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Abstract

Background

The benefits of cardiac surgery are sometimes difficult to predict and the decision to operate

on a given individual is complex. Machine Learning and Decision Curve Analysis (DCA) are

recent methods developed to create and evaluate prediction models.

Methods and finding

We conducted a retrospective cohort study using a prospective collected database from

December 2005 to December 2012, from a cardiac surgical center at University Hospital. The

different models of prediction of mortality in-hospital after elective cardiac surgery, including

EuroSCORE II, a logistic regression model and a machine learning model, were compared by

ROC and DCA. Of the 6,520 patients having elective cardiac surgery with cardiopulmonary

bypass, 6.3% died. Mean age was 63.4 years old (standard deviation 14.4), and mean Euro-

SCORE II was 3.7 (4.8) %. The area under ROC curve (IC95%) for the machine learning

model (0.795 (0.755–0.834)) was significantly higher than EuroSCORE II or the logistic

regression model (respectively, 0.737 (0.691–0.783) and 0.742 (0.698–0.785), p < 0.0001).

Decision Curve Analysis showed that the machine learning model, in this monocentric study,

has a greater benefit whatever the probability threshold.

Conclusions

According to ROC and DCA, machine learning model is more accurate in predicting mortality

after elective cardiac surgery than EuroSCORE II. These results confirm the use of machine

learning methods in the field of medical prediction.
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Introduction

Cardiac surgery is at high risk of intraoperative and postoperative complications. The benefit

of surgery is sometimes difficult to predict and the decision to proceed to surgery on an indi-

vidual basis is complex.

European recommendations cite various risk stratification methods in decision making,

even though these scores cannot replace clinical judgment and multidisciplinary dialogue [1].

Among the many scores that have been proposed, the European EuroSCORE II and the Amer-

ican Society of Thoracic Surgeons (STS) scores have been the most studied, and are the most

widely used [2–5].

EuroSCORE II, the replacement for EuroSCORE I, was developed and validated in 2012

from a cohort of more than 22,000 patients hospitalized in 154 hospitals in 43 countries, and is

used to predict postoperative mortality during hospital stay, through the collection of preoper-

ative variables [2]. Logistic regression was used to create EuroSCORE II and Receiver Operat-

ing Characteristic (ROC) analysis was used to evaluate the model. Several studies have shown

the limits of this score in some surgeries or patient subgroups [6–8].

Machine learning, a subfield of artificial intelligence, is a relatively new method issued from

the development of complex algorithms and the analysis of large datasets. Machine learning

can establish powerful predictive models, and is already used by major companies such as

Google and Facebook. Several studies have shown the superiority of machine learning over tra-

ditional logistic regression used in EuroSCORE II [9–13].

Moreover, Decision Curve Analysis (DCA) has been developed to evaluate and compare

diagnostic and prediction models by integrating the clinical consequences of false positives

and false negatives [14]. In addition to its many other advantages, this method takes into con-

sideration the patient’s choice to put themselves at a risk of false negatives or false positives.

The analysis is presented as a graph with the selected probability threshold plotted on the

abscissa and the benefit of the evaluated model on the ordinate. This evaluation method may

be of considerable help in making decisions on medical treatment with serious side effects,

and several studies have been conducted in cancer diagnosis [15–18].

Our objective was to compare a machine learning-based model with EuroSCORE II to pre-

dict mortality after elective cardiac surgery, using ROC and decision curve analysis. To the

best of our knowledge, machine learning and decision curve analyses have never previously

been used in such context.

Methods

Study Design and Data Collection

Data from consecutive patients who underwent cardiac surgery with cardiopulmonary bypass

between December 2005 and December 2012 in a 1200-bed university hospital were included

in this single-center cohort study. Perioperative characteristics were obtained from our local,

prospectively collected database (S1 Table). The study was approved by the local ethics com-

mittee, which waived the need for informed consent, because of the observational nature of

the study (Institutional Review Board 00006477, Paris 7 University, AP-HP). Reporting of this

study complies with the Strengthening the Reporting of Observational studies in Epidemiology

recommendations statement for reporting.

EuroSCORE I and EuroSCORE II scores were calculated using the coefficients described in

the literature [2,19]. We used socio-demographic characteristics, comorbities, data on pre-

operative conditions, and EuroSCORE I and EuroSCORE II as predictors.

Patients with non-elective cardiac surgery were excluded from the analysis.
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Perioperative care (including anaesthesia, monitoring techniques and normothermic car-

diopulmonary bypass) was standardized for all patients.

Models Development

The database was split into 2 datasets: 70% for models training and 30% for models validation.

Each model was trained using a 5-fold cross validation process. For each model, we repeated

this process 10 times to obtain 10 individual probabilities. The final individual probability for

each model was the mean of these 10 individual probabilities.

Logistic Regressions

Three logistic regressions were performed: two univariate models and one multivariate model.

The first univariate model was adjusted using EuroSCORE I. The second model was adjusted

using EuroSCORE II. In contrast to the sample used to assess EuroSCORE II, in our sample

there were no patients requiring emergency surgery. We therefore fitted a third logistic regres-

sion model (named LR model), adjusted using EuroSCORE II covariates [2]. All covariates

were kept in the model.

Gradient Boosting Machine (GBM)

Gradient boosting machine is a family of supervised machine learning techniques for regres-

sion and classification problems that are highly customizable. Gradient boosting machine pro-

duces a prediction which is an ensemble of weak prediction models (e.g. decision trees) [20].

Using boosting techniques and a meta-algorithm for reducing bias, GBM can convert a set of

weak predictors to strong ones [20].

Random Forests (RF)

Random Forests are an ensemble learning method for classification and regression analysis.

The principle of RF is to construct multiple decision trees and return the mode of these classes

(classification) or mean prediction (regression) of the individual trees. In contrast to classical

decision trees, RF are more robust to overfitting [20].

Support Vector Machine

Support vector machine is a class of supervised learning models for regression and classifica-

tion analysis [20]. Support vector machine separates the input feature space in hyperplanes.

Support vector machine can handle linear and nonlinear separation of the feature space using

kernels [20]. Support vector machine offers good performance but can be computational com-

plex with high dimensional input space features and nonlinear kernels.

Naïve Bayes Model

The Naïve Bayes model is a supervised learning method for classification analysis based on

Bayes’ theorem [20]. Naïve Bayes assumes that given a class of the outcome, all covariates are

independent (naïve assumption). With appropriate preprocessing, a simple Naïve Bayes classi-

fication can outperform more advanced machine learning methods [21].

Features Selection

Some of the methods are sensitive to correlation between input features [20,21]. To overcome

this problem we fitted the four models described above (GBM, RF, Support vector machine
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and Naïve Bayes) twice. For the first fit, we kept all input features in the analysis. For the sec-

ond fit, we applied Chi-Square filtering to the input features and then used only relevant fea-

tures in each of the four models.

Ensemble of Models

It has been shown that assembling the results of different machine learning algorithms can

outperform any single base learner [20]. In this way, we performed a greedy ensemble (i.e. a

weighted sum) of the probabilities obtained with each of the four machine learning algorithms

(GBM, RF, Support vector machine and Naïve Bayes), which we called ML model.

Models Performance

We assessed the performance of each model using the area under the ROC curves (AUC) on

the validation dataset. We used bootstrap with 1000 replications to obtain 95% Confidence

Intervals (95% CI). Comparisons between ROC Curves were performed using the method

described by DeLong et al. [22].

Statistical Analysis

Qualitative variables were expressed as frequencies, percentages, and 95% confidence intervals

(95% CI). Quantitative variables were expressed as mean and standard deviation (SD) or median

and interquartile range (IQR). Comparisons of percentages were performed with a Chi-square

test or by Fisher’s exact test, as appropriate. Comparisons of means were performed by Student

t-test or by Mann and Whitney test, as appropriate.

Finally, we analyzed the net benefit of EuroSCORE II, LR model and ML model for predict-

ing postoperative mortality. For these three methods, we calculated the net benefit using DCA,

as described by Vickers et al.: it consists in the subtraction of the proportion of all patients who

are false-positive from the proportion who are true-positive, weighting by the relative harm of

a false-positive and a false-negative result [14].

Net benefit ¼
True Positives

n
�

Pt
1 � Pt

� �
False Positives

n

where n is the total number of patients included in the study and Pt is the probability threshold

[14,23,24]. For example, a net benefit of 0.08 for a Pt of 50% can be interpreted as: « using this

predictive model, 8 patients per 100 patients who will die after elective cardiac surgery will not

have surgery without increasing number of not operated patient undue». The decision curve is

constructed by varying Pt and plotting net benefit on the y vertical axis against Pt on the x hor-

izontal axis.

DCA was performed using the SAS macro provided by Vickers et al. All statistical tests

were performed at the two-tailed level of significance at 5%. All analyses were performed using

SAS 9.4 (SAS Institute, Inc, Cary, NC, USA) and R software version 3.2.2 (The R Foundation

for Statistical Computing; Vienna, Austria) with packages XGBoost, ExtraTrees and e1071

[25–27].

Results

Characteristics of Patients

From December 2005 to December 2012, 6,889 cardiac procedures with cardiopulmonary

bypass were performed including 369 (5.3%) patients with non-elective cardiac surgery that

were excluded from the analysis. The remaining 6,520 patients constituted the cohort.

Machine Learning to Predict Mortality after Elective Cardiac Surgery
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Pre and intra-operative characteristics of the 6,520 patients are presented in Table 1. Among

them, 411 (6.3%; 95%CI: 5.7–6.9) died during the in-hospital stay. The mean (standard devia-

tion) age was 63.4 (14.4) years, and the mean EuroSCORE II was 3.7 (4.8) %. Univariate analysis

showed a significant difference of mortality for 50 variables: age, height, weight, body mass

index, 24 comorbities, 4 preoperative treatments, 8 preoperative paraclinic data, 5 preoperative

coronarography data, and 5 surgery characteristics (Table 1).

Receiver Operating Characteristic Analysis

Table 2 summarizes the performance of the different predictive models tested in the validation

dataset: EuroSCORE I and II, the LR model, different machine learning techniques, and the

ML model. The ML model was the most accurate (AUC, 0.795 (0.755–0.834)). Of the different

machine learning techniques, Random Forest had the best AUC irrespective of whether filter-

ing was used. The AUC of the EuroSCORE II and the LR model was significantly lower than

the ML model (both, p< 0.0001).

Fig 1 presents the ROC curves of EuroSCORE I and II, and ML model tested on the valida-

tion dataset, to predict mortality after cardiac surgery for all patients included in the study.

Decision Curve Analysis

Fig 2 presents the decision curves that show the clinical usefulness of EuroSCORE I, Euro-

SCORE II and the ML model to predict mortality after cardiac surgery in the validation data-

set. The results are presented as a graph with the selected probability threshold (i.e., the degree

of certitude of postoperative mortality over which the patient’s decision is not to operate) plot-

ted on the abscissa and the benefits of the evaluated model on the ordinate [14,28]. The curves

of EuroSCORE I and EuroSCORE II remain very close regardless of the threshold selected.

The benefit of the ML model is always greater than that of EuroSCORE I and II regardless of

the selected threshold, included between 1 and 6%.

Discussion

To the best of our knowledge, this study is the first to use machine learning and DCA, rela-

tively recent and efficient methods, in the context of cardiac surgery decision.

Mortality after this type of surgery is high. We report a mortality rate of 6.3%, which is

slightly greater than reported in the EuroSCORE II study (4.6%), while we excluded urgent

surgery. This difference may be related to a greater frequency of valvular surgery (56% and

46.3%) and less coronary isolated surgery (38.4% and 46.7%) in our cohort [2].

This study found the ML model to be superior to traditional logistic regression, which has

already been observed in many studies [9–13]. For example, in the study of Churpek and al.,
machine learning and logistic regression were compared to predict clinical deterioration in a

large multicentric database of 269,999 patients. Random Forest (AUC 0.80) was more accurate

than logistic regression (AUC 0.77) in predicting clinical deterioration [9]. In the same way,

the study de Taylor et al. on the prediction of mortality of 4676 patients with sepsis at the

emergency department, found a superiority of their machine learning model (AUC 0.86) com-

pared to their logistic regression model (AUC 0.76, p� 0.003) [12].

EuroSCORE I was used during the years of patient inclusion in our database. Moreover,

EuroSCORE I and EuroSCORE II were created from another database. It is why we created a

logistic regression model from our database in order to not disadvantage EuroSCORE I and

EuroSCORE II. Again, the ML model outperformed the LR model, with ROC analysis and

DCA significantly more favorable for the ML model.

Machine Learning to Predict Mortality after Elective Cardiac Surgery
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Table 1. Characteristics of patients at admission and evolution in ICU (whole dataset).

Missing

data

Total (n = 6,520) Alive (n = 6,109) Dead (n = 411) P-

value

Age, mean (sd), years 0 63.4 (14.4) 63.1 (14.5) 68.2 (13.4) <
0.0001

Sex (male), n (%) 0 4449 (68.2%) 4178 (68.4%) 271 (65.9%) 0.30

Weight, mean (sd), kg 14 75.4 (14.9) 75.6 (14.9) 72.4 (15.0) <
0.0001

Height, mean (sd), cm 19 168.5 (9.5) 168.6 (9.5) 166.7 (9.8) <
0.0001

BMI, mean (sd), kg.m-2 19 26.5 (4.6) 26.5 (4.6) 26.0 (4.9) 0.02

Comorbidities, n (%)

Gastroduodenal ulcer 0 288 (4.4%) 265 (4.3%) 23 (5.6%) 0.23

CancerNoYes, > 5 years agoYes, < 5 years

agoUncontrolled without metastasesUncontrolled with

metastases

0 6002 (92.1%)238 (3.6%)

195 (3.0%)66 (1.0%)19

(0.3%)

5654 (92.5%)210 (3.4%)

169 (2.8%)60 (1.0%)16

(0.3%)

348 (84.7%)28

(6.8%)26 (6.3%)6

(1.5%)3 (0.7%)

<
0.0001

Liver cirrhosisNoYes, uncomplicatedYes,

complicated

0 6455 (99.0%)40 (0.6%)

25 (0.4%)

6056 (99.1%)32 (0.5%)

21 (0.3%)

399 (97.1%)8 (1.9%)

4 (1.0%)

0.0002

Immunodeficiency 0 88 (1.3%) 73 (1.2%) 15 (3.7%) <
0.0001

Chronic pulmonary disease 0 375 (5.8%) 330 (5.4%) 45 (10.9%) <
0.0001

Chronic obstructive pulmonary disease 0 642 (9.9%) 561 (9.2%) 81 (19.7%) <
0.0001

Diabetes mellitus 2 1674 (25.7%) 1547 (25.3%) 127 (31.0%) 0.01

Diabetes mellitus with insulin 2 513 (7.9%) 459 (7.5%) 54 (13.2%) <
0.0001

Hypertension 0 3678 (56.4%) 3427 (56.1%) 251 (61.1%) 0.05

Smoking (current or former) 25 3336 (51.4%) 3131 (51.4%) 205 (50.5%) 0.72

Peripheral vascular disease 0 905 (13.9%) 829 (13.6%) 76 (18.5%) 0.005

Chronic kidney disease requiring dialysis 0 57 (0.9%) 47 (0.8%) 10 (2.4%) 0.003

Dyslipidemia 0 3288 (50.4%) 3100 (50.7%) 188 (45.7%) 0.05

History of coronary artery disease 0 2496 (38.3%) 2351 (38.5%) 145 (35.3%) 0.19

Myocardial infarction < 90 days 0 440 (6.7%) 411 (6.7%) 29 (7.1%) 0.80

Previous cardiac surgery 0 627 (9.6%) 532 (8.7%) 95 (23.1%) <
0.0001

History of endocarditis 0 192 (2.9%) 171 (2.8%) 21 (5.1%) 0.007

History of cardiac congestive failure 0 1047 (16.1%) 919 (15.0%) 128 (31.1%) <
0.0001

Angor Canadian Cardiovascular Society

class01234

0 4919 (75.4%)165 (2.5%)

949 (14.6%)436 (6.7%)

51 (0.8%)

4588 (75.1%)159 (2.6%)

912 (14.9%)408 (6.7%)

42 (0.7%)

331 (80.5%)6 (1.5%)

37 (9.0%)28 (6.8%)9

(2.2%)

<
0.0001

History of thromboembolic event 0 353 (5.4%) 317 (5.2%) 36 (8.8%) 0.002

Hemorrhagic stroke 0 57 (0.9%) 52 (0.8%) 5 (1.2%) 0.44

Ischemic stroke 0 464 (7.1%) 415 (6.8%) 49 (11.9%) <
0.0001

Poor mobility 0 179 (2.7%) 161 (2.6%) 18 (4.4%) 0.04

Mediastinal radiotherapy 0 122 (1.9%) 111 (1.8%) 11 (2.7%) 0.21

Supraventricular arrhythmiaNoYes,

paroxysmalYes, permanent

0 5148 (79.0%)646 (9.9%)

726 (11.1%)

4886 (80.0%)570 (9.3%)

653 (10.7%)

262 (63.7%)76

(18.5%)73 (17.8%)

<
0.0001

Ventricular arrhythmia 0 103 (1.6%) 95 (1.6%) 8 (1.9%) 0.54

Pacemaker 0 222 (3.4%) 189 (3.1%) 33 (8.0%) <
0.0001

(Continued )
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Table 1. (Continued)

Missing

data

Total (n = 6,520) Alive (n = 6,109) Dead (n = 411) P-

value

Atrial fibrillation 0 776 (11.9%) 696 (11.4%) 80 (19.5%) <
0.0001

New York Heart Association class1234 0 1374 (21.1%)603 (9.2%)

214 (40.1%)1929

(29.6%)

1307 (21.4%)587 (9.6%)

2496 (40.9%)1719

(28.1%)

67 (16.3%)16 (3.9%)

118 (28.7%)210

(51.1%)

<
0.0001

Congestive heart failure 0 255 (3.9%) 200 (3.3%) 55 (13.4%) <
0.0001

Active endocarditis 0 202 (3.1%) 172 (2.8%) 30 (7.3%) <
0.0001

Critical preoperative state 0 107 (1.6%) 71 (1.2%) 36 (8.8%) <
0.0001

Preoperative treatment, n (%)

Antiplatelet therapyNoneAspirin onlyOthers 0 2716 (41.7%)2666

(40.9%)1138 (17.4%)

2526 (41.3%)2519

(41.2%)1064(17.4%)

190 (46.2%)147

(35.8%)74 (18.0%)

0.08

Beta blocker 0 3887 (59.6%) 3661 (59.9%) 226 (55.0%) 0.05

Anti-arrhythmic 0 880 (13.5%) 796 (13.0%) 84 (20.4%) <
0.0001

Statin 0 3837 (58.8%) 3636 (59.5%) 201 (48.9%) <
0.0001

Diuretic 0 2359 (36.2%) 2125 (34.8%) 234 (56.9%) <
0.0001

Calcium Channel Blockers 0 1298 (19.9%) 1217 (19.9%) 81 (19.7%) 0.92

Angiotensin-converting enzyme inhibitor 0 3313 (50.8%) 3117 (51.0%) 196 (47.7%) 0.19

Nitrate treatment 0 85 (1.3%) 79 (1.3%) 6 (7.1%) 0.77

Preoperative data’s

Hemoglobin concentration, mean (sd), g.dL-1 20 13.3 (1.8) 13.4 (1.7) 12.4 (2.1) <
0.0001

Platelet numeration, mean (sd), x109.L-1 59 232.9 (78.3) 233.3 (77.3) 227.3 (91.1) 0.01

Prothrombin activity, mean (sd), % 91 83.3 (12.6) 89.8 (12.1) 84.5 (17.1) <
0.0001

Serum creatinine, mean (sd), μg.L-1 27 99.5 (62.6) 97.8 (59.8) 124.8 (91.8) <
0.0001

Creatinine clearance (Cockcroft), mean (sd), mL.

min-1
37 77.7 (32.7) 78.9 (32.5) 60.3 (29.5) <

0.0001

Creatinine clearance (MDRD), mean (sd), mL.

min-1
38 75.7 (25.3) 76.5 (25.0) 63.9 (27.7) <

0.0001

Left ventricular ejection fraction, mean (sd), % 2 57.9 (12.2) 58.1 (12.0) 54.7 (13.7) <
0.0001

Systolic pulmonary arterial pressure, mean (sd),

mm Hg

0 31.9 (12.6) 31.6 (12.3) 36.7 (15.0) <
0.0001

Preoperative coronary angiography, n (%)

Coronary disease 0 3253 (49.9%) 3069 (50.2%) 184 (44.8%) 0.03

Number of vessel-disease01234 0 3211 (49.2%)487 (7.5%)

624 (9.6%)2079 (31.9%)

119 (1.8%)

3002 (49.1%)445 (7.3%)

588 (9.6%)1959 (32.1%)

115 (1.9%)

209 (50.8%)42

(10.2%)36 (8.8%)120

(29.2%)4 (1.0%)

0.10

Valve disease 0 3810 (58.4%) 3526 (57.7%) 284 (69.1%) <
0.0001

Functional tricuspid insufficiency 0 693 (10.6%) 630 (10.3%) 63 (15.3%) 0.001

Ascending aortaNoAneurysmDissection 0 6026 (92.4%)435 (6.7%)

59 (0.9%)

5652 (92.5%)410 (6.7%)

47 (0.8%)

374 (91.0%)25

(6.1%)12 (2.9%)

<
0.0001

Congenital heart disease 0 88 (1.3%) 87 (1.4%) 1 (0.2%) 0.05

(Continued )
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Beyond our study, it appears that machine learning may replace logistic regression for pre-

diction when the dataset is several thousand patients or more, and when it is not necessary to

assign a weight to each variable related criterion. In these cases, logistic regression may be

always helpful.

The second aim of our study was to provide a complementary analysis of traditional ROC

curves. This DCA provides complementary information which help in the decision making

process involving exposure to risk in surgery. This technique is increasingly widely used and

has already shown promise in cancer research. Our analyses show a moderate benefit from the

different models (between 1 and 6%), even for the ML model. While the benefit is modest, the

impact is major (i.e. prediction of mortality after surgery), and ML model is never inferior to

Table 1. (Continued)

Missing

data

Total (n = 6,520) Alive (n = 6,109) Dead (n = 411) P-

value

Surgery characteristics, n (%)

Number of surgical procedureisolated

CABGSingle no-CABG2 procedures3 procedures

0 2504 (38.4%)2176

(33.4%)1511 (23.2%)

329 (5.0%)

2399 (39.3%)2038

(33.4%)1388 (22.7%)

284 (4.6%)

105 (25.5%)138

(33.6%)123 (29.9%)

45 (10.9%)

<
0.0001

Coronary surgery 0 3127 (52.0%) 2953 (48.3%) 174 (42.3%) 0.02

Valve surgery 0 3649 (56.0%) 3376 (55.3%) 273 (66.4%) <
0.0001

Aortic valve surgery 0 2382 (36.5%) 2214 (36.4%) 168 (40.9%) 0.06

Mitral valve surgery 0 1517 (23.3%) 1387 (22.7%) 130 (31.6%) <
0.0001

Tricuspid valve surgery 0 765 (11.7%) 691 (11.3%) 74 (18.0%) <
0.0001

Thoracic aorta surgery 0 569 (0.7%) 523 (8.6%) 46 (8.1%) 0.07

BMI: Body Mass Index; CABG: Coronary artery bypass grafting; MDRD: Modification of the Diet in Renal Disease.

doi:10.1371/journal.pone.0169772.t001

Table 2. Comparison of model performances on the validation dataset.

AUC 95%CI

EuroSCORE I 0.719 0.674–0.763

EuroSCORE II 0.737 0.691–0.783

Logistic Regression Model (EuroSCORE II covariates) 0.742 0.698–0.785

Machine Learning algorithms without features filtering

Gradient Boosting Machine 0.786 0.748–0.826

Random Forests 0.786 0.747–0.825

Naïve Bayes 0.734 0.689–0.779

Support Vector Machine 0.753 0.710–0.797

Machine Learning algorithms with Chi-square filtering

Gradient Boosting Machine 0.784 0.743–0.824

Random Forests 0.788 0.748–0.827

Naïve Bayes 0.750 0.708–0.793

Support Vector Machine 0.736 0.689–0.784

Ensemble of ML Algorithms: ML model 0.795† 0.755–0.834

ML: Machine Learning.

†P value < 0.0001 compared with EuroSCORE II and with Logistic Regression Model.

doi:10.1371/journal.pone.0169772.t002
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Fig 1. Receiver operating characteristic curves showing the performance of EuroSCORE I,

EuroSCORE II, and the ML model in predicting post-operative mortality. Areas under curves (95% CI)

are 0.719 (0.674–0.763), 0.737 (0.691–0.783), and 0.795 (0.755–0.834), respectively.

doi:10.1371/journal.pone.0169772.g001

Fig 2. Decision curves showing the clinical usefulness of EuroSCORE I, EuroSCORE II, and the ML

model in predicting post-operative mortality. The blue line represents the net benefit of providing surgery

for all patients, assuming that all patients would survive. The red line represents the net benefit of surgery to

none patients, assuming that all would die after surgery. The green, purple and turquoise lines represent the

net benefit of applying surgery to patients according to EuroSCORE I, EuroSCORE II, and ML model,

respectively. The selected probability threshold (i.e., the degree of certitude of postoperative mortality over

which the patient’s decision is not to operate) is plotted on the abscissa.

doi:10.1371/journal.pone.0169772.g002
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EuroSCORE II. This point is interesting because European guidelines advocate the use of a

prediction score to help in decision making [1].

Beyond the theory, combining these two innovative calculation and evaluation methods for

predictive models could improve the clinical management of patients. Many predictive mod-

els, however, are of no use in clinical practice and we are waiting studies about utility of predic-

tion scores in the area of preoperative cardiac evaluation.

Our study has several limitations. Firstly, because of the retrospective calculation of Euro-

SCORE II, bias may be present. Secondly, we were unable to gauge the degree of emergency as

proposed in EuroSCORE II. This is a minor limitation because our objective was to help in

decision making, and we acknowledge that decision making is different in an emergency situa-

tion. Third, this was a monocentric study, which could limit extrapolation of our ML model in

another cardiac surgery center. Teams with sufficient data could establish their own ML

model, or teams with multicentric data could conduct an even larger study than ours. Simi-

larly, it would be interesting to use these methods in a more complex context, where standard

scores are less efficient. For example, it may be very useful in decision making involving very

old patients or to help choosing between transcatheter and surgical aortic valve replacement

[6–8]. Finally, we cannot compare the ML model with other scores like the STS score, widely

use in North America.

In conclusion, machine learning is more accurate than EuroSCORE II to predict mortality

after non-urgent surgery. These results confirm the use of machine learning methods in the

field of medical prediction. Decision curve analysis showed this prediction model to be a mod-

erate help in decision making, according recommendations.

Supporting Information
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