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Hypothermia selectively protects the anterior forebrain 
mesocircuit during global cerebral ischemia
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Abstract  
Hypothermia is an important protective strategy against global cerebral ischemia following cardiac arrest. However, the mechanisms of 
hypothermia underlying the changes in different regions and connections of the brain have not been fully elucidated. This study aims to 
identify the metabolic nodes and connection integrity of specific brain regions in rats with global cerebral ischemia that are most affected 
by hypothermia treatment. 18F-fluorodeoxyglucose positron emission tomography was used to quantitatively determine glucose metabolism 
in different brain regions in a rat model of global cerebral ischemia established at 31–33°C. Diffusion tensor imaging was also used to 
reconstruct and explore the brain connections involved. The results showed that, compared with the model rats established at 37–37.5°C, the 
rat models of global cerebral ischemia established at 31–33°C had smaller hypometabolic regions in the thalamus and primary sensory areas 
and sustained no obvious thalamic injury. Hypothermia selectively preserved the integrity of the anterior forebrain mesocircuit, exhibiting 
protective effects on the brain during the global cerebral ischemia. The study was approved by the Institutional Animal Care and Use 
Committee at Capital Medical University (approval No. XW-AD318-97-019) on December 15, 2019.
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Introduction 
Cumulative evidence has shown that hypothermia provides 
protection of cerebral function, especially in global cerebral 
ischemia (GI) following cardiac arrest (CA) (Massaro et al., 
2013; Randhawa et al., 2015). In the renewed guidelines, 
therapeutic hypothermia (TH) was the recommended care for 
post-CA in comatose survivors of CA (Nguyen et al., 2018). The 
outcomes of CA have improved in the era of TH management 
(Larribau et al., 2018; Nguyen et al., 2018). Ninety-two 
percent of patients experience a return to normal or near-
normal neurological function (Mooney et al., 2011). Clinical 
results have provided strong evidence that hypothermia 

effectively improved the outcomes in patients with CA, stroke 
or traumatic brain injury (Wu and Grotta, 2013; Kowalik et al., 
2014; Wu et al., 2016). Two large randomized controlled trials 
reported that 32–34°C hypothermia for 24 hours reduced 
epilepticus seizure (Legriel et al., 2016), and that hypothermia 
after cardiopulmonary resuscitation resulted in no or minor 
brain dysfunction (Arrich et al., 2016). On the basis of the 
importance of hypothermia in GI, previous studies have 
investigated its underlying cerebral protective mechanisms 
based on the associated RNA, protein and cytokine levels (Han 
et al., 2012; Park et al., 2013; Carlin et al., 2017; Wang et al., 
2018; Font-Belmonte et al., 2020). Hypothermia also protects 
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Graphical Abstract Hypothermia reduces the hypometabolic regions of rats with global 
cerebral ischemia
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the neuronal mitochondria as well as the neurovascular unit 
in GI (Liu et al., 2016; Carlin et al., 2017; Tang et al., 2020). In 
a prospective multi-center large cohort study on hypothermia, 
proton magnetic resonance imaging (MRI) of the thalamus (Ts) 
showed a clear reduction in incidence of natal encephalopathy 
(Lally et al., 2019). Three large hypothermia trials have shown 
that hypothermia reduces both the frequency and severity of 
brain lesions as seen on MRI (Rutherford et al., 2010; Cheong 
et al., 2012; Shankaran et al., 2012). However, until now, the 
protective mechanisms of hypothermia in the functional and 
metabolic activities of special regions, connection nodes and 
their associated networks have been poorly understood.

In this study, we used 18F-fluorodeoxyglucose positron 
emission tomography (18F-FDG-PET) to quantitatively 
determine the glucose metabolism of different regions in 
the brain. In addition, we used diffusion tensor imaging 
(DTI) tractography to reconstruct and explore the cerebral 
connections protected by hypothermia. Our aim was to 
investigate the metabolic nodes and connection integrity 
of a specific circuit in a rat model of hypothermia-induced 
GI to further elucidate the cerebral protective functions of 
hypothermia.
 
Materials and Methods   
Animal model
The study protocols were approved by the Institutional 
Animal Care and Use Committee at Capital Medical University 
(approval No. XW-AD318-97-019) on December 15, 2019. The 
animals were purchased from Beijing Vital River Laboratory 
Animal Technology Co. Ltd., affiliated with Charles River 
Laboratories (CRL), Beijing, China (license No. SCXK 2001-
0017), and were housed at the Animal Care Facilities of 
Capital Medical University. All experiments conformed to the 
Guide for the Care and Use of Laboratory Animals (National 
Institutes of Health Publication 85-23, revised in 1985). All 
experiments were designed and reported according to the 
Animal Research: Reporting of In Vivo Experiments (ARRIVE) 
guidelines. The animals were housed under controlled 
environmental conditions (12-hour light/dark cycle, ambient 
temperature 23 ± 2°C and 60–70% humidity). 

This study used male animals only because female animals 
have higher estrogen levels that protect them from infection. 
Eighteen male Sprague-Dawley rats, specific-pathogen-
free level, 9–11 weeks old, weighing 320–350 g, were 
randomized into three groups. The hypothermia GI group (n 
= 6) was maintained at 31–33°C to establish the GI model. 
The temperature probe was inserted into the rectum and the 
rats were placed on a cooling/warming blanket (CMA 150, 
Carnegie Medicine, Stockholm, Sweden) that was connected 
to a thermostatically controlled system (CMA 150, Carnegie 
Medicine) that maintained the temperature using feedback 
regulation. During a 25-minute cooling period, alcohol was 
sprayed on the fur of rats to reduce body temperature. 
The hypothermia period was maintained for 150 minutes, 
after which the rats were warmed for 30 minutes, and 
then maintained at normal temperature until scanned. The 
normothermia GI group (n = 6) was maintained at 37–37.5°C 
using cooling/warming blankets with the same system to 
establish the GI model. Duration of normothermia was 
maintained for 150 minutes (Figure 1). The sham group (n = 
6) was maintained at 37–37.5°C and subjected to a median 
incision in the neck but without induction of GI model.

The 2-vessel occlusion GI model was accomplished using a 
modification of the Longa’s method, as previously described 
(Smith et al., 1984; Zhang et al., 2013). Catheters were 
inserted into the external jugular veins to draw blood, the 
left femoral artery for blood pressure monitoring and the 
right femoral artery for Heparin (H12020505, Tianjin Biochem 

Pharmaceutical Co., Ltd., Tianjin, China) infusion. Under an 
operating microscope (Perlong Medical Equipment Co., Ltd. 
Nanjing, China), a median incision in the neck was made and 
the bilateral common carotid arteries were isolated and each 
proximally encircled by a ligature line. Heparin (150 IU/kg) was 
administered and blood was drawn via the jugular catheter to 
decrease the mean arterial pressure to 40–50 mmHg. During 
the procedure, the vagus nerve was carefully preserved, blood 
gases were measured and the tidal volume of the respirator 
during the intubated period was adjusted to achieve an 
arterial partial pressure of carbon dioxide of 35–45 mmHg, 
an arterial partial pressure of oxygen > 90 mmHg and a pH 
value of 7.35–7.45. After approximately 10 minutes of the left 
common carotid artery ligature, the right common carotid 
artery was ligated to finally block the cerebral blood flow. After 
a total of 15 minutes, the blood was slowly re-infused through 
the jugular catheter, followed by 0.5 mL sodium bicarbonate 
(0.6 M). After a 135-minute recovery period, the wounds were 
sutured and the rats were returned to their cages. No animals 
or data points were excluded from the analysis.

Data acquisition for 18F-FDG-PET, MRI DTI, and T2 
The rats were scanned 24 hours after the GI model was 
established. Before 18F-FDG injection, all rats had access to 
drinking water at all times but were deprived of food for 
12–15 hours. For each rat, 18F-FDG (18.5 MBq/100 g body 
weight; Atom High Technology (HTA) Co., Ltd., Beijing, China) 
was administered via tail vein injection without anesthesia. 
Subsequently, the rats were returned to their cages and kept 
in a room for 40 minutes with minimal ambient noise for 
maximization of 18F-FDG uptake in the brain (Caballero Perea 
et al., 2012; Quinn et al., 2016). Subsequently, the rats were 
anesthetized using a nose cone with 2% isoflurane in 100% 
oxygen (IsoFlo, Hebei Jiumu Pharma, Ltd., Langfang, China) 
for the period of the scan. The rats were placed in the prone 
position on the scanner bed and with a plastic stereotactic 
head holder. 18F-FDG-PET images were acquired on an animal 
PET system (E-plus260, Institute of High Energy Physics, 
Chinese Academy of Sciences, Beijing, China) at the center of 
the field of view and a static acquisition of 10 minutes with 
radial spatial resolution of 1.55 mm full-width half maximum 
was performed. The images were subsequently reconstructed 
using the ordered subsets expectation maximization (4 
iterations, 12 subsets) algorithm. They were reconstructed 
on a 90 matrix × 97 matrix × 200 matrix, with a voxel size of 
0.5 × 0.5 × 1 mm3. Finally, all scans were saved in the analyze 
format. DTI data were acquired by a 38-mm birdcage rat brain 
quadrature resonator for radiofrequency transmission using a 
7.0 T animal MRI scanner (70/16 PharmaScan, Bruker Biospin 
GmbH, Rheinstetten, Germany). DTI images were obtained 
with 12,000 ms repetition time, 32.248 ms echo time, 163 
matrix size, DTI image 128 × 128 × 48 mm3, voxel size 0.35 × 
0.35 × 0.56 mm3, with no slice gap. Diffusion weighting was 
applied along 30 independent axes, with a b value of 1000  
s/mm2. Eight reference images with a b value of 0 s/mm2 
were acquired. Finally, Paravision 5.0 software programs 
(Bruker Biospin corporation, Baltimore, MD, USA) converted 
all original Bruker images to the DICOM format (Li et al., 2016; 
Zhang et al., 2016).

Analysis of 18F-FDG-PET images
Data analysis of all 18F-FDG-PET images and identification of 
the significant differences of 18F-FDG signals were performed 
in a rat statistical parametric mapping (spmrat)-IHEP toolbox 
(Nie et al., 2013, 2014) in SPM8 (Wellcome, Department 
of Cognitive Neurology, London, UK). First, using MRIcro 
manually removed background and the body tissues of all 
images (Mangin et al., 2016), the origins of the images were 
repositioned at D3V to correspond to the standard 18F-FDG-
PET template (Paxinos and Watson, 2005). By scaling up the 
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voxel size in the Analyze header, the individual rat brain images 
were normalized into Paxinos & Watson space spatially by a 
factor of 4 (Casteels et al., 2006; Nie et al., 2010), registering 
to the 18F-FDG-PET template, the extracranial tissues were 
removed via the intracranial image and the background cut 
off by shearing the matrix. Finally, all normalized 18F-FDG-
PET images were smoothened by a Gaussian kernel of 2 × 2 
× 4 mm3 full-width half maximum. Based on the framework 
of the general linear model, all smoothened data were voxel-
wise analyzed. Based on an unbiased scale factor, proportional 
scaling and intensity normalization were applied to account 
for global confounders (Crone et al., 2014). Based on a voxel-
level height threshold of P < 0.005, the brain regions with 
significant 18F-FDG differences from the sham group were 
yielded. At the cluster level, false discovery rate correction 
for multiple comparisons was also conducted. The data 
were analyzed using voxel-based analysis. According to both 
the sagittal and transverse sections, the realignment of the 
internal contour of each tract was also translated. The rat 
brain atlas stereotaxic coordinates were defined such that 
the x-axis is positive to the right and negative to the left of 
the midline, the y-axis is positive toward the ventral direction 
and negative to the dorsal direction, and the z-axis is positive 
toward the olfactory bulb relative to the bregma and negative 
in the direction of the cerebellum. The 18F-FDG uptake was 
compared between the hypothermia/normothermia GI groups 
and the sham group. If 18F-FDG uptake of the hypothermia/
normothermia GI group was lower than sham group, they 
will have hypo-metabolic regions that will show the cold 
pseudo-color, blue. If 18F-FDG uptake of the hypothermia/
normothermia GI group was higher than sham group, they 
will have hyper-metabolic regions that will show the warm 
pseudo-color, orange. If 18F-FDG uptake of the hypothermia/
normothermia GI group equals to that of the sham group, the 
equal-metabolic regions will show the gray pseudo-color, gray. 
The KE value represents the size of a cluster, specifically the 
volume of hypometabolic region (Liang et al., 2017).

Analysis of MRI DTI and T2 images
All DTI images were preprocessed in the FMRIB Software 
Library (FSL) (http://fmrib.ox.ac.uk/fsl). In brief, head motion 
and eddy currents were removed using FMRIB’s Diffusion 
Toolbox within FSL. The fractional anisotropy (FA) of each 
individual tract was then calculated. Subsequently, voxel-
wise analyses of FA images were performed in a spmrat-IHEP 
toolbox (SPM8), which is similar to the FDG-PET data analysis 
(Nie et al., 2013). In brief, the FA data sets were preprocessed 
by skull stripping and repositioning of the origin point. Then, 
the FA images were spatially normalized to an FA template 
image in Paxinos & Watson space (Paxinos and Watson, 
2005) and along with MD images. All these FA images were 
smoothened as described above. Finally, all smoothened 
data were voxel-wise analyzed based on the general linear 
model framework. False discovery rate correction for multiple 
comparisons was also conducted at the cluster level. The 
higher FA values indirectly reflected conservation of the white 
fibers.

Statistical analysis
The statistical analysis was performed in spmrat-IHEP 
(Wellcome Department of Clinical Neurology, London, UK) as 
follows. Values of the hypothermia or normothermia GI group 
were averaged and compared with the sham group. The data 
were analyzed by two-sample t-test. The level of significance 
was regularly set at P < 0.05. Based on the generalized linear 
model, the statistical analysis model of the smoothed mean 
normalized uptake values 18F-FDG-PET data was established 
and the Student’s t-test analysis was performed based on 

hypothermia GI and normothermia GI groups. The mn-UV 
was computed in KE, a measure of the size of the cluster as 
the voxel numbers in the cluster, which directly reflected the 
volume of the region (Liang et al., 2017). The Tmax value is the 
maximum t-value in each cluster; a Tmax value > 1 indicates 
a significant difference. Peak coordinates (mm) are the 
coordinates of the maximum point in Paxinos & Watson space.

Results
Hypothermia reduces the hypometabolic regions in brain of 
GI rat
PET results showed the hypometabolic regions of whole 
brain were significantly smaller in the hypothermic GI group 
when compared with those in the normo-thermic GI group 
(Figure 2A and B). When compared with the normothermic 
GI group, the hypothermia GI group also had significantly 
smaller hypometabolic regions in the Ts and prefrontal-cortex 
(PFC) and primary sensory areas (Figure 3A–D). These results 
indicate that hypothermia selectively protects the anterior 
forebrain (cortical) and Ts (subcortical part) of the mesocircuit 
under GI. 

The voxel-wise analysis results are presented as KE 
values in Table 1. As the center of the anterior forebrain 
thalamic mesocircuit (Schiff, 2008), the voxel number 
in the Ts hypometabolic regions was significantly lower 
in the hypothermia GI group compared with that in the 
normothermia GI group (Table 1). The PFC is an important 
region of the mesocircuit (Schiff, 2008). The KE value in the 
PFC region was also significantly lower in the hypothermia GI 
group than that in the normothermia GI group (Table 1). The 
results show that hypothermia significantly preserved anterior 
forebrain neuronal metabolic activity.

Table 1 ｜ The KE value in the rat brain in two groups

Anatomical name KE TMax

Stereotaxic coordinates

x y z

Normothermia global cerebral ischemia group
Prefrontal cortex 553** 4.2414 –0.7308 3.2066 3.7221
Thalamus 2391** 6.1129 –0.8908 8.389 –13.7979
Corpus callosum 54 4.0773 –1.6465 2.6963 2.2821
Internal capsule 29 3.9995 3.4353 3.1571 2.0421
Sensory cortex 1098* 4.8197 4.1167 2.4048 1.0821
Motor cortex 263 3.8065 3.3049 1.2724 1.8021
Prelimbic cortex 477 4.25 –0.73 3.22 3.48
Tegmentum of pons 3426 6.7024 –0.6268 8.2371 –13.5579
Tegmentum of 

midbrain
1165 5.8208 –1.9484 6.9627 –4.9179

Hypothermia global cerebral ischemia group
Prefrontal cortex 71** 6.8144 4.5209 6.976 0.8421
Thalamus 342** 5.8853 –0.7704 7.7274 –12.8379
Corpus callosum 4 3.7947 4.1167 3.573 1.0821
Internal capsule 1 3.9995 3.0772 3.995 –1.0779
Sensory cortex 145* 4.5506 3.4353 3.1571 2.0421
Motor cortex 263 3.8065 3.3049 1.2724 1.8021
Prelimbic cortex 477 12.1443 4.5275 7.4567 0.3621
Tegmentum of pons 3474 6.405 –0.6367 7.8811 –12.8379
Tegmentum of 

midbrain
1105 5.1026 1.292 6.485 –7.3179

KE: The size of a cluster, in which the number, such as 2391, stands for the 
voxel numbers in the cluster; Tmax value: the maximum t-value in each cluster. 
Tmax value > 1 means significant difference. x: x-axis, which is negative to the 
left of the midline and positive to the right; y: y-axis, which is positive to the 
ventral direction relative to the dorsal direction; z: z-axis, which is positive in 
the direction of the olfactory bulb relative to the bregma and negative in the 
direction of the cerebellum. *P < 0.05, **P < 0.01 (two-sample t-test).
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A B

Figure 4 ｜ Difference of brain injury on MRI T2 images between 
normothermia GI (A) and hypothermia GI (B) groups. 
There was obvious damage (red box) to the thalamus in the normothermia GI 
group. GI: Global cerebral ischemia; MRI: magnetic resonance imaging. Red 
box indicates the injury part in MRI image.

Figure 3 ｜ The hypometabolic regions in anterior forebrain and Ts of the 
mesocircuit in the global cerebral ischemia model rats.
The hypometabolic regions in the Ts, PFC and primary SC are smaller in 
the hypothermia GI group than that in the normothermic GI group. The 
cold pseudo-color (blue) indicates the hypometabolic regions, while the 
warm pseudo-color (orange) indicates the hypermetabolic regions. (A, B) 
The coronal sections of the normothermia GI group (A) and hypothermia 
GI groups (B). (C, D) The sagittal sections of the normothermia GI group (C) 
and hypothermia GI group (D). GI: Global cerebral ischemia; PFC: prefrontal 
cortex; SC: sensory cortex; Ts: thalamus.

A B

C DSagittal section

Coronal section

Difference of connective fibers between hypothermia GI 
and normothermia GI groups
The DTI MRI indicated the preservation of the corpus callosum 
and internal capsule (the Ts-cortical white fibers connections) 
that was also demonstrated by FA in DTI. The voxel-based 
analysis demonstrated that hypothermia selectively preserved 
the anterior forebrain mesocircuit, including the Ts, prefrontal 
cortex (PFC), and the connections including the corpus 
callosum and internal capsule (Table 2).

B

A

Figure 2 ｜ The hypometabolic regions in the global cerebral ischemia 
model rats by PET.
(A, B) The hypometabolic regions were significantly larger in the 
normothermic global cerebral ischemia group (A) when compared with those 
in the hypothermic global cerebral ischemia group (B). The cold pseudo-color 
(blue) indicates the hypometabolic regions, while the warm pseudo-color 
(orange) indicated the hypermetabolic regions. Red lines indicate the position 
of slice cuts. 
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Figure 1 ｜ Rectal temperature during the global cerebral ischemia model 
procedure. 
The rectal temperatures in hypothermia and normothermia global cerebral 
ischemia groups were 32.5 and 37.5°C, respectively. Data are expressed as the 
mean ± SD (n = 6). Hypothermia group: Hypothermia global cerebral ischemia 
group; normothermia group: normothermia global cerebral ischemia group. 
The rats in the hypothermia cerebral ischemia group were moved to initiate 
rewarming and the temperature probe was removed from rectum. Therefore, 
the last two temperatures were not recorded.

Hypothermia-treated GI rats have no obvious thalamic 
injury 
The results from the MRI T2 scans show obvious injury to 
the Ts region in the normothermia GI group (Figure 4A). 
There was almost minimal brain injury in Ts region in the 
hypothermia GI group (Figure 4B). 

Table 2 ｜ FA value in the white matter tracts of rat mesocircuit in two 
groups

Region Abbreviation
Functional 
connection 

FA value

Hypothermia 
GI group

Normothermia 
GI group

Internal capsule IC Part of the 
connection 
between the 
cortex and 
thalamus

0.408±0.051* 0.384±0.011

Corpus callosum CC Part of the 
connection 
between the 
cortex and 
thalamus

0.710±0.159** 0.458±0.058

Mammillothalamic 
tract

MT Part of the 
connection 
between the 
cortex and 
thalamus

0.610±0.031 0.670±0.070

Forceps minor 
of the corpus 
callosum

FMI Part of the 
connection 
between the 
cortex and 
thalamus

0.928±0.071* 0.696±0.121

Forceps major 
of the corpus 
callosum

FMJ Part of the 
connection 
between the 
cortex and 
thalamus

0.278±0.022 0.191±0.019

Genu of the corpus 
callosum

GCC Part of the 
connection 
between the 
cortex and 
thalamus

0.765±0.147 0.596±0.065

Intermedioventral 
thalamic 
commissure

IMVC Intermedioventral 
thalamic 
commissure

0.379±0.062 0.457±0.101

Stria medullaris of 
the thalamus

SM Medullaris of the 
thalamus

0.405±0.209* 0.225±0.064

Longitudinal 
fasciculus of the 
pons

LFP Longitudinal 
section of the 
connection 
between the 
cortex and 
thalamus

0.678±0.101 0.528±0.051

Medial forebrain 
bundle

MFB Forebrain bundle 0.209±0.013 0.194±0.012

Medial longitudinal 
fasciculus

MLF Longitudinal 
fasciculus

0.894±0.050* 0.661±0.131

Data are expressed as mean ± SD (n = 6). *P < 0.05, **P < 0.01 (two-sample 
t-test). Cluster number: The number of clusters with consecutive voxels with 
a significant decrease in FA which is assigned sequentially and artificially. FA: 
Fractional anisotropy; GI: global ischemia.
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anterior forebrain mesocircuit. 

The anterior forebrain and the Ts are two cardinal structures 
for the mammalian brain (Granato et al., 1995), and the 
anterior forebrain mesocircuit is highly conserved in the 
mammalian brain. Hypothermia selectively preserved the 
anterior forebrain and the Ts when subjected to limited 
oxygen and energy conditions during ischemia. The anterior 
forebrain mesocircuit provides the foundation for the late 
recovery of function following severe brain injury (Schiff, 
2008, 2010). The anterior forebrain mesocircuit may be the 
important “seed region”. Hypothermia selectively protected 
this region, enabling future recovery and leading to the total 
recovery of these patients, even several years later. Three 
possible fundamental pathophysiological mechanisms are 
likely to account for our findings. First, the highly conserved 
anterior forebrain mesocircuit has particular neuron and 
synaptic connections that are different from other neural 
circuits. Second, that hypothermia leads to the selective 
protection of special neuronal populations. Third, the anterior 
forebrain mesocircuit is indispensable for maintaining any 
hypothermia protection effects (Monti et al., 2015; Boly et 
al., 2017). The preserved functional integrity of the anterior 
forebrain provides a specific protective mechanism and 
potential target for GI treatment.

Nevertheless, there is a caveat that should be considered. We 
did not test the mesocircuit of female rats with CA conserved 
following TH. Based on the results in rodents, our next step 
will be to perform MRI and PET in patients to confirm that 
this mesocircuit is also preserved by clinically administered 
hypothermia. 

In conclusion, based on 18F-FDG-PET and DTI-MRI findings, we 
demonstrated that hypothermia can significantly preserve the 
integrity of the anterior forebrain-thalamic mesocircuit.
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Discussion
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