) for fibrosis staging than decision tree, logistic regression and neural network (mean AUC = 0.61–0.72, CV = 0.07–
0.08). The multiparametric ultrasomics model achieved much better performance (mean AUC values of 0.78–0.85) than the
features from a single modality in discriminating significant fibrosis (≥ F2).
Conclusion Machine-learning-based analysis of multiparametric ultrasomics can help improve the discrimination of significant
fibrosis compared with mono or dual modalities.
Key Points
•Multiparametric ultrasomics has achieved much better performance in the discrimination of significant fibrosis (≥ F2) than the
single modality of conventional radiomics, original radiofrequency and contrast-enhanced micro-flow.

• Adaptive boosting, random forest and support vector machine are the optimal algorithms for machine learning.
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Abbreviations
AdaBoost Adaptive boosting
CEMF Contrast enhanced micro-flow
CV Coefficient of variation
DT Decision tree
LR Logistic regression
NN Neural network
ORF Original radiofrequency
RF Random forest
SVM Support vector machine

Introduction

The early detection and accurate staging of liver significant
fibrosis are crucial for antiviral therapy. Shear wave
elastography (SWE), an elasticity-based US technique, has
shown good accuracy in detecting fibrosis [1]. However, the
applicability of SWE is substantially limited in cases of
obesity, ascites or necroinflammatory activity (up to
15.8%) [2, 3]. Thus, assessment with a single imaging
modality only provides limited information and could al-
ways be affected by steatosis and necroinflammatory ac-
tivity [4, 5].

Radiomics, a term that includes the suffix B-omics,^ generates
high-throughput data from medical images [6, 7], which contain
information on prognosis, response to treatment and monitoring
of disease status [8, 9]. As one important modality of medical
imaging, US can provide not only morphological information
but also stiffness and perfusion assessments, which may not be
acquired using other imaging methods [5, 10–12]. We have ap-
plied the B-omics^ concept to computing quantitative US imag-
ing, a field referred to as Bultrasomics.^ In our opinion, big
imaging data of liver fibrosis, in terms of heterogeneity, tissue
texture, stiffness and vascularity perfusion, should be taken into
consideration when analyzing fibrosis staging.

In addition to multimodality data, machine learning is an-
other powerful tool to improve clinical decision-making [13].
Currently, newer advances in data analysis contributed by the
field of machine learning have greatly extended researchers’
ability to make meaningful discoveries. Machine learning en-
ables accurate and reliable prediction using data with very
large numbers of variables and small sample sizes.
Therefore, the optimal machine-learning model for
ultrasomics studies with small sample sizes should be deter-
mined. To our knowledge, comparative studies on the effec-
tiveness of machine learning-based decision support systems
are lacking [14].

In this study, we present the concept of multiparametric
ultrasomics, which is a machine learning-based clinical deci-
sion support system that uses US imaging big data. We ex-
tracted a set of ultrasomic features that captures the morphol-
ogy and hemodynamic changes associated with liver fibrosis

to (1) develop a robust, noninvasive technique to predict the
liver fibrosis stage using routine US data that can be easily
obtained in the clinical setting and (2) investigate the optimal
machine-learning model in a small sample size study.

Materials and methods

Study population

This prospective study was approved by the Institutional
Review Board of our hospital, and informed consent was ob-
tained. From October 2013 to April 2015, a total of 144 hep-
atitis B virus (HBV) patients who met the eligibility criteria
were included in the study. The inclusion and exclusion
criteria are detailed in the Supplementary Materials. For each
patient, comprehensive blood tests (aspartate transaminase
(AST), alanine transaminase (ALT), serum albumin,
g-glutamyltransferase, total bilirubin, and platelet count) were
performed no more than 3 days before the surgery or biopsy.
Combinations of simple markers such as the aspartate
aminotransferase-to-platelet ratio index (APRI) and fibrosis-
4 index (FIB-4) were calculated; the formula is provided in the
Supplementary Materials [15].

Liver histology analysis

All patients included in the study underwent partial liver sur-
gery (n = 61) or biopsy (n = 83). Resected liver specimens
approximately 10 mm × 10 mm in size were preserved intra-
operatively. A US-guided percutaneous liver biopsy of the
right lobe was performed with an 18-gauge needle (Bard)
within 3 days after ultrasonography. All specimens were fixed
in formalin, embedded in paraffin and stained with
hematoxylin-eosin (H&E) and Masson. Two liver patholo-
gists with > 10 years of experience, who were blinded to the
results of imaging but not to the clinical and biochemical data
of the patient, analyzed the specimens. Liver fibrosis was
evaluated according to the METAVIR scoring system as fol-
lows: F0, no fibrosis; F1, portal fibrosis without septa; F2,
portal fibrosis and few septa; F3, numerous septa without
cirrhosis; F4, cirrhosis. Significant fibrosis was defined as a
score of F2 or greater. The METAVIR system was used to
score the intensity of necroinflammatory activity (mainly ne-
crosis) as follows: A0 = no necroinflammatory activity, A1 =
mild activity, A2 = moderate activity and A3 = severe activity
[4]. Steatosis was scored, using a four-grade scoring system,
from S0 to S4: S0 = no steatosis; S1 = mild (1–5%) (% of
hepatocytes containing visible macrovesicular steatosis); S2 =
moderate (6–32%); S3 = marked (33–66%); S4 = severe (67–
100%) [4, 16, 17].
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Multiparametric ultrasomics acquisition and feature
extraction

All US examinations were performed with the Aplio 500
scanner (Canon Medical System) equipped with a 375BT
convex transducer (frequency, 3.5 MHz). US examinations
were performed by one of two radiologists (X.Y.X. and
W.W.) with at least 10 years of experience with routine US.
Three types of parameters were acquired:

1. B-mode images in digital imaging and communications in
medicine (DICOM) format. Images were obtained with
intercostal oblique scanning and were expected to show
the liver parenchyma from the right intercostal space to
the segment 6 region of the right hepatic lobe. Display
depth and transmit focus were fixed at 6 cm and 4 cm,
respectively, with the receive gain equal to 80. Large ves-
sels defined as > 2.0 mm were avoided. The settings,
including time-gain compensation, dynamic range, focal
length and mechanical index, were optimized for each
examination. Conventional images in DICOM format
were stored on the Canon Medical System platform.
DICOM images were used to extract conventional
radiomics features using A. K. software (Ultrasomics

Kit, version 1.0, ZhiXing-Tech), including the first-order
intensity statistics, texture and wavelet features.
Mathematical definitions of all radiomic features were
previous ly descr ibed and are deta i led in the
Supplementary Materials [18].

2. Radiofrequency-based raw data. The same scanning
method and planes of conventional radiomics were used,
but data were stored as raw data. Post-beam-formed orig-
inal radiofrequency data (ORF features) with intact fre-
quency information were used to extract the statistical
features of the acquired echo amplitude of the raw data.

3. Dynamic contrast-enhanced micro-flow (CEMF) images.
Contrast harmonic imaging was used with a mechanical
index of 0.08. The transmission frequency used in con-
trast harmonic imaging was 3.5 MHz and a frame rate of
15–18 frames per second. Images were obtained with in-
tercostal oblique scanning and were expected to show the
liver parenchyma from the right intercostal space to the
segment 6 region of the right hepatic lobe and the right
kidney on a single screen. Focus was set at a depth of 6 to
8 cm to visualize the kidney. After the contrast harmonic
imagingmodewas activated, a bolus injection of 2.4ml of
SonoVue (Bracco) was administered intravenously via an
antecubital vein, followed immediately by a 5 ml saline

Fig. 1 The diagram shows the four-step process for the construction
of an ultrasomic-based predictive model. (I) Ultrasomic images were
obtained from different US modalities (conventional images,
original radiofrequency data and dynamic CEMF images). (II) Big
ultrasonic data were extracted as conventional radiomic features,
original radiofrequency features and dynamic CEMF features. (III)

Big data mining (correlation, cluster and predictive performance)
was performed to select the opt imal predic tor, and the
classification performance of ultrasomic models was tested via
machine learning. (IV) In this study, we prospectively enrolled
144 patients with liver fibrosis to establish an ultrasomic model
for the prediction of fibrosis stages
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flush. Patients were instructed to hold their breath after the
injection for 7–8 s (1–2 s before the visualization of renal
artery), and then the CEMF mode was initiated. Image
acquisition proceeded until the liver was wholly en-
hanced. Clips obtained for approximately 15–20 s imme-
diately after SonoVue infusion were saved as clip data in
DICOM format. Dynamic CEMF features were extracted
via our built-in model through off-line analysis. The mod-
el was developed with the understanding that the liver
received dual blood supply from the hepatic artery and
portal vein. The blood supply of the kidney was set as
the Bhepatic artery supply^ and was used as a comparison
indicator to reduce the influence of circulation difference.

According to our preliminary and reported studies [10, 11,
19–21], the three categories of parameters (conventional
radiomics, ORF and CEMF features) acquired from the three
types of images were expected to provide potential information
for liver fibrosis staging and are detailed in the Supplementary
Materials. In total, there were 472 features, including 396 conven-
tional radiomics, 54 ORF and 22 CEMF features. These comput-
ed quantitative features were selected to construct the
ultrasomics—the Bomics^ data of ultrasound in this study (Fig. 1).

Multiparameter-based ultrasomic analysis of liver
fibrosis using machine learning

Feature selection and analysis of multiparametric ultrasomics

Spearman’s correlation coefficient (R) was used to assess cor-
relations between features in all parameters. Feature pairs with
|R| > 0.90 were considered to be highly correlated and likely to
provide redundant rather than complementary information.
The highly correlated features were collapsed into one repre-
sentative feature, usually the one with the greatest variability
or highest dynamic range. This procedure yielded independent
features for conventional radiomics, ORF and CEMF features.

Then, we explored feature correlations by establishing a cor-
relation map for pairwise associations among the three catego-
ries of parameters. A hierarchical cluster of all quantitative fea-
tures was plotted with different stages of fibrosis, activity and
steatosis. The performance of each feature was further quanti-
fied by calculating the area under the receiver-operator charac-
teristic curve (AUC) for fibrosis stage, activity and steatosis.

Multiparametric ultrasomic-based models for significant
fibrosis using machine learning

Three categories of parameters with AUCs > 0.6 for assessing
all stages of fibrosis were selected for the following analysis.
To assess the optimal machine-learning method, all parame-
ters of the three categories were selected for model construc-
tion. A total of six types of machine-learning algorithms—

adaptive boosting (AdaBoost), decision tree (DT), logistic re-
gression (LR), neural network (NN), random forest (RF) and
support vector machine (SVM)—were tested in this study.
These machine-learning algorithms were selected because of
their promising performance in classification [13]. The brief
descriptions of each classifier were explained in the
Supplementary Material.

The entire cohort was randomly divided into a training
data set (100 cases) and validation data set (44 cases). The
training data set was used to compose a model and evaluated
it by a validation data set. Six models with different
machine-learning methods were built on the training data
set, and the performance of each model was then assessed
on the validation data set. To ensure the robustness of the
classifiers to training and testing data, we adopted a ten-fold
cross-validationmethod to calculate the diagnostic value for
significant fibrosis (≥ F2). All processes were repeated ten
times with random seed, resulting in ten different training
and validation data sets. We repeatedly composed a model
using a training data set and evaluated it by a validation data
set, and a model that showed the best classification perfor-
mance was chosen as the best model. The classification
performance for significant fibrosis was assessed using the
AUC in the validation data sets.

Table 1 Demographic and clinical characteristics of patients

Characteristic (n = 144) Value

Age (years) # 48.24 ± 13.75

Gender (male/female) 114/30

Body mass index (kg/m2)# 20.20 ± 3.16

Hepatitis B surface antigen (+/-) 98/46

Platelet count (×109/l)* 5.70 (4.69-7.22)

ALT level (U/l)* 31.5 (20.5-50.0)

AST level (U/l)* 30.0 (23.0-42.5)

AST/ALT* 1.0 (0.734-1.262)

Albumin level (g/l)* 41.8 (38.6-44.45)

Total bilirubin level (μmol/l)* 12.55 (9.45-18.30)

γ-GL level (U/l)* 53.5 (32.0-122.5)

Prothrombin time (s)* 12.60 (12.10-13.40)

APRI* 0.396 (0.281-0.733)

FIB4* 1.344 (0.885-2.248)

HBV-DNA (<100/>100 cps/ml) 62/82

Fibrosis (F0/F1/F2/F3/F4) 15/33/38/23/35

Inflammation (A0/A1/A2/A3) 9/70/50/15

Steatosis (S0/S1/ S2/S3) 101/36/5/2

Note: Unless otherwise indicated, data are number of patients

ALT alanine aminotransferase, AST aspartate aminotransferase, GL
gamma-glutamyl transpeptidase, APRI aspartate aminotransferase to
platelet ratio index, FIB4 fibrosis-4 index

*Data are medians, with interquartile range in parentheses
# Data are means ± standard deviation
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Comparison of multiparametric ultrasomics models

Multiparametric ultrasomics models using optimized
machining-learning methods were compared against models
of three categories of parameters combined: (1) a combination
of conventional radiomics, ORF and CEMF; two categories of
parameters combined: (2) a combination of conventional
radiomics and CEMF, (3) a combination of ORF and CEMF,
(4) a combination of conventional radiomics and ORF; and
models with a single parameter: (5) conventional radiomics,
(6) ORF and (7) CEMF. Classifier performance was assessed
by computing the accuracy, sensitivity, specificity and
receiver-operating characteristic (ROC) curve. The AUCs
for significant fibrosis in the validation data sets were assessed
with the adopted ten-fold cross-validation method.

Statistical analysis

Statistical analyses were performed with the open-source statis-
tical computing environment R (version 3.3.1; R Foundation for
Statistical Computing). We filtered features of three modalities
based on independence from other features (intraclass Pearson
correlation, |r| > 0.9). Heat maps of interclass Pearson correla-
tions among the three categories of parameters were calculated
and plotted using the R package Bcorrplot^. Six machine-
learning algorithms were applied with the R packages Brpart^,
Bada^, BrandomForest^, Bkernlab^, Brms^ and Bnnet^. AUCs

for staging fibrosis, activity and steatosis were explored for the
three categories of features with the R package BpROC^. The
differences between model performance across different
machine-learning and parameter subgroups were evaluated via
a permutation test by using the R package BDeducer .̂
Coefficients of variation (CVs) were calculated to compare the
discrete degrees of AUCs. All statistical tests were two-sided,
and p values < 0.05 were considered statistically significant.

Results

Patient characteristics

A total of 144 patients were enrolled in the study, of whom
114 were male. The mean BMI was 20 kg/m2, and the mean
age was 48 years. METAVIR fibrosis, activity and steatosis
distribution are summarized in Table 1.

Feature selection and analysis of multiparametric
ultrasomics

The independent features for conventional radiomics, ORF
and CEMFwere 110, 20 and 26, respectively. In general, these
features have barely no correlation between ORF and CEMF
(Spearman rho, -0.26 to 0.24) and between CEMF and con-
ventional radiomics (Spearman rho, -0.26 to 0.32); however,

Fig. 2 The correlation heat map shows associations between conventional
radiomics, ORF and CEMF features. Only a few parameters were highly
correlated (blue) or highly anti-correlated (red). In general, we found that
these featureswere only slightly ormoderately correlated betweenORF and

CEMF features (a, Spearman rho, -0.26 to 0.24) and CEMF and conven-
tional radiomic features (b, Spearman rho, -0.26 to 0.32). However, the
variables between ORF and conventional radiomic features were more
highly correlated (c, Spearman rho, -0.34 to 0.47)
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the correlation coefficient of ORF and conventional radiomics
features was slightly correlated and higher than in the above
two groups (Spearman rho, -0.34 to 0.47) (Fig. 2).

Hierarchical clusters of all quantitative features were plotted
with different stages of fibrosis, activity and steatosis (Fig. S1).
We tested the diagnostic value of the selected parameters for
fibrosis, activity and steatosis stage using AUC. A boxplot
showed that ORF and CEMF features were the strongest pre-
dictors, with no significant difference, and were much stronger
than conventional radiomics features for all fibrosis stages (Fig.
3a, both p < 0.01). Additionally, CEMF features exhibited the
highest diagnostic value for all activity stages (Fig. 3b), and
ORF performed the best for all steatosis stages (Fig. 3c).

Multiparametric ultrasomic-based models
for significant fibrosis using machine learning

Of the 156 features analyzed, 93 variables for conventional
radiomics features, 11 variables for ORF features and 11 var-
iables for CEMF features were removed in the final models
because of their low diagnostic value (AUC < 0.6). The model
for machine learning included 41 features: 17 conventional
radiomics features, 15 ORF and 9 CEMF features. The de-
tailed name and definitions of these features were listed in the
Supplementary Material.

The classification performance of each of the six machine-
learning classification methods is shown in Fig. 4. The

Fig. 3 Diagnostic value of the parameters in the diagnosis of fibrosis,
activity and steatosis stages. The boxplot shows that ORF and CEMF
parameters, with no significant difference, were the strongest predictors
and were much higher than conventional radiomic features for liver

fibrosis stages (a, both p < 0.01, ANOVA test). CEMF exhibited the
highest diagnostic value for activity stages (b, both p < 0.05, ANOVA
test), and ORF performed the best for steatosis stages (c, both p < 0.01,
ANOVA test)
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results showed that the AdaBoost, RF and SVM classi-
fiers (mean AUC = 0.85 for all three) outperformed the
other classifiers (mean AUC = 0.61–0.72, all p < 0.001).
In addition, these three classifiers showed less variation,
with a CV of 0.01–0.02, which was much lower than
those of the other models (CV = 0.07–0.08). Based on
these findings, the AdaBoost, RF and SVM classifiers
were selected for the next computing because of their
stability, effectiveness and high staging performance.

Comparison of multiparametric ultrasomics models

The performance of machine-learning prediction models for
each parameter group is summarized in Fig. 5 and Tables 2
and 3. As seen from this distribution, the combination of
multiparametric features achieved much better performance
(mean AUC of 0.78–0.85) than the features from a single
modality (mean AUC of 0.68–0.77). For models incorporat-
ing multiparametric conventional radiomics, ORF and CEMF,
classifiers of AdaBoost, RF and SVM demonstrated good
performance, with the same AUC of 0.85 ± 0.01 (with
87.5%, 87.5% and 93.8% sensitivity and 76.9%, 76.9% and
69.2% specificity, respectively). For models combining two
modalities, combinations of ORF and CEMF and combina-
tions of conventional radiomics and CEMF demonstrated
good performance, with mean AUCs of 0.82–0.85; however,
the performance of the models combining conventional
radiomics and ORF was poorer, with a mean AUC of 0.78–
0.79. The models with a single modality showed only fair
performance, with a mean AUC of 0.68–0.77.

Discussion

In the current study, we propose the use of multiparametric
ultrasomics as a decision support tool for liver fibrosis stag-
ing. In addition to conventional radiomics features from
digital images, we acquired RF signal and dynamic perfu-
sion information to construct ultrasomics, which are unique
but convenient to acquired ultrasound parameters [10, 11,
20]. These mineable data for the evaluation of fibrosis stag-
ing were tested and compared with different machine-
learning algorithms. Multiparametric ultrasomics using
AdaBoost, RF and SVM provided the highest performance
in this study with a small sample size.

In the construction of ultrasomics, we used unsupervised
machine learning to explore the data characteristics of the
parameters. A higher correlation between ORF and conven-
tional radiomics features was found. An ORF signal is post-
beam-formed data from a transducer, and it can provide
intact information without signal processing [22].
Radiomics parameters are conventional features that are
mathematically extracted quantitative descriptors based on
digitally transformed images [23]. Although the digital im-
ages were signals post-processed with a digital scan con-
verter, both signals simulated the morphological homoge-
neity of liver tissue. Notably, the ORF data, which included
original and superior information, performed better in the
assessment of fibrosis and steatosis. Some papers have re-
ported results on the tissue characterization of hepatic fi-
brosis or steatosis via quantitative ultrasound examination
using statistical data on B-mode ultrasound and radiofre-
quency echo signals [24–26]. However, dynamic perfusion

Fig. 4 Boxplot showing the
classification performance with
the six machine-learning methods
with all parameters. The p value is
for a permutation test. The
AdaBoost, RF and SVM classifier
outperformed the other classifiers
(all p < 0.001). These three
classifiers showed less variation
with a smaller quartile value and
dispersion degree
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parameters, showing a lower correlation with both morpho-
logical parameters, demonstrated the highest diagnostic
value for activity stages, which was correlated with liver
microcirculation [27]. Therefore, our results suggested that
these three signals could be divided into two categories:
morphology and hemodynamics, which reflected the fibro-
sis and steatosis stages and the activity stages, respectively.

For liver fibrosis staging with ultrasomics, although the
optimized machine-learning algorithms had been selected, a
clinical model that used single-modality parameters still

provided unsatisfactory AUC values for staging (AUC <
0.8). In addition, the models that used duplicate morpholog-
ical parameters (higher correlated features of ORF and con-
ventional radiomics) displayed the lowest AUCs in the val-
idation groups, which may be due to the redundant informa-
tion between two morphological parameters. Moreover, the
models using combined morphology and hemodynamic
features demonstrated better performance. For the evalua-
tion of fibrosis stage, the accompanying activity of liver
tissue should not be ignored [28, 29]. Our results also agree

Fig. 5 The results of three machine-learning method analyses in classi-
fying each combination of ultrasomic features. All three machine-
learning methods-adaptive boosting (a), random forest (b) and support

vector machine (c) showed that the ultrasomics models achieved much
better performance than the models of a single modality and models of
conventional radiomics and ORF features (all p < 0.001)
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with the principle that models constructed with two catego-
ries should achieve higher AUCs despite the use of a
machine-learning algorithm. This finding shows that the
use of multiparametric ultrasomics from different patho-
physiological procedures would enhance the performance
of our clinical decision support system [30].

With these big data, machine learning is driving great changes
in medical disciplines that are based on pattern recognition (e.g.,
radiology and pathology) [31, 32]. Generally, machine learning
with a larger sample size produces more accurate classification
[32–34]. However, the ultrasound images that qualified for the
computing analysis in the present work were restricted because
of their dependence on the operator and software, and our study
included only 144 cases as a result. Therefore, determining the
optimal machine-learning algorithm for a small sample size is of
great value. A few recent studies have investigated the effects of
different machine-learning classification methods on single-
modality radiomic-based clinical predictions [35, 36]. Our study
showed that the three machine-learning methods of AdaBoost,
RF and SVM performed better with any category of parameters.
The principle of SVM is to map the input parameters into a high-
dimensional feature space via preselected nonlinear mapping
[33, 37]. In this space, an optimal classification hyperplane is
constructed and is optimized to maximize the classification of
the two categories. The use of a margin among the hyperplane
and two categories reduces the size and distribution requirements
of the data. RF combines predictions from several weak classi-
fiers to generate a more accurate and stable prediction. Random
samples and features guarantee the robustness to noise in the data
with few tuning parameters and a small sample size [32, 38, 39].
AdaBoost is adaptive in the sense that subsequent weak learners
are tweaked in favor of instances misclassified by previous clas-
sifiers [13, 36]. Thus, AdaBoost is sensitive to noisy data and
outliers; this sensitivity makes AdaBoost less susceptible to the
overfitting problem.

The first and most important limitation of this study was
that multiparametric ultrasomics could not include parame-
ters of liver stiffness. Many single-center studies have

already shown that shear wave elastography achieved a
good AUC of 0.89 in staging F2 fibrosis patients [17].
However, considering patient compliance, only one US ma-
chine was used to acquire the ultrasound data in this pro-
spective study. Additionally, the primary purpose of this
study was to optimize the model of fibrosis staging based
on multiparametric ultrasomics using machine learning.
Our present work has demonstrated that (1) data exploration
correlating with pathophysiology and (2) model construc-
tion using machine learning could improve the robustness
of fibrosis staging models. However, the reported perfor-
mance of shear wave elastography in staging significant
fibrosis (AUC = 0.69–0.92, sensitivity = 0.77–0.90 and
specificity = 0.70–0.87) was similar to that of our
multiparametric model. This finding reminds us that, al-
though the data mining process could enhance the perfor-
mance of clinical decision systems, the optimal perfor-
mance of the model has already been determined by the
data. In a subsequent study, we will collect shear wave
elastography data to produce a better model.

Our study also had other limitations. Second, our study
only included a cohort of patients in our hospital. It is nec-
essary to establish an independent validation cohort to test
the generalizability of our ultrasomics model. A third limi-
tation is that several patients enrolled in the study had focal
liver lesions. This may also affect the association between
US parameters and pathology. To eliminate the potential
effect of tumors on the adjacent liver parenchyma, we cre-
ated strict exclusion criteria. Fourth, the population of the
study was Chinese patients with chronic HBV, which led to
a low BMI of 20.2 kg/m2 and a low proportion of liver
steatosis. Fifth, due to the requirement in image acquisition,
only a short time (15–20-s clips) was covered in the CEMF
images. This may not show the whole perfusion procedure
in the liver. However, we attempted to analyze the blood
flow arrival time to the liver and kidney based on a time-
intensity curve, and the wash-in curve contains more infor-
mation for the arrival time. Sixth, the analysis of the liver

Table 2 Training and validation
results from machine learning-
based classification of ultrasomics
features

Features Adaboost Random forest Support vector machine

Training Validation Training Validation Training Validation

CR, ORF and CEMF 0.97 ± 0.02 0.85 ± 0.01 1.00 0.85 ± 0.01 0.94 ± 0.01 0.85 ± 0.01

CR and CEMF 0.97 ± 0.03 0.82 ± 0.04 1.00 0.83 ± 0.02 0.91 ± 0.02 0.80 ± 0.03

ORF and CEMF 0.97 ± 0.02 0.84 ± 0.02 1.00 0.85 ± 0.03 0.91 ± 0.02 0.82 ± 0.04

CR and ORF 0.97 ± 0.01 0.78 ± 0.03 1.00 0.78 ± 0.03 0.91 ± 0.03 0.79 ± 0.04

CR 0.95 ± 0.04 0.68 ± 0.06 1.00 0.72 ± 0.05 0.84 ± 0.04 0.71 ± 0.05

ORF 0.95 ± 0.02 0.77 ± 0.02 1.00 0.73 ± 0.04 0.90 ± 0.03 0.74 ± 0.04

CEMF 0.97 ± 0.02 0.75 ± 0.03 1.00 0.77 ± 0.04 0.91 ± 0.05 0.74 ± 0.06

Note: Performance metrics are from hold-out samples (based on ten-fold cross-validation). Data in the table are
mean ± standard deviation

CR conventional radiomics, ORF original radiofrequency, CEMF contrast-enhanced micro-flow
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(conventional radiomics and ORF) was done from a small 2-
cm ROI placed in segment 6, which has the same limitation
as a biopsy of not reflecting the potential heterogeneity of
the liver disease.

In summary, we have demonstrated that expert knowledge
on data acquisition and analysis can optimize the robustness of
clinical decision support systems. Additionally, the three
machine-learning methods of AdaBoost, RF and SVM are
optimal algorithms for studies with a small sample size. The
application of this framework in future studies will facilitate
data mining in the era of ultrasomics.
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