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Abstract

Base editing installs a precise nucleotide change in specific gene loci without causing a double-strand break. Its
efficiency in human embryos is generally low, limiting its utility in functional genetic studies. Here, we report that
injecting base editors into human cleaving two-cell and four-cell embryos results in much higher (up to 13-fold)
homozygotic nucleotide substitution efficiency as opposed to MIl oocytes or zygotes. Furthermore, as a proof-of-
principle study, a point mutation can be efficiently corrected by our method. Our study indicates that human
cleaving embryos provide an efficient base editing window for robust gene disruption and correction.
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Background

Base editors, enabling single nucleotide conversion with-
out causing double-strand breaks, have been successfully
applied for base correction in mouse and human em-
bryos [1-5]. In contrast to the mouse, base-editing effi-
ciency in human embryos is generally low (below 30%)
that frequently leads to mosaicism and limits the utility
of current base editing methods for gene functional
study in human embryos (Additional file 1). Several
species-specific differences in early embryonic develop-
ment may account for low efficiency of BEs in human
embryos. Here, we investigate whether injecting base ed-
itors into human embryos at different stages has an in-
fluence on base-editing efficiency.
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Results and discussion

To test the base-editing system in human embryos, we
initially injected BE3 mRNA and sgRNA into one-cell
embryo (zygote stage) (Fig. 1a, b and Additional file 1:
Supplementary Methods) to induce G>A conversions
(g.97G>A, Gg; g.98G>A, G5) in exon 1 of -globin (HBB)
gene (Fig. la-c). BE3 mRNA and sgRNAs were
co-injected into the cytoplasm of 3PN zygotes approxi-
mately 24 h post fertilization (one-cell stage) (Fig. 1b).
Injected zygotes were cultured to the eight-cell stage and
used for on-target deep sequencing analysis (Additional
file 5: Table S3. Primers used in the study). Although ex-
pected Trpl6 to Stop conversions (g.97G > A or g.98G >
A) in the HBB locus were observed in some blastomeres
of all injected embryos (n=6), base-editing frequency
was relatively low with high mosaicism by one-cell injec-
tion (27.8 £9.7%; Fig. 1c, Additional file 2: Figure Sla,
and Additional file 3: Table S1).

The onset of zygotic gene activation (ZGA) in human
embryos (four- to eight-cell stage) is typically later than
that of mouse embryos (two-cell stage) [6, 7]. Therefore,
we decided to test the conversion efficiency in cleaving
human embryos by injecting BE3 mRNA and correspond-
ing sgRNA into each blastomere of the two-cell or
four-cell stage embryos (Fig. 1a) and measuring outcomes
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Fig. 1 Improved base-editing efficiency in human cleaving embryos compared with Ml oocytes and zygotes. a Experiment design. Different
reagent mixtures were injected into MIl oocytes, one-cell, two-cell, or four-cell stage embryos. Embryos were cultured to the eight-cell stage and
used for targeted deep sequencing or single-cell sequencing. b Schematics of base editor components and working principle. ¢ Targeted deep
sequencing analysis of embryos injected with BE3 targeting HBB locus at one-cell, two-cell, or four-cell stage. Percentage of the total reads with
targeted Trp codon to stop codon conversion on the HBB locus. SQRNA and PAM sequences are shown in black and blue, respectively. BE3-
mediated nucleotide substitutions are shown in red. iSTOP, induction of stop codon. d Single-cell sequencing analysis of embryos injected with

BE3 targeting HBB locus at MIl, one-cell, two-cell, or four-cell stage. Percentage of alleles with targeted C>T conversions on the HBB is shown.
2PN, two pronuclei; 3PN, three pronuclei. e, f Single-cell analysis of embryos injected with BE3 at one-cell or two-cell stage targeting EMX1 (e)
and RNF2 (f) loci. Percentage of alleles with targeted C>T or G>A conversions is shown. g Blastomere genotyping results of embryos injected
with BE3 targeting OCT4 locus. TS, targeted substitution; NTS, non-targeted substitution; INT, intact. h, i Homozygotic on-target efficiency at
blastomere (h) and embryo (i) level respectively with BE3 targeting OCT4 locus. Each data point represents an individual embryo. Results are
presented as mean + SEM. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, unpaired Student’s t test. ns, not significant

in eight-cell embryos. Remarkably, the efficiency of tar-
geted G>A conversions was greatly increased and reached
82.6 £ 8.7% when injected into two-cell and 77.2 + 13.3%
into four-cell embryos in contrast with low efficiency in
one-cell embryo (Fig. 1c, Additional file 2: Figure Sla, and
Additional file 3: Table S1). Furthermore, we corroborated
this finding by targeted g.22909C>T (Cs) and g.22910C>T
(Ce) conversions in the exon 3 of EMXI gene and con-
firmed a significant increase in base-editing efficiency
when treated cleaving human embryos as opposed to

zygotes (Additional file 2: Figure S1b,c and Additional file 3:
Table S1). We also used single-blastomere sequencing to
analyze each cell of the multicellular embryo, which allows
us to define the allelic targeting profile of each blastomere.
After BE3 injection, each blastomere from the eight-cell
embryos was isolated and individually sequenced (Fig. 1b).
The efficiency of base editing at allelic level obtained from
single-blastomere sequencing was consistent with that of
deep sequencing analysis in HBB, confirming higher effi-
ciency in two-cell injection than that in one-cell injection
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(80.50 + 3.43% in two-cell versus 13.84 + 3.33% in one-cell
injection) (Fig. 1d and Additional file 4: Table S2). We also
tested the base-editing efficiency in diploid embryos
(2PN) at HBB locus and found similar results with 3PN
ones (Fig. 1d; Additional file 4: Table S2; Additional file 5).
It has been reported most zygotes had completed S phase
of the cell cycle and DNA replication and likely produced
four alleles for targeting, leading to high mosaicism [8, 9].
Therefore, we co-injected BE3 into MII oocytes with
sperm during fertilization by intracytoplasmic sperm injec-
tion (ICSI) (Fig. 1b). Unexpectedly, MII oocyte injection
resulted in much a lower base-editing frequency (0.63%)
compared to pronuclear stage zygotes (13.8%) (Fig. 1d and
Additional file 4: Table S2).

Though two-cell injection improved on-target effi-
ciency compared with one-cell injection, indels or
non-target substitution frequency stayed similarly low
with less than 5% in both stages (Additional file 2: Figure
Sle and Additional file 4: Table S2). Moreover, develop-
ment competency of treated embryos to the eight-cell
stage for HBB locus was not affected and comparable to
uninjected control group (Additional file 2: Figure S1f).
With experiments on more loci, we could also achieve
the improved base-editing efficiency by two-cell
injection at EMXI1, RNF2, and OCT4 loci (Fig. 1b—d,
Additional file 2: Figure S1d, and Additional file 4: Table
S2). Besides BE3-mediated C>T and G>A conversion, we
additionally examined the efficiency of A>G and T>C
conversions in cleaving human embryos by ABE system
targeting three separate genomic loci, site 2, site 4, and
site 6 [10]. Like the results in BE3 experiments, injection
of ABE mRNA and corresponding sgRNA into two-cell
human embryos resulted in significantly higher A>G
conversions than in zygotes (Additional file 2: Figure
S2a-c, Figure S3a-c and Additional file 4: Table S2).

After higher base-editing efficiency in cleaving embryos
was verified at the allelic level, we further analyzed the
homozygotic targeting efficiency in each blastomere. In this
regard, we chose OCT4 locus at the exon 1 to investigate
the simultaneous induction of g187C>T (Cs) and
g.188C>T (Cg) conversions at three parental alleles by
injecting BE3 into human two-cell embryos derived from
3PN zygotes (Fig. 1g). Single-blastomere analysis revealed
that 87.4% (76 out of 87 blastomeres) of blastomeres car-
ried desired C>T substitutions at the g.187C locus and
78.2% (68 out of 87 blastomeres) at the g.188C position in
all three alleles (tri-allelic base substitutions) (Fig. 1g, h and
Additional file 4: Table S2). By contrast, only 22.3% and
6.4% of blastomeres derived from conventional zygote in-
jection carried g.187C>T and g.188C>T tri-allelic base sub-
stitutions, respectively (Fig. 1g, h and Additional file 4:
Table S2). Besides 3PN embryos, we also targeted the same
OCT4 locus in two-cell embryos derived from normally
fertilized (2PN) zygotes. The percentage of homozygotic
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targeted blastomere was 68.3% for the g.187C locus and
78.3% for the g.188C site, comparable to those derived
from abnormally fertilized 3PN embryos (Fig. 1g, h and
Additional file 4: Table S2). Remarkably, 5 out of the total
15 two-cell injected embryos derived from 3PN zygotes
carried homozygous C>T substitutions at both g.187C and
g.188C loci, whereas none of one-cell injected embryos
have such complete editing in each blastomere (Fig. 1i).

In addition to OCT4 locus, we also found significant
improvement of homozygotic conversion efficiency in
other loci including HBB, EMXI by two-cell injection
compared to one-cell injection (Additional file 2: Figure
S4a-d and Additional file 4: Table S2). These results in-
dicate that base editors injection in cleaving embryos
could efficiently induce nucleotide substitutions simul-
taneously in all parental alleles in a single blastomere,
suggesting potential applications to interrogate the caus-
ality between homozygous point mutations and corre-
sponding phenotype in human embryos.

We next tested whether base editors could be used for
correcting point mutation and interrogating causality be-
tween mutations and corresponding phenotypes in early
human embryonic development. As a proof-of-concept
study, we chose a previously identified ¢.299A>G muta-
tion in MUT gene encoding methylmalonyl CoA mutase
for the correction experiment. Homozygous c.299A>G
substitution in MUT leads to methylmalonic acidemia, a
condition characterized by feeding difficulties, develop-
mental delay, and long-term health problems [11]. We
identified an adult male with the heterozygous
¢.299A>G (g.4133A>G) mutation, and he consented to
donate a semen sample. In contrast to mutant ¢.299A>G
allele, normal wild-type gene carried two linked neutral
SNPs (NC_000006.12, g.2259C>T; NC_000006.12,
g.2654C>Q) (Fig. 2a and Additional file 2: Figure S5a, b).

We then fertilized in vitro matured MII oocytes with
the carrier sperms and injected BE3 mRNA with sgRNA
into two-cell embryos (Fig. 2b). Embryos were further
cultured into the eight-cell stage and wused for
single-blastomere analysis. Original heterozygous mutant
embryos (MUT"/C294>G) produced from the mutant
sperm were identified and separated from wild-type
(MUT*'*) embryos by the presence of the linked SNPs.
In intact controls, 50% (8/16) of embryos were MUT**
while the other half (8/16) were MUT*/<?%4>G (Add-
itional file 2: Figure S5c¢ and Additional file 4: Table S2).
In embryos injected with BE3 mRNA and sgRNA, 10
out of total 15 (66.7%) were uniformly homozygous
(MUT**), among which 2 embryos were fertilized by
mutant sperm (MUT “?**>S) (Fig. 2c). The remaining 5
embryos (33.3%) were mosaic carrying 2 types of blasto-
meres, MUT™* and MUT*<*°**G (Fig. 2c). However,
in the 5 mosaic and 2 completely corrected mutant em-
bryos, 87.6% of analyzed alleles were WT and 75.7% (28/
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Fig. 2 Correction of a pathogenic heterozygous mutation in human embryos with base editors. a Diagram of MUT c.299 A>G mutation locus for
a male patient. Exon is labeled with a gray box; c.299A>G mutation site is indicated with a red line. In addition, mutant and wild-type alleles of
this patient can be distinguished by two adjacent neutral SNPs. b Experimental diagram showing BE3-medicated gene correction in human
embryos. Sperm from a heterozygous patient was used to fertilize the oocytes. BE3 mRNA and MUT sgRNA were co-injected into each blastomere

of the two-cell embryos 36 h after fertilization. Embryos were cultured to eight-cell embryos and used for targeted deep sequencing or single-cell
sequencing. ¢ Blastomere genotyping results in injected embryos. WT, wild-type; Mut, mutant c299A>G. d, e Allele frequency and blastomere
genotypes in BE3-treated heterozygous embryos. f Schematic of off-targeting analysis using whole genome sequencing of BE3-treated embryos. BE3
mRNA, OCT4 sgRNAs, and GFP mRNA were co-injected into one blastomere of two-cell embryos whereas another blastomere left uninjected. When
embryos developed to the eight-cell stage, GFP-positive and negative blastomeres were separated and analyzed by WGS. g Alignments and
percentage of mutant and corrected sequences from embryos injected with BE3 mRNA and MUT sgRNA. The target sequence is underlined. PAM site
and substitutions are shown in blue and red, respectively. The column on the right indicates frequencies of mutant alleles. WT, wild-type. h Variant
calling results revealing no off-target event detected by WGS. Indels, insertion or deletion; SNV, single nucleotide variants. i Targeted deep sequencing
analysis of on-target and 11 potential off-target loci in MUT ¢.299 A>G mutant embryos with or without base editing

35) of blastomeres became homozygous with only
wild-type genotype of MUT", indicating the proper
correction of the mutant paternal allele with base editing
(Fig. 2d, e). Furthermore, all BE3-treated embryos de-
rived from the WT sperm were uniformly homozygous
(MUT*™) without any misconversions or indels indicat-
ing high specificity of base editing (Fig. 2¢).

We next investigated if base editing induced any
off-target alterations. To eliminate the differences in the
genetic background between the gene-edited and control
embryos, BE3, GFP mRNA, and sgRNA were co-injected
into only one blastomere of two-cell embryos while leaving
another one uninjected (Fig. 2f). Injected blastomeres were
identified by GFP expression (GFP”) in eight-cell embryos.
Whole genome sequencing (WGS) was performed on both
GFP" and GFP~ cells, and multiple variant-calling software
pipelines were used to ensure reliable identification of indels
and single nucleotide variants (SNVs) (Fig. 2g, h). In the re-
sults from two BE3-edited embryos analyzed, we found nei-
ther variants shared in two BE3-edited embryos nor
variants in 10,611 predicted off-target sites (Fig. 2h). We
also performed targeted deep sequencing to verify the top
11 predicted off-target sites and still found no evidence for
off-target mutations (Fig. 2i and Additional file 4: Table S2).

In summary, we showed that the delivery of base edi-
tors into cleaving two-cell or four-cell human embryos
resulted in much higher homozygotic nucleotide conver-
sion rates, possibly due to more compact chromatin in
human zygotes and massive RNA degradation event
around zygote cleavage stage (Additional file 2: Figure
S6a, b) [12]. A recent work reported the correction of a
Marfan syndrome (MFS) pathogenic mutation in
embryos by base editing [5]. However, the conclusions
were untenable due to the low number of embryos and
inadequate experimental design and data analysis
(Additional file 2: Figure S7a, b). Notably, two recent
studies have reported that BE3 generates substantial
off-target mutations in mouse embryos and rice [13, 14].
However, no overlapped mutation was found in our
study between any two individual embryos and very few

of them located on exon, unlikely affecting the base editor
application for gene function study during human embry-
onic development. Certainly, it will be highly desirable to
explore and use base editors of high efficiency and fidelity
for gene manipulation in human embryos in the future.

Methods

Retrieval of 3PN embryos during in vitro fertilization

The COCs were inseminated in 4-well plates with ap-
proximately 100,000 motile spermatozoa for each oocyte.
Approximately 18-20h after fertilization, we collect
3PN embryos for the experiment.

Derivation of 2PN embryos by ICSI

Immature MI oocytes were collected from patients for
IVF or ICSI treatment. MI oocytes were cultured in
IVM medium in vitro for the first polar body extrusion
by observation every 2 h. ICSI was performed 3 h after
polar body extrusion.

Injection of base editors into embryos

For one-cell injection, the mixture of BE3/ABE mRNA
(100 ng/pl) and sgRNA (50 ng/pl) was injected into the
cytoplasm of the zygotes 24 h after fertilization. For
two-cell or four-cell injection, the mixture of BE3/ABE
mRNA (100 ng/pl) and sgRNA (50 ng/pl) was injected
into every blastomere of two-cell or four-cell embryos
36 or 44 h after fertilization, respectively.

Single-blastomere sequencing analysis

Individual blastomeres were put into PCR tubes with
1.5 pl embryo lysis buffer and used for nest PCR. The
PCR product was analyzed by Sanger sequencing to de-
tect the efficiency of base editing.

Statistical analysis

All statistical values were presented as mean + SEM. Differ-
ences between datasets were considered to be significant at
P value less than 0.05. All the statistic tests were conducted
with Student £ test unless otherwise stated.
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