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Abstract

Correlation patterns in multiple sequence alignments of homologous proteins can be exploited to infer information on the
three-dimensional structure of their members. The typical pipeline to address this task, which we in this paper refer to as the
three dimensions of contact prediction, is to (i) filter and align the raw sequence data representing the evolutionarily related
proteins; (ii) choose a predictive model to describe a sequence alignment; (iii) infer the model parameters and interpret
them in terms of structural properties, such as an accurate contact map. We show here that all three dimensions are
important for overall prediction success. In particular, we show that it is possible to improve significantly along the second
dimension by going beyond the pair-wise Potts models from statistical physics, which have hitherto been the focus of the
field. These (simple) extensions are motivated by multiple sequence alignments often containing long stretches of gaps
which, as a data feature, would be rather untypical for independent samples drawn from a Potts model. Using a large test
set of proteins we show that the combined improvements along the three dimensions are as large as any reported to date.
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Introduction

The large majority of cellular mechanisms are executed and

controlled by the coordinated action of thousands of proteins,

whose biological function is strongly connected to their three-

dimensional (3D) arrangement. As shown by Anfinsen almost 40

years ago [1], the native three-dimensional structure and function

of any given protein is unambiguously encoded by its amino acid

sequence. Despite many years of intensive work in the field, and

many partial successes, the problem of predicting structural

properties of a protein from sequence information alone is still

to be considered as an open problem.

Recent years have seen a staggering increase in the amount of

available protein sequence data, which can be attributed to the

developments in the sequencing technologies. Currently, sequenc-

es of more than 80 million proteins are known, which is a figure

that continues growing by over 50% yearly [2]. This, coupled with

advances in sequence homology detection methods [3–5], allows

for construction of accurate multiple sequence alignments (MSA),

capable of capturing the evolutionary history of proteins of

interest. As a result of the trade-off between the evolutionary drift

and the constraint imposed by biological function, proteins

comprising such a multiple sequence alignment are generally

characterized by: (i) a considerable sequence variation, (ii) a

striking similarity between their 3D structures. In particular, the

evolutionary pressure to conserve structure suggests that residues

in spatial proximity should exhibit patterns of correlated amino

acid substitutions in these multiple sequence alignments.

The approach of using co-evolutionary information encoded in

the MSA of homologous proteins to predict structural features of

its members was proposed long ago [6–11] (see also [12,13] for

recent reviews on the subject). The last five years have witnessed a

renewed interest in the problem: after a first wave of works

inspired by statistical physics based on Bayesian methods [14,15],

or on different mean-field approximations to a maximum-entropy

model [16,17], a burst of scientific activity produced new and

increasingly accurate global inference methods [18–24]. Apart

from inferring structural properties for single protein domains, co-

evolutionary methods provide reliable predictions for: (i) inter-

chain structural organization [17], (ii) specificity and partner

identification in protein-protein interaction in bacterial signal

transduction system [15,25], (iii) essential residue-residue contacts

to determine native 3D structures [26–28].

The basis of all these computational methods is the idea of

global statistical inference. The global approach has the advantage

that it is able to disentangle direct from indirect couplings between

residues. By modeling the whole data set at once, and not only

pairs of residues independently, it is, for example, possible to

identify a case in which high correlation between two residues is

the indirect consequence of both being directly correlated to a

third variable.

Methods that address this problem are collected under the

umbrella term of Direct Coupling Analysis (DCA). Some methods

used so far are (i) the message passing based DCA (mpDCA) [16]

and the mean-field DCA (mfDCA) [17], (ii) sparse inverse

covariance methods (PSICOV) [20], (iii) pseudo-likelihood based
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optimization [18,22,23]. The techniques proposed in (iii), and in

particular the plmDCA algorithm [22,24], seem to achieve the

most accurate predictions so far, when validated against experi-

mentally determined protein structures. Nonetheless, plmDCA

shows systematic errors that can be traced back to certain intrinsic

characteristics of MSAs, such as the existence of repeated gap

stretches in specific parts of the alignment. This phenomenon

reflects the tendency of homologous proteins to include large-scale

modular gene rearrangements in their phylogenetic evolution, as

well as point insertions/deletions. As an empirical way to describe

such complex rearrangements, sequence alignment methods

typically use a form of substitution matrix to assign scores to

amino acid matches and a gap penalty for matching an amino acid

in one sequence and a gap in the other. In either case, the most

widely utilized gap-penalty schemes assign a large cost to open a

gap and a smaller one to extend a gap, so that the overall penalty

Q of creating a stretch of gaps of length l is Q(l) = a+b(l21), where

typically a,210 and b,22 [29]. This introduces an intrinsic

asymmetry between gaps and amino acids, where subsequences

consisting only of the gap variable are much more likely to occur

in an MSA than subsequences of one and the same amino acid.

In this work we highlight that contact prediction can be

improved in three different ways, or dimensions, all important for

overall success and accuracy. The first dimension is Data; it

matters which MSA one uses as input to a DCA scheme.

Continuing recent work of one of us [30] we show that in a large

test data set MSAs built on HHblits alignments give more useful

information than MSAs derived from the Pfam protein families

database. This conclusion is perhaps not surprising, as the Pfam

database was not constructed with potential applications to DCA

in mind, but is practically important if DCA is to reach its full

potential. The second dimension is Model; it matters which

global model one tries to learn from an MSA, and it is possible to

systematically improve upon the pairwise interaction models, or

Potts models, which have hitherto been the focus of the field. This

we show starting from the empirical observation that several DCA

methods typically produce high-ranking false positives in parts of

an alignment rich in gaps, and the simple fact that any

subsequence of one of the same variable has low sequence

entropy, and is thus unlikely to occur in random samples drawn

from a Potts model, unless its model parameters take special

values, i.e. unless at least some of them are quite large. We

therefore enhance the Potts model by including terms depending

on gaps of any length, much in the spirit of a simplified model for

protein folding proposed long ago [31]. In this way we are able to

effectively reduce the false positive rate in gap-rich regions of the

MSA over a large test data set of diverse proteins. The third

dimension is Method. It is well known that DCA by learning a

Potts model describing an MSA by exactly maximizing a

likelihood function is computationally unfeasible for realistic

protein sizes. Most DCA methods can therefore be seen as

circumventing this fact, either by approximating the likelihood

function, or by using a different (weaker) learning criterion. Here,

we show that pseudo-likelihood based optimization methods,

which have demonstrated the best performance among standalone

methods, have the additional advantage of being flexible and easily

adaptable to learning other models. This we show by including

terms depending on gaps of any length in the score function

optimized in the recently developed asymmetric version of the

plmDCA algorithm [22,24] resulting in a method we denote

gplmDCA. We show as well, that improvement achieved by

introduction of gap terms can be attained also by a modification to

the scoring of inferred matrices (plmDCA20).

Important recent developments, not touched upon in the

present work, are combining two or more DCA methods and/or

incorporating supplementary information in a prediction process,

as done in [30] and [23]. One motivation is that it is theoretically

interesting by itself to see how much useful information can be

learned by simply starting from the data, proposing a model, and

then learning the model more or less well from the data; a second

motivation is computational speed, as a stand-alone method is

(typically) much faster than meta-predictors. A pragmatic motiva-

tion for this choice is that any meta-predictor is based on

combining stand-alone methods. Hence, improving stand-alone

methods gives scope for further improvements of the meta-

predictors. Indeed, we believe that the method developed here

should allow for further improvements to the methods of [30] and

[23]; this we leave however for future work.

Results

We have developed a new, fast DCA method by
extending the Potts model with gap parameters

The new method gap-enhanced pseudo maximum-likelihood
direct contact analysis (gplmDCA) uses as underlying inference

engine the recent asymmetric pseudo maximum-likelihood [24]

augmented by gap parameters, as described in Methods. The

added gap parameters have the same status as the other

parameters of the model, and the inference task posed by

gplmDCA is therefore formally the same as in plmDCA. The

number of additional parameters is less than N2

2
, with N being the

length of a alignment, a small fraction of the number of

parameters in Potts model based DCA. We have found that the

computing time our new method gplmDCA is almost indistin-

guishable from the asymmetric version of plmDCA [24].

This introduction of gap parameters significantly alleviates a

well-known negative trait of plmDCA – the presence of gap-

induced artifacts in many contact maps. The reduction of strong,

but spurious couplings in the inference process allows for the

detection of other couplings, improving prediction qualitatively.

Figure 1 shows two examples where conspicuous incorrect

predictions at the N-terminus and the C-terminus are removed.

Author Summary

Proteins are large molecules that living cells make by
stringing together building blocks called amino acids or
peptides, following their blue-prints in the DNA. Freshly
made proteins are typically long, structure-less chains of
peptides, but shortly afterwards most of them fold into
characteristic structures. Proteins execute many functions
in the cell, for which they need to have the right structure,
which is therefore very important in determining what the
proteins can do. The structure of a protein can be
determined by X-ray diffraction and other experimental
approaches which are all, to this day, somewhat labor-
intensive and difficult. On the other hand, the order of the
peptides in a protein can be read off from the DNA blue-
print, and such protein sequences are today routinely
produced in large numbers. In this paper we show that
many similar protein sequences can be used to find
information about the structure. The basic approach is to
construct a probabilistic model for sequence variability,
and then to use the parameters of that model to predict
structure in three-dimensional space. The main technical
novelty compared to previous contributions in the same
general direction is that we use models more directly
matched to the data.

Improving Contact Prediction along Three Dimensions
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Adding gap parameters to the model improves contact
predictions overall

Using a large test set, the main data set as described in

Methods, we have found that adding gap parameters increases

positive predictive value (PPV) for a large majority of all proteins

in the data set. This increase holds for our main criterion (Cb
criterion) for both absolute PPV and PPV relative to protein

length, see Figure 2. The average relative improvement of

gplmDCA over plmDCA, as measured by mean absolute PPV,

is 10.4% (8.6% to 12.2% within a 95% confidence interval). In

this paper our focus is on the possibility of learning models which

lead to better contact prediction, and not of learning a given

model more or less well.

To set a scale of the improvement we include however in the

comparisons in Figures 2 and 4 also PSICOV [20], another

leading approach to the DCA, which can be understood to learn

the same model as plmDCA, but by a different inference

method.

Supporting Information S1 contains results of the analysis

conducted in this paper based on our former criterion (8.5 Å

heavy atom criterion) for the sake of immediate backwards

comparability with previous work [22,24].

Figure 1. Examples of qualitative contact prediction improvement. Gray squares: contacts observed in crystal structure, Ovals: predicted
contacts (green: correctly predicted, red: incorrectly predicted). Predicted very short-range contacts (not considered in the assessment) are drawn in
pale colors.Top row: comparison of plmDCA and gplmDCA, bottom row: plmDCA and plmDCA20. Left panels: contact prediction maps built by
plmDCA and gplmDCA/plmDCA20 using protein sequences homologous to 1JFU:A as explained in Methods. For this protein plmDCA predicts a
number of strong couplings at both the N-terminus and the C-terminus, which arise from the high sequence variability at both ends of proteins
homologous to 1JFU:A and the many gaps in the multiple sequence alignments at these positions. In gplmDCA these gaps lead to adjustment of gap
parameters and not to contact predictions, in plmDCA20 these couplings are not included in contact scoring, leading to an analogous effect. Right
panels: analogous results using protein sequences homologous to 1ATZ where gplmDCA and plmDCA20 remove strong spurious couplings at the C-
terminus.
doi:10.1371/journal.pcbi.1003847.g001

Improving Contact Prediction along Three Dimensions
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Adding gap parameters to the model improves
individual contact predictions

A regression analysis of prediction accuracy, as measured by

absolute PPV, reveals clear systematic differences between

plmDCA and gplmDCA. As shown in Figure 3 the overall

advantage of gplmDCA primarily arises from proteins where PPV

is relatively high, i.e. where prediction by plmDCA itself is

accurate.

Quantitative statistics of this effect are summarized in Table 1.

Including all 729 proteins in the main test set we find that in 82%

of the cases gplmDCA does at least as well as plmDCA, but if we

include only the 608 instances where the PPV from both plmDCA

and gplmDCA are larger than a relatively low cut-off of 0.1 this

fraction rises to 86%, eventually reaching 91%.

It is evident that the expected utility of DCA-like contact

prediction is heavily dependent on the information content in the

input alignment. The information content is closely correlated to

the number of unique protein sequences in the alignment. Until

recently, it has been a rule of thumb that one needs at least 10

times as many sufficiently diverse proteins in the alignment as

there are amino acids in the protein in question. That meant that

contact prediction with alignments of fewer than 1000 sequences

was considered unfeasible.

Adding gap parameters to the model leads to improved
predictions when there are few sequences

As shown in Figure 4 the improvement in prediction perfor-

mance by using gplmDCA depends on how many sequences there

Figure 2. Prediction precision (PPV), average over all proteins in the main test data set. The curves show for PSICOV, plmDCA, gplmDCA
and plmDCA20 the average of the number of correct predictions in the n highest scoring pairs divided by n. Left panel: PPV for absolute contact
index; the horizontal axis shows n. gplmDCA and plmDCA20 yield higher absolute PPV than plmDCA for all n. PSICOV is more often right than
plmDCA in its prediction of the few first (strongest) contacts (n = 1), but is inferior to both plmDCA20 and gplmDCA for this test set. Right panel: PPV
for relative contact index (fraction of protein length). the horizontal axis shows (n/N).
doi:10.1371/journal.pcbi.1003847.g002

Figure 3. Contact prediction accuracy (mean absolute PPV) for proteins in the main test set by plmDCA (abscissa) vs gplmDCA
(ordinate) in left plot and plmDCA vs plmDCA20 in the right plot. Most of the points fall above the diagonal indicating that gplmDCA is
more accurate than plmDCA for most of proteins in the test set. Data points can be fitted a straight line by Ordinary Least Squares regression, with
slope 1.076460.005 (R2 = 0.987) indicating that gplmDCA is generally relatively more accurate than plmDCA the more accurate is plmDCA itself. The
slope of OLS regression line for plmDCA20 is 1.10660.004 (R2 = 0.992).
doi:10.1371/journal.pcbi.1003847.g003
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are in an alignment. When considering the top ranked 1
10
:L

contacts per protein, where L is protein length, the improvement is

centered in an interesting intermediate range of approximately

90–2500 sequences with at most 90% sequence similarity, while

gplmDCA and plmDCA are similar in performance when the

number of sequences is less than 90 (where it is poor) or more than

2500 (where it has saturated at a PPV around 65%). Even with as

few as 300 unique sequences in alignment, gplmDCA is able to

achieve 40% positive prediction rate for these highest ranked

contacts. As more contacts are considered, the range where

gplmDCA holds an advantage moves successively to proteins with

more sequences. A proposed explanation of these observations is

that the less information (sequences) are available, the more

prominent the confounding factor of the gaps becomes for

plmDCA. Introducing gap parameters alleviates this phenome-

non, increasing the prediction precision for top ranked contacts for

information-poor alignments and improving the amount of correct

contacts predicted for the information-rich alignments.

Discarding the couplings involving gaps in scoring leads
to analogous effect as introduction of gap parameter

An alternative method of accounting for gap stretches in the

inference is to not include the inferred couplings involving gap

variable in the final scoring of coupling matrices J. This approach

we subsequently denote as plmDCA20. While ignoring gap

observations in their entirety, leads to diminished prediction

precision [24], discarding the contributions from the gap state in

computing the average product corrected Frobenius norm, does

indeed improve the prediction precision on a level exceeding the

improvements achieved by gplmDCA. The average relative

improvement of plmDCA20 over plmDCA, as measured by mean

absolute PPV, is 13.1% (11.5% to 14.7% within a 95% confidence

interval). On the data set used in this paper, plmDCA20 is notably

more precise than gplmDCA, with the relative improvement of

3.9% (95% confidence interval 2.5% to 5.1%). It is important to

note, that inferred couplings involving gaps are discarded only

after gauge fixing, which means that gap observations are included

in the inference process and consequently contribute to scoring,

although in an indirect way.

Discussion

While the set of proteins reported in this work is significantly

more ‘‘difficult’’ than the proteins reported in recent work on the

subject, it is evident that extending the model with a gap term or

discounting couplings involving gaps upon scoring, significantly

increase the accuracy of prediction. This improvement can be

attributed to incremental developments in three aspects, which we

call the three dimensions of contact prediction: data, model and

method. While each of these aspects has been shown to have a

non-negligible impact on the accuracy of contact prediction on its

own, this work suggests they should not be considered separately,

but rather in unison.

The data
The extensive benchmark performed for the purposes of the

paper has validated our previous claim that proper input

alignment matters for accurate contact prediction [30]. To

compare HHblits and Pfam alignments we have from our main

data set constructed a reduced data set of 384 proteins. As shown

in Figure 5 and Table 2, gplmDCA and plmDCA20 have a larger

advantage over plmDCA on HHblits alignments than on Pfam

alignments. Note that plmDCA on HHblits alignments has

comparable prediction performance to either gplmDCA or

plmDCA20 on Pfam alignments, confirming again the importance

of the data dimension in contact prediction.

On the level of single proteins, both with Pfam alignments and

HHblits alignments, gplmDCA has a clear advantage over

plmDCA in terms of the prediction precision, see top row of

Figure 6. The difference is more pronounced for HHblits

alignments, which can be quantified by the slope of OLS

regression line, that is 1.03460.005 in case of HHblits alignments,

but only 1.02360.003 for Pfam alignments. In the other

dimension of the same test, gplmDCA gains more from use of

HHblits over Pfam than plmDCA (bottom row of Figure 6), with

the regression line slopes of 1.04760.13 for gplmDCA and

1.03360.013 for plmDCA.

For plmDCA20, the same effect is also observable (see middle

row of Figure 6), with a comparable slopes of regression lines, that

is 1.05360.004 for HHblits alignments and 1.02560.003 for Pfam

alignments in the dimension of the alignment. In the dimension of

the inference method, plmDCA20 benefits from HHblits align-

ments slightly more than gplmDCA, with a slope of OLS

regression line equal to 1.07260.013 (bottom row of Figure 6).

The model
Contact prediction in DCA has hitherto been considered in

terms of a pairwise interaction model, typically motivated by

Table 1. Numbers and fraction of proteins where gplmDCA performs better than plmDCA.

gplmDCA plmDCA20

Cutoff Proteins Better Better or equal Better Better or equal

0.5 128 109 (0.85) 116 (0.91) 117 (0.91) 122 (0.95)

0.4 227 194 (0.85) 205 (0.90) 206 (0.91) 215 (0.95)

0.3 322 277 (0.86) 290 (0.90) 294 (0.91) 304 (0.94)

0.2 441 371 (0.84) 395 (0.90) 400 (0.91) 417 (0.95)

0.1 608 475 (0.78) 524 (0.86) 521 (0.86) 561 (0.92)

ALL 729 522 (0.72) 597 (0.82) 579 (0.79) 639 (0.88)

In each row all proteins in the data set are included for which the PPV from both plmDCA and gplmDCA is larger than the cutoff value given in the first column. The full
data set (last row) consists of 729 proteins for 522 (72%) of which gplmDCA performs better than plmDCA. In the most stringent selection (first row) there are 128
proteins where both plmDCA, plmDCA20 and gplmDCA have a PPV of at least 0.5. In this set gplmDCA performs better on 109 (85%) of the instances. By the same
criteria, plmDCA20 performs slightly better than gplmDCA, outperforming plmDCA for 579 proteins (79% of all) and performing better in 117 cases (91%) out of 128
proteins highly amenable to contact prediction by these methods.
doi:10.1371/journal.pcbi.1003847.t001
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maxentropy arguments cf [27]. In a context where one tries to

learn from all of the data and not from a reduced set of observables

such as e.g. pair-wise correlation functions, maxentropy arguments

do not apply, and there is a vast array of possible models that

could describe the biological reality more accurately. We have

shown here that the addition of what is arguably the simplest and

most obvious non-pairwise term, the gap term, does make a

significant difference to the quality of resulting contact predictions,

although the beneficial effect is not always consistent and similar

improvement may be achieved by correcting the scoring method.

Therefore we posit that the pairwise interaction term is not the end
of the story, but rather a prelude, and that there remains a lot that

can still be done in respect to constructing data models that more

accurately reflect the evolutionary relationships in proteins.

Inference
As previously shown by some of us [22,24,30], pseudo-

likelihood maximization tends to outperform mean-field DCA

(mfDCA) [17] and sparse inverse covariance methods (PSICOV)

[20] in terms of the prediction precision. Recently, a decimation

strategy for improving the inference of the topology of an Ising

model has been proposed in the context of pseudo-likelihood

inference [32]. The idea is to run the inference several times,

setting a fraction of the weakest couplings to zero after each run

and constraining them to remain zero in consecutive runs. In

order to test whether this additional step improves protein contact

prediction, we adapted the method for the asymmetric inference of

the Potts Model used in the present work. The implementation

details can be found in the Supporting Information S2.

We have benchmarked our implementation of gplmDCA with

decimation (decgplmDCA) basing on the reduced test set used for

comparison between Pfam and HHblits. According to our results,

inference with decimation does not produce on average signifi-

cantly different results in comparison to inference without

decimation, when run on Pfam alignments. For HHblits align-

ments, decimation-aided inference performs roughly equally well

to the regular one, until roughly 50% of couplings are set to 0.

From this point on, the average prediction performance starts

decreasing, as can be seen in Supporting Information S2.

Since the matrix of coupling strengths resultant from the

inference should be sparse, as there are significantly more non-

contacting amino acid pairs than contacting ones, decimation is

expected to be beneficial in a general case. We believe, that the

fact that we observed no such effect indicates that more work is

needed on designing the decimation-aided inference method in

unison with the data model and data itself.

Figure 4. Contact prediction accuracy for proteins in the test set by plmDCA20, gplmDCA and plmDCA vs number of homology
reduced sequences in the alignment (maximum 90% sequence identity), when considering top 10%, 25% (top row), 50% and 100%
(bottom row) contacts, 100% being the same number of contacts as the number of amino acids in the protein. The advantage of
gplmDCA and plmDCA20 is particularly interesting in ranges highlighted by vertical dotted lines. For the top 10% and top 25% (top row) these
ranges are approximately 60–2500 and 250–23000 sequences, while for the top 50% and top 100% (bottom row) they extend from about 250
sequences in the alignment and upwards. PSICOV outperforms both plmDCA and gplmDCA when there are less than about 100 sequences in the
alignment.
doi:10.1371/journal.pcbi.1003847.g004
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Figure 5. Prediction performance as assessed by relative PPV and Cb criterion for gplmDCA, plmDCA20 and plmDCA run on Pfam
and HHblits alignments in the reduced test data set. The reduced test data set comprises the proteins in the main test data set where a
comparison can be made to Pfam alignments, as described in Methods.
doi:10.1371/journal.pcbi.1003847.g005

Table 2. Comparison of the effect of different inference methods and alignment sources on precision of contact prediction, based
on the reduced data set of 384 proteins.

Method HHblits Pfam

L/5 L/2 L L/5 L/2 L

plmDCA 0.54 0.44 0.34 0.51 0.42 0.33

gplmDCA 0.58 0.47 0.37 0.52 0.43 0.34

plmDCA20 0.59 0.48 0.37 0.52 0.43 0.34

decgplmDCA (1) 0.57 0.47 0.36 0.52 0.43 0.34

decgplmDCA (4) 0.56 0.46 0.36 0.52 0.43 0.34

decgplmDCA (9) 0.52 0.43 0.33 0.51 0.43 0.33

PSICOV 0.49 0.38 0.29 0.42 0.33 0.25

L/5, L/2 and L denote the precisions at respective amounts of contacts considered for evaluation, where L is the length of protein. Runs of gplmDCA with decimation are
denoted as decgplmDCA (N), where N indicates the amount of decimation rounds. Difference betwwen individual methods is significantly more perceptible when
considering HHblits alignments than Pfam alignments. On this set plmDCA and gplmDCA perform comparably, with plmDCA20 showing slightly higher positive
predictive value for the top ranked contacts (0.59 vs 0.58).
doi:10.1371/journal.pcbi.1003847.t002
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More accurate contact maps
The improvement in terms of the average PPV over the whole

protein set, as well as the fraction of proteins for which gplmDCA

and plmDCA20 produce more accurate predictions, cannot be be

underestimated, but is not the only distinguishing feature of these

methods. Eliminating strong couplings induced by gaps in the

alignments allows for detection of relatively weaker ones, which

may be important for the future applications of the method, such

as contact-assisted protein folding.

One example of such contacts being predicted, shown in

Figure 7, is the contacts between N-terminal helices (marked in

blue) and the b-sheet of the sensor domain of histidine kinase DcuS

(deposited in PDB as 3BY8:A). This structure is classified in CATH

[33] as a two-layer a/b sandwich and while plmDCA is able to

position strands of the b-sheet in a correct order, it fails at predicting

contacts between the a-helices of the sandwich and the b-sheet. As

can be seen in central panel Figure 7, gplmDCA in addition to the

already predicted contact between residues 34 and 113 (green dot

next to the blue region) predicts also contacts between residues 34

and 121, as well as 21 and 126. This in theory should allow for

proper positioning of helices in case of structure prediction. For this

protein plmDCA20 also predicts these additional contacts and while

plmDCA20 predictions are not identical to gplmDCA ones, both

methods achieve the same prediction precision.

Wrong predictions
The addition of a gap term, while beneficial for vast fraction of

proteins, occasionally results in lower prediction accuracy in

Figure 6. Scatter plots of prediction by absolute PPV and Cb criterion for individual proteins in the reduced test data set. Top row
shows, analogously to Figure 3 (in Results, for the main data set), gplmDCA vs plmDCA for Pfam alignments (left panel) and for HHblits alignments
(right panel). Center row shows analogous data, but for plmDCA vs plmDCA20 comparison. Bottom row shows prediction for HHblits alignments vs
Pfam alignments using plmDCA (left panel), gplmDCA (central panel) and plmDCA20 (right panel).
doi:10.1371/journal.pcbi.1003847.g006
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comparison to the inference performed on a model without gap

term (plmDCA).

One of the most striking examples (see Figure 8) is protein S, a

member of the beta gamma-crystallin superfamily, from Myxo-
coccus xanthus (deposited in PDB as 1NPS:A), which is one of the

most prominent outliers in Figure 3. For this protein plmDCA

predicts contacts allowing theoretically for proper assembly of

protein, with most of the false positives concentrating in the areas

immediately close to diagonal (with sequence separation #10). On

the the hand gplmDCA predicts here significantly fewer such false

contacts, but at the same time neglects to predict nearly all close

range contacts. Another example depicted in panel (B) of the same

figure is transcription elongation factor Spt4 from Pyroccocus
furiosus (deposited in PDB as 3P8B:A). In this case, all the contacts

predicted by gplmDCA concentrate in rectangular regions

between residues 24–49, 53–56, 59–75, which we believe could

be due to the high percentage of sequences with identical gap

distribution in the alignment, either (case 1) 1–23, 50–52, 56–59,

77–81 (31.7% of sequences) or (case 2) 1–23, 50–52, 56–59, 64–

65, 74–81 (28.4% of sequences).

We believe that the sub-par prediction accuracy for these and

most of the other outliers is due to the way input multiple sequence

alignment has been constructed. HHblits (the method used for

constructing input multiple sequence alignments) tends to result in

multiple sequences in the alignment containing identical distribu-

tions of gaps, which causes gplmDCA to assign lower coupling

strengths to the gap-rich regions. Alignments of similar size

produced by different methods (i.e. jackhmmer, data not shown),

do not seem to exhibit such a behavior. Despite this shortcoming,

we have found that HHblits alignments are highly suitable for

contact inference (cf. the data section).

In contrast to gplmDCA, we did not find any proteins for which

plmDCA20 performs significantly inferior to the original plmDCA

(as demonstrated by Figure 3). In particular, for proteins discussed

above plmDCA20 provides predictions on par or better than

plmDCA. With an exception of approximately 5% proteins,

prediction performance of plmDCA20 and gplmDCA is compa-

rable for our test set.

Folding
Elimination of artifacts in predicted contact maps, as well as

increased sensitivity (predicting correct contacts between more

secondary elements) in comparison to plmDCA, coupled with

increased prediction precision, strongly suggest that gplmDCA

and plmDCA20 should provide valuable input for the future ab-
initio protein structure prediction attempts. The previous incar-

nation of pseudo-likelihood maximization for direct coupling

analysis (plmDCA) has been successfully used for protein structure

prediction endeavors (c.f. [12]) as it objectively provides higher

prediction accuracy than other methods (as demonstrated, for

example in [30]). As both methods presented in this paper are at

the same time faster and more accurate than the version used in

reported structure prediction work, we strongly recommend them

for future use.

Conclusions
Contact prediction has advanced greatly in the last five years,

reaching a level of accuracy which was previously believed to be

unattainable. We have shown here that the three dimensions of

data, model and method are all important for overall prediction

success, and we have shown that one can can significantly improve

prediction along the second dimension by going beyond pairwise

maxentropy models mainly used in the field up to now. Finally, we

have shown that the gap correction behavior can be achieved by

alternative method of scoring the resultant coupling matrices. We

believe that these are only the first steps in a rational approach to

incrementally improve contact prediction, and that with the

ongoing explosion in the number of available protein sequences

much further progress should be possible on these issues.

Methods

The Direct Contact Analysis (DCA) as introduced in [34] and

[16] is a family of methods to predict contact between amino acid

pairs from a multiple sequence alignment (MSA) [17,18,20–

22,26,27,30,35–38]. Learning predictive models of amino acid

contacts depends on which sequences are used to build the

alignment and by which methods they are aligned (Input data),

which model one tries to learn from the data (Model) and how a

model is learned from the data (Inference method). We describe

below our approach along these three dimensions in turn. The

perceived quality of prediction then depends on how the model is

used and how it is benchmarked, as we describe below (Prediction

and benchmarking metrics).

Input data
In a substantial fraction of the contributions to the development

of DCA contact predictions have been based on MSAs obtained

from the Pfam protein families database: [3,39]. However, as

recently shown by one of us in [30], and as also shown here (see

Discussion), these alignments are not the optimal input for DCA

and DCA-like methods.

Instead of PfamA alignments, we use a state-of-art homology

detection method HHblits [40], based on iterative comparison of

Figure 7. Difference in contact prediction between plmDCA and gplmDCA for sensor domain of histidine kinase DcuS from E.coli
(pdbid:3BY8:A). Left figure: protein structure, with some of contacts uniquely predicted by gplmDCA marked by dashed lines. Center and right:
contact maps, with the region of interest marked in faint blue. Predictions by both plmDCA20 and gplmDCA differ slightly, but maintain the same
accuracy and uncover additional contacts, important for protein structure prediction.
doi:10.1371/journal.pcbi.1003847.g007
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Hidden Markov models (HMMs). This approach is able to arrive

at very accurate multiple sequence alignments, tailored to the

protein of interest, while still including remotely homologous

proteins.

We have constructed a heterogeneous set of 729 protein chains

of known structure, sampled from Protein Data Bank which we

refer to as main test set. This set is an amalgam of four smaller data

sets as follows:

N 150 proteins reported in PSICOV paper [20].

N ,120 proteins with known structures, with relatively few

detectable homologous proteins of known sequence.

N ,180 proteins of the most common Structural Classification of

Proteins (SCOP) folds [41].

N ,280 proteins sampled at random from PDB.

We excluded from the main test set proteins that were

significantly too long for a reasonable contact prediction (the

mean and median lengths of a protein in the considered set are

168.4 and 150 amino acids correspondingly, with maximum of

494 amino acids), or not compact enough (not having enough

long-range contacts), probably stabilized by interaction with their

environment. We did not exclude multimeric proteins, or filter out

multidomain proteins, though.

Figure 8. Mispredictions. Among the 729 proteins plotted in Figure 3 there is less than 5% prominent outliers where plmDCA (model with no gap
parameters) clearly does better than gplmDCA (model with gap parameters). Upper row depicts gplmDCA predictions, lower — plmDCA20. Left
panels show the contact maps of protein S, where gplmDCA wrongly predicts a number of spurious contacts between N- and C- terminii Right
panels, contact maps of transcription elongation factor Spt4. The prediction artifacts of gplmDCA are not detectable in plmDCA20 predictions. For
further discussion, see main text.
doi:10.1371/journal.pcbi.1003847.g008
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The alignments in the main test set have been constructed using

HHblits, as contained in HHsuite 2.0.16 with a bundled

uniprot20_2013_03 database. We have run five iterations of

search, with a E-value cutoff of 1, allowing for inclusion of

distantly homologous protein in the alignment. The search was

conducted without filtering the result MSA (-all parameter),

without limiting the amount of sequences allowed to pass the

second prefilter and allowing for realigning all the hits, hence

obtaining the most information-rich and accurate alignment at

cost of increased running time.

To compare Pfam and HHblits-based predictions we have from

the main test set also constructed a reduced test set by the following

procedure. For each of the proteins in the main test set we

searched for its PDB identifier against an official Pfam-PDB

mapping, to identify the longest Pfam family corresponding to this

protein (in case of potential multiple Pfam hits per PDB identifier).

This resulted in alignments for 481 proteins, reflecting inter alia
the fact that not all proteins in the main test set have an official

Pfam-PDB mapping. Then we identified the sequence in the

appropriate Pfam alignment which is closest to the sequence of

protein in question by Smith-Waterman algorithm using BLO-

SUM100 matrix. From this set we reject alignments where we the

number of residues in both sequences aligned to gaps is more than

50% of length shorter of sequences plus length difference between

sequences, and subsequently we trim the Pfam alignment to only

the columns aligned to protein in question. Finally, the reduced

test set contains 384 proteins with both Pfam and HHblits MSAs

which form the input for plmDCA, plmDCA20 and gplmDCA in

the comparisons presented in Discussion and Figures 5 and 6. The

comparison is there done by filtering down the predictions to

include only the columns present in the Pfam alignments.

Protein sequences present in sequence database (and hence used

for alignments in this work) are biased towards sequences from

genomes of organisms that are of special interest to humans. Many

such sequences are closely similar, and following [16] sequences

that are more similar than some threshold are reweighted before

being used in a DCA. We here use the reweighting recently

described in [24], with threshold 0.1, that is, by reweighting

sequences that are more than 90% identical.

Model
A multiple sequence alignment can be considered as samples

from an unknown probability distribution. Each row, correspond-

ing to one protein in the alignment, is then one of the qN possible

realizations of a random variable which at each of the N positions

along the row can take q = 21 different values (the amino acid or

the gap symbol at that position). The (unknown) probability

distribution is, in principle, the result of the complete evolutionary

history of all forms of life, and is therefore a very complicated

object. However, it is not necessary to know the probability

distribution exactly to extract useful information.

The Direct-Coupling Analysis (DCA), as introduced in [34] and

[16], assumes that the probability distribution is the Potts Model of

statistical physics [42]:

PPotts(a)~
e{HPotts(a)

Z HPotts(a)~{
X

ivj

Jij(ai,aj){
X

i

hi(ai): ð1Þ

The use of the Potts model in the DCA has often been

motivated by maxentropy arguments cf [27]. As we base our

approach an inference method which uses all the data (see below),

we cannot refer to maxentropy principles. Instead, one may

observe that it has been found in many branches of science and

engineering, that probability distributions over a collection of a

large number of similar objects often obey a large deviation

principle [43]. The full distribution P can then be written as

P(a)<exp(2L(a)), where the function L in the exponent is

‘‘simple’’, a classical example being the Gibbs-Boltzmann distri-

bution of equilibrium statistical mechanics. An unknown proba-

bility distribution can then be expanded in a series

{log P(a)~L(a)~ConstantzS1(a)zS2(a)z . . . ð2Þ

where the first order contribution S1 (linear) contains terms only

depending on one component of a, the second order contribution

S2 (bi-linear) contains terms depending on two components of a,

and so on. If L in fact is simple, then a low order truncation should

give a useful approximation to P, and the Potts model of (1) is

nothing but the truncation of (2) after the second order terms. We

note that hierarchies of exponential probability distributions have

non-obvious properties, and may for instance be taken as a basis of

an invariant decomposition of the entropy [44].

Any multiple sequence alignment procedure typically produces

stretches of gaps, a fact which is obvious by visual inspection. It is

therefore an immediate observation that a real MSA data cannot

be a set of independent realizations of the rather simple model in

(1), since such stretches of one and the same variable (the gap

variable) are very unlikely to occur in a random variable drawn

from the distribution (1). In a DCA based on (1) we manifestly

learn from data a model which does not generate the same data.

We therefore hypothesized that by learning a model which

describes the data better, we might also better predict amino acid

contacts.

To investigate this we introduced additional gap parameters

and try to learn

PGap{Potts(a)~
e
{HPotts(a){HGap(a)

Z HGap(a)~{
XL

l~1

XN{lz1

i~1

jl
i I

l
i (a), ð3Þ

where the jl
i are new parameters describing the propensity of a site

i to be the beginning of a gap of length l, I l
i (a) is an indicator

function which takes the value 1 if there is a gap of length l
beginning at site i, and otherwise zero, and L is a meta-parameter,

the largest gap length included in the gap parameters. We set L to

the largest gap length found in a given alignment. The number of

additional parameters to be learned is thus not larger than NL, to

be compared to the number of parameters already used in (1),

which is about 1
2

q2N2.

Inference method
The benchmark of learning a model from data is maximum

likelihood where one chooses the probability distribution in a class

which minimizes a negative-log-likelihood function L. The main

problem in learning (1) from data by maximum likelihood is that

the normalizing constant (Z) cannot be evaluated exactly and

efficiently in large systems, and that therefore maximum likelihood

learning can only be done approximately e.g. by variational

methods [45]. Therefore, we instead use the weaker learning

criterion of pseudo-likelihood maximization [46], first applied in

the DCA setting by one of us in [22]. A further issue is that the

number of parameters in a Potts model based DCA is (typically)

larger than the number of observations (number of sequences in an

MSA), and regularization is therefore necessary. We here base our

work on the recently developed asymmetric pseudo-likelihood
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maximization [24], which is considerably faster than the version

presented in [22] while showing essential identical performance as

a predictor of amino acid contacts.

Learning the new model including (3) is especially convenient

using the pseudo-likelihood maximization approach. We have

developed a new code gplmDCA based on the asymmetric version

of plmDCA of [24].

Prediction and benchmarking metrics
The outcome of learning a model of the Potts type is a set of

pairwise interaction coefficients Jij (ai, aj). For each pair (i, j) (each

pair of positions) this is a matrix in two other variables (ai and aj)

and how an inferred interaction is scored depends on which matrix

norm one uses. We here use the Frobenius norm augmented by

the Average Product Correction (APC), as introduced in the

context of DCA by one of us in [22], and order the pairs (i, j), for

each multiple sequence alignment, by the value of this score.

An alternative method of handling the gaps in the alignment

(plmDCA20) is to change the scoring function, such that the

Frobenius norm is computed only on the 20620 sub-matrix which

does not involve the gap variables. The procedure is to ignore the

gap couplings after computing the coupling matrix J, which is

manifestly not the same as ignoring data on the gap variables

altogether. Since L2 penalty in plmDCA enforces the Ising gauge

for the couplings, the gap observations are used in the inference

and consequently contribute to the result, although in a non-trivial

way. In our experience (Aurell & Hartonen, unpublished results),

ignoring the data on gap variables in the inference does not result

in any improvement in the prediction precision.

To benchmark the predictions of the DCA one compares

against known crystal structures. In this work we use as the main

benchmark criterion, that two amino acids are in contact, if their

Cb atoms are at most 8 Å apart in the crystal structure. This we

denote as Cb criterion and use predominantly throughout this

article. In order to facilitate comparison to previously published

work on the DCA we present also an alternate metric that

considers the amino acids to be in contact if any of their heavy

(non-hydrogen) atoms are at most 8.5 Å apart. This metric is

denoted as 8.5 Å heavy atom criterion We strongly believe that this

metric tends to label unduly high fraction of short-range contacts

(i.e. contact separated by less than 8 positions in sequence space) as

positive. At the same time original plmDCA predicts significantly

more short-range contacts in comparison to the background

distribution in native protein structures. Both observations in

conjunction cause the improvements to the prediction precision to

be less perceptible. We demonstrate this effect in Supporting

Information S1.

In this article we use the terms precision and PPV (positive

predictive value) interchangeably, with metric denoting the ratio of

true positives to all predictions (within a certain count threshold).

In line with previously published work on contact prediction, we

consider only the contacts with sequence separation greater or

equal to 5 amino acids (we do not consider very short range

contacts, that is contacts between amino acids i and j when

Di{jDv5).

By the term weighted moving average with window w, authors

understand a weighted arithmetic mean of a value at a given

position and w values on either side of the center position, thus

resulting in 2w+1 values to be averaged. The central position is

scaled with weight w, whereas the weights decrease in arithmetic

progression while moving away from the center (i.e positions 21

and +1 are scaled with weight w21, whereas positions 22 and 2

with weight w22 etc.).

Availability
The code of gplmDCA is freely available at http://gplmdca.

aurell.org. This website contains also a link to all the data the

benchmark is based on, that is: multiple sequence alignments,

predicted couplings (both plmDCA and gplmDCA), protein

structures and contacts derived from them.

Supporting Information

Supporting Information S1 Metrics of contact prediction

correctness and results with heavy atom distance threshold of

8.5 Å.

(PDF)

Supporting Information S2 Decimation. Implementation

details and effect on prediction precision.

(PDF)
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