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Abstract

Variation in the acoustic structure of vocal signals is important to communicate social infor-

mation. However, relatively little is known about the features that receivers extract to deci-

pher relevant social information. Here, we took an expansive, bottom-up approach to

delineate the feature space that could be important for processing social information in

zebra finch song. Using operant techniques, we discovered that female zebra finches can

consistently discriminate brief song phrases (“motifs”) from different social contexts. We

then applied machine learning algorithms to classify motifs based on thousands of time-

series features and to uncover acoustic features for motif discrimination. In addition to

highlighting classic acoustic features, the resulting algorithm revealed novel features for

song discrimination, for example, measures of time irreversibility (i.e., the degree to which

the statistical properties of the actual and time-reversed signal differ). Moreover, the algo-

rithm accurately predicted female performance on individual motif exemplars. These data

underscore and expand the promise of broad time-series phenotyping to acoustic analyses

and social decision-making.

Author summary

Variation in vocal performance can provide information about the social context and

motivation of the signaler. For example, prosodic changes to the pitch, tempo, or loudness

of speech can reveal a speaker’s emotional state or motivation, even when speech content

is unchanged. Similarly, in songbirds like the zebra finch, males produce songs with the

same acoustic elements but with different vocal performance when courting females and

when singing alone, and females strongly prefer to hear the courtship song. Here we inte-

grated behavioral and computational approaches to reveal the acoustic features that

female zebra finches might use for social discrimination. We first discovered that females

excelled at distinguishing between brief phrases of courtship and non-courtship song. We

next extracted thousands of time-series features from courtship and non-courtship
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phrases using a highly-comparative time series analysis (HCTSA) toolbox, and trained

machine learning algorithms to use those features to discriminate between phrases. The

machine learning algorithm identified features important for discriminating between

courtship and non-courtship song phrases, some of which have not been implicated

before, and reliably predicted the discrimination abilities of females. Together, these data

highlight the power of expansive and bottom-up approaches to reveal acoustic features

important for social discrimination.

Introduction

A wide range of animals rely on acoustic signals for social communication (reviewed in [1,2]).

Receivers decode and use “information” in the vocalizations of signalers to shape their own

behavioral responses. For example, the acoustic content of vocalizations can provide insight

into the presence and type of predators or food sources near to a signaler, as well as informa-

tion about the signaler’s species and identity [3,4]. In addition to variation in the content of

vocal signals, the manner in which a particular vocalization is produced, including variation in

prosodic features such as pitch, tempo, or rhythm, also provide important social and contex-

tual information (reviewed in [5–7]). Indeed, subtle modifications in the performance of a

fixed set of vocalizations by songbirds and humans can provide cues to the arousal, reproduc-

tive state, or social motivation of the signaler [6,8–10]. However, uncovering the acoustic mod-

ifications most important to receivers remains a challenge.

Songbirds like the zebra finch offer an excellent opportunity to investigate acoustic features

for auditory processing and discrimination [1,11,12]. Female zebra finches use the songs of

male zebra finches to identify individuals and to select mates [13–15]. While decades of

research have investigated the production and perception of song, much of the research has

focused on a small subset of acoustic features, largely derived from studies in humans or other

species that rely on acoustic signals for communication [16–18]. While this subset of acoustic

features exhibits variation between individuals, between social contexts, and over develop-

ment, it remains unclear whether they adequately capture the feature space important to

female receivers.

Here, we took an expansive, bottom-up approach to delineate the feature space important

for information processing by receivers. Zebra finches produce song bouts that consist of the

repetition of a single, stereotyped sequence of acoustic elements (“syllables”) called a motif.

Individual males produce the same motifs when singing to females during courtship interac-

tions (“courtship” or “directed” motifs) and when singing alone (“non-courtship” or “undi-

rected” motifs) but song performance differs in a variety of ways across these social contexts,

presumably as a way for males to increase the attractiveness of their songs [19–21]. Consistent

with this notion, females prefer to listen to bouts of courtship song over bouts of non-court-

ship song [22,23]. Because bouts of courtship and non-courtship song consist of motifs with

the same syllables organized in the same sequence, this finding suggests that changes to the

acoustic structure of motifs could have reproductive consequences. While attempts have been

made to discern the acoustic features important for this discrimination and preference, to date

only a few, hand-picked features have been explored (e.g., fundamental frequency and spectral

entropy of syllables: [22–24]). In addition, studies to date often emphasize acoustic features

that rely on comparisons between multiple renditions of motifs [22,23], and the degree to

which females are able to detect context-dependent variation within single renditions of motifs

remains unclear. To gain deeper insight into the acoustic basis of social discrimination, we
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employed operant techniques to examine the degree to which female zebra finches could dif-

ferentiate between individual motifs of courtship and non-courtship songs. We then coupled

novel and powerful feature extraction techniques with machine learning algorithms to eluci-

date the array of features that differentiate single motifs produced across different social con-

texts. Finally, we assessed the biological significance of the resulting algorithms by covarying

algorithm performance with the behavioral performance of females.

Results

Female zebra finches can classify single motifs of courtship or non-

courtship song

Female songbirds have been shown to prefer bouts of courtship song over bouts of non-court-

ship song, and variation in female preferences for courtship songs has been found to be linked

with variation in the stereotypy of vocal performance across motif renditions [22,23]. How-

ever, the degree to which females attend to features present in a single motif rendition and can

use these features for discrimination is unknown. Here, we tested the extent to which females

differentiate between single motifs of courtship and non-courtship song by training female

zebra finches (n = 11) to classify individual motif renditions as courtship or non-courtship

motifs (two-alternative forced choice task; Fig 1A and 1B). We created five stimulus sets, each

consisting of motifs from an individual male zebra finch, and trained and tested females on

one stimulus set at a time. Some females (n = 6) were sequentially tested on up to three differ-

ent male stimulus sets. Each stimulus set contained a matched number of courtship and non-

courtship motifs (n = 23–38 motif exemplars per context per stimulus set) that were similar in

their syllable composition and sequencing (Fig 1B).

Females (n = 9) learned to accurately classify single song motifs from a male as courtship or

non-courtship motifs. Females initially performed at chance levels (50% accuracy) but gradu-

ally improved their ability to correctly classify individual motifs and maintained that level of

performance thereafter (“asymptotic performance”; see Methods; Fig 1C). Across females, per-

formance significantly improved between the first day of training and the first day of asymp-

totic performance (mixed-effects model; F(1,12) = 110.51; p<0.0001; Fig 1D). Reaction times

also changed over the course of training. In particular, at the start of training, females had sim-

ilar reaction times when making correct and incorrect responses. However, after females

reached asymptotic performance, reaction times were significantly longer for incorrect

responses than for correct responses (mixed-effects model; F(1,28) = 4.86; p = 0.0357; Fig 1E).

On average, females reached asymptotic performance within 14.5±2.2 (mean±SEM) days of

training (range: 5–35 days). Females performed an average of 860±63 trials/day (range: 50–

3495 trials) and required an average of 12.7±2.3 thousand trials to reach asymptotic perfor-

mance. After reaching asymptotic performance, females correctly classified 81.9±0.2% (range:

76–93%) of motifs (Fig 1D).

Females that were sequentially tested on stimulus sets from different males showed faster

behavioral improvements on later stimulus sets compared to their first stimulus set. In particu-

lar, females required significantly fewer trials on later test sets to reach asymptotic perfor-

mance (mixed-effects model; F(1,29) = 44.19; p<0.0001; Fig 1G). Whether this difference

indicates that song features important for the song discrimination are shared across males or

demonstrates the effects of practice on task performance is unclear.

Classification ability was not restricted to songs from a single context or the songs of a sin-

gle male. Females performed equally well on courtship and non-courtship stimuli. In particu-

lar, asymptotic performances on courtship (82.2±1.4% correct) and non-courtship stimuli

(80.5±1.4% correct) were not significantly different (mixed-effects model; F(1,20.34) = 2.20;
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Fig 1. Female zebra finches can correctly classify single motifs as courtship or non-courtship motifs. (A) Diagram of the behavioral apparatus. Birds initiate song

playback via the trial perch and classify the stimulus by hopping on perch A or B. Correct responses lead to brief access to food. (B) Examples of single courtship and non-

courtship song motifs. The two notes at the beginning (introductory notes) are the same across all stimuli and provide no information for motif classification. (C)

Performance (% correct) of individual females over the first 25,000 trials of training and testing on each of the five male stimulus sets. Colors indicate the different male

stimulus sets, shades within a color are different females, dashed lines indicate 50% correct. The black line in the top panel depicts one bird who did not achieve asymptotic

performance. (D) Females significantly improved their performance between the first day of training and the first day of asymptotic performance. Colors indicate the

different male stimulus sets females were tested on, points are the mean performance of individual females on the stimulus sets. (E) Reaction times were significantly

higher for incorrect responses after females reached asymptotic performance relative to during training and as compared to correct responses at either time point. (F)

Females performed equally well on classifying both courtship and non-courtship stimuli (data after reaching asymptotic performance). Female performance across

multiple stimulus sets is plotted. (G) Sequential testing of females on different stimulus sets indicates some savings on later stimulus sets. Specifically, females that were

tested sequentially on stimulus sets from more than one male required fewer trials to reach asymptotic performance on later stimulus sets compared to their first stimulus

set. (H) While female performance was generally high, females performed better on some individual motifs than others. Moreover, different females tended to perform

similarly across stimuli. Plotted is the performance of four different females (indicated with different shades of green) on the 60 stimuli from a single male (30 courtship,

30 non-courtship; stimuli sorted based on average performance). The dashed at 76% indicates the average performance across all females and stimuli. Note that for some

stimuli, all females perform worse than average (left side) and for others all females perform better than average (right side).

https://doi.org/10.1371/journal.pcbi.1008820.g001
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p = 0.1535; Fig 1F), suggesting that females did not use a response bias (e.g., hop left) to solve

the task but were able to properly categorize both courtship and non-courtship motifs. Females

also performed above chance regardless of the male stimulus set. We trained different females

with stimulus sets from five different males (Fig 1C). We found that while there was variation

in female performance across the stimulus sets (mixed-effects model; F(4,25.02) = 3.03;

p = 0.0364), overall, females performed significantly above chance on stimuli from all five

males (t-test; p<0.0001 for all stimulus sets; Fig 1D). Moreover, the ability to discriminate

courtship and non-courtship motifs regardless of male song was also evident in females

sequentially tested on stimulus sets from different males: females that were able to discriminate

the courtship and non-courtship motifs of one male were similarly able to discriminate the

motifs of another male.

Not only did females make categorical distinctions between courtship and non-courtship

motifs, but there was substantial similarity among females in their performance on individual

stimuli. For example, as shown in Fig 1H, all females tested on the songs of one male

(“pnk94grn48”) tended to have lower than average performance on certain stimuli and higher

than average performance on others. Overall, females covaried in their performance on train-

ing stimuli, with significant and positive correlations between females for 35 of 38 compari-

sons (see Methods).

Female zebra finches can generalize to novel song renditions

A female bird could use at least two different strategies to categorize courtship and non-court-

ship stimuli. One approach would be to simply memorize the rewarded response for each

motif exemplar in the training set. Alternatively, females could use the acoustic properties that

distinguish the stimuli to construct categories and assign stimuli accordingly. In order to

determine which strategy the females used, we tested the responses of each female to novel

exemplars of a male’s courtship and non-courtship motifs that were not included in the origi-

nal training sets. These ‘probe trials’, administered after females reached asymptotic perfor-

mance, were randomly interspersed between training trials at a low rate of 10–20% and were

rewarded at a fixed rate regardless of which response perch the female chose (see Methods).

Consistent with the notion that females create broad categories to differentiate between

courtship and non-courtship motifs, females were able to accurately categorize the probe sti-

muli. As illustrated in Fig 2A, females correctly classified probes on 77±2% of tests. In particu-

lar, they performed significantly above chance (50%) on probe motifs for all stimulus sets (t-

tests; p<0.001 for each). Moreover, there was no difference in performance between courtship

and non-courtship probes (F(2,21.5) = 0.71; p = 0.4100; Fig 2B), and successful discrimination of

probe stimuli was not different between the first and last day of testing (F(1,20.7) = 3.02;

p = 0.0971; Fig 2C). Furthermore, reaction times for the probes were not significantly different

from the reaction times to training stimuli (F(1,59.2) = 1.96; p = 0.1670; Fig 2D), implying that

the randomly interspersed probe trials were seamlessly integrated into the ongoing task struc-

ture. However, females were slightly but significantly better at classifying the training stimuli

than the probe stimuli (F(1,54.5) = 7.10; p = 0.0101; Fig 2A), suggesting that familiarity with the

stimulus improved accuracy.

Combining highly comparative time-series analyses (HCTSA) with

machine learning algorithms to discriminate between courtship and non-

courtship motifs

Given that females readily distinguish courtship motifs from non-courtship motifs, we next

sought to identify features that would be available to receivers for song discrimination. To this
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end, we took an expansive, bottom-up approach, combining a novel and powerful time-series

analysis toolbox with machine learning algorithms. Individual song motifs are brief (~500 ms)

and complex acoustic sequences that can be summarized using a variety of time-series metrics

(e.g., power spectrum, autocorrelation, etc.). While most studies to date have analyzed a hand-

ful of pre-determined acoustic features to describe and quantify birdsong, the degree to which

these features sufficiently describe song or capture the features important to receivers remains

unclear. Highly comparative time-series analyses (HCTSA) is a novel toolbox that combines

roughly one thousand distinct, interdisciplinary time-series analysis techniques (“operations”)

to compute thousands of individual “features” of time series data [25,26]. For example, one

operation computes the autocorrelation of a time series. The autocorrelation is computed at

multiple different lags, and the output for each lag constitutes a different feature. Features

computed in the HCTSA extraction include various summary statistics (e.g., mean, median,

variance) of time-series operations (e.g., power spectral measures, autocorrelation functions,

information theoretic and entropy measures, physical non-linear time-series analyses). Such

features (e.g., variance of the power spectral density of a time series, 1st-order autocorrelation)

have been used in conjunction with machine learning algorithms to analyze and differentiate

diverse types of time series data, including ethograms in fruit flies and neurophysiological and

acoustic measures of speech in humans [25]. We adopted a similar approach, coupling

HCTSA feature extraction with machine learning, to reveal acoustic features that could be

used by receivers for social discrimination.

Thousands of acoustic features from the courtship and non-courtship motifs of 17 male

zebra finches were extracted using HCTSA (Fig 3). While the HCTSA toolbox can extract

>7800 features for each motif, the precise number of features extracted for each data set

depends on the specifics of the data, and features are filtered out if, for example, they are con-

stant or not appropriate for the data (e.g., methods for summarizing a positive-only distribu-

tion are filtered out if the data set contains negative values). For our dataset, 5525 features were

consistently extracted for each individual courtship motif (33.8±4.2; mean±SEM motifs per

male; range: 14–85 motifs) and non-courtship motif (29.5±4.0 motifs per male; range: 6–68

motifs), and these data were subsequently run through bagged decision trees (BGDT), a type

of multivariate classification algorithm.

We first used BGDTs to classify motifs from each individual bird (n = 17) as courtship or

non-courtship (“individual classifiers”). This gave us 17 different classifiers, one for every

male, that could each accurately categorize the motifs of an individual bird as courtship or

Fig 2. Female zebra finches can generalize classification to novel probe stimuli. (A) Females perform significantly above chance in classifying novel probe stimuli.

However, females are slightly but significantly better at classifying training stimuli, indicating that familiarity improves classification accuracy. There were no significant

differences in performance between courtship and non-courtship probes (B) or between the first and last day of testing on probe stimuli (C). (D) Similarly, reaction times

were not significantly different between training and probe stimuli.

https://doi.org/10.1371/journal.pcbi.1008820.g002
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non-courtship based on the 5525 features extracted using HCTSA. An example of the perfor-

mance accuracy (% correct) of an individual classifier (male ‘prpred’) is shown in Fig 4A. For

this bird’s song, the individual classifier accurately categorized 81.7% of the motifs. Across the

17 individual classifiers the average performance accuracy (see Methods) was 85.1±3.1%, and

classification accuracy of each individual classifier did not significantly correlate with the sam-

ple size of their respective datasets (Panel A in S1 Fig).

While individual classifiers were able to accurately classify the courtship and non-courtship

motifs of the birds they were trained on, they did not generalize well to the courtship and non-

courtship motifs of other birds. For example, the individual classifier for male prpred (shown

in Fig 4A) accurately classified 81.7% of prpred’s motifs but only 48.4±2.5% (range: 35–70%)

of the motifs of other males. This is not surprising given the wide range of acoustic properties

across birds’ songs compared to the minimal variation between the courtship and non-court-

ship motifs from the same bird (Fig 4C). To address this, we next trained a classifier to simulta-

neously classify the songs from all 17 males (“combined classifier”; see Methods). Despite the

diversity of acoustic structures across birds, the combined classifier performed almost as well

as the individual classifiers, correctly categorizing 82.4% of the motifs (Fig 4B). These analyses

indicate that there is consistent information in the acoustic waveforms of song motifs to reli-

ably differentiate between the same sequence of syllables performed in different social

contexts.

“Importance scores” generated by BGDT classifiers reflect the contribution of individual

features to classification. Based on the distributions of importance scores for the combined

classifier (S2 Fig), we chose to examine the 50 features with the highest importance scores (S1

Table). We found that the top 50 features were clustered among a handful of operations, sug-

gesting that these operations may be especially useful in discriminating courtship and non-

courtship motifs (Table 1). The most represented operations included calculations of a power

Fig 3. Analysis pipeline for HCTSA feature extraction followed by classification using machine learning algorithms. We analyzed the acoustic structure of

courtship (top; blue) and non-courtship (bottom; green) motifs produced by male zebra finches. Next to the cartoons of zebra finches are the acoustic waveforms of

four renditions of a motif produced by one male zebra finch. The same sequence of acoustic elements is performed during courtship and non-courtship song. Using

numerous time-series “operations” (e.g., autocorrelation, power spectral density (PSD)), the HCTSA toolbox consistently extracted 5525 “features” from each

individual waveform (an example of a “feature” is the median of the PSD computed using a Fourier transform). We created a matrix of the extracted features for all

courtship (blue) and non-courtship (green) motifs. Plotted in the right column are heatmaps of normalized values (see Methods), with each row representing a single

motif and the color in each column representing the normalized value of an acoustic feature. Darker colors indicate values closer to 1, lighter colors indicate values

closer to 0.

https://doi.org/10.1371/journal.pcbi.1008820.g003
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spectral density (PSD; e.g., using the operation “SP_summaries”; 8 features), time irreversibil-

ity (12 features), and autoregressive model fitting (6 features). Some of these features are out-

puts from operations that have been previously used to quantify the acoustic properties of

song (e.g., PSDs) whereas other prominent operations, such as time irreversibility statistics,

are novel with regard to distinguishing courtship and non-courtship song in zebra finches and

in quantifying acoustic properties of birdsong in general.

To assess the utility of these 50 features for classification, we trained a BGDT classifier to

classify motifs of all birds using only these top 50 features. Such a classifier correctly catego-

rized 81.6% of the motifs, which is comparable to the performance of the classifier using all

5525 features (82.4%). In addition, the predictions generated by the classifier for each individ-

ual training stimulus using these top 50 features correlated with the classifications of females

for those same stimuli (F(1,283) = 26.6; p<0.001). BGDT classifiers that used a random selection

of 50 features never performed as well as the BGDT classifier using the top 50 features (Monte

Carlo simulations: 1000 iterations).

To provide comparison with other features commonly used to characterize birdsong, we

also extracted song features with Sound Analysis Pro (SAP)[27]. We extracted 12 default fea-

tures (mean and variance of mean frequency, of Wiener entropy, of pitch goodness, of fre-

quency modulation, and of amplitude modulation, mean pitch, and mean amplitude) from the

courtship and non-courtship motifs of all 17 males. We then trained a BGDT classifier to clas-

sify courtship and non-courtship motifs using these features, similar to our approach with the

HCTSA combined classifier. Overall, the BGDT using SAP features accurately classified 74.7%

of the motifs, which is lower than the accuracies of HCTSA-based classifiers using all features

(82.4%) or using just the top 50 features (81.6%).

Fig 4. Performance of bagged decision trees (BGDTs) classifying exemplars of courtship and non-courtship motifs. Plotted are confusion matrices that

indicate the actual (y-axis) categories (courtship vs. non-courtship) and predicted categories generated by the BGDTs (x-axis) for (A) an individual classifier

(male ‘prpred’; 81.7% overall accuracy) and (B) the combined classifier (82.4% overall accuracy). Classification accuracy of the individual or combined

classifiers did not significantly correlate with the sample size of the dataset (S1 Fig). (C) Data visualization of courtship and non-courtship motifs using t-

distributed stochastic neighbor embedding (tSNE), a non-linear technique for dimensionality reduction (different symbols within each colored cluster; x is a

courtship motif, o is a non-courtship motif). Shown are example spectrograms of non-courtship motifs from three different birds.

https://doi.org/10.1371/journal.pcbi.1008820.g004
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Discrimination performance of the machine learning algorithm predicts

discrimination performance of female birds

Both females and the combined classifier were able to accurately classify courtship and non-

courtship motifs. In particular, the overall performance of the combined classifier was similar

to the performance of female zebra finches. The combined classifier (Fig 4C) accurately classi-

fied 78% of the motifs from the five stimulus sets used for operant training, while females accu-

rately classified around 82% of the training stimuli once they reached asymptotic performance

(Fig 1D). These data raise the possibility that the algorithm could accurately model and predict

female performance on individual stimuli.

To gain deeper insight into the similarity in performance of the classification algorithm and

female zebra finches, we compared the performance of the algorithm and of females on each

Table 1. Summary of operations for the top 50 features (based on importance scores).

Operation Type Operation Name (as per

HCTSA)

Number of

occurrences (counts)

Description

Time Irreversibility Statistic CO_trev 8 Normalized nonlinear autocorrelation

DK_timerev 4 Time reversal asymmetry statistic

Spectral Operations SP_summaries 8 Power spectral densities (PSDs) computed using different

transformations (welch, fourier, or periodogram) with different window

types (hamming or rectangular)

Multi-level discretization of time

series and local pattern Identification

SB_MotifThree 1 Motifs of 3 pulled from a coarse-graining of time series into discrete

alphabets

SB_BinaryStats 1 Statistics on binary symbolization of time series

SB_TransitionMatrix 2 Transition probabilities between different time series states

SB_TransitionAlphabet 3 Changes to transition probabilities that occur with changes in alphabet

size

Statistics of auto-regressive model

fitting

MF_CompareAR 1 Comparison of model fits of various orders to a time series

MF_arfit 3 Statistics of a fitted AR model (Schwartz’s Bayesian Criterion, Aikake’s

Final Prediction Error, test residuals, confidence intervals, eigen

decomposition)

MF_CompareTest 1 Robustness of goodness of fit. Fits the model on the full time series and

compares how well it predicts time series in different local time-series

segments.

MF_steps_ahead 1 Variation in goodness of model predictions across a range of prediction

lengths

Stationarity Measures SY_spreadRandomLocal 3 Bootstrap-based stationarity measure. Summarizes how mean, standard

deviation, skewness, and kurtosis vary in different local segments of the

time series

SY_localGlobal 1 Comparison of local statistics to global statistics of a time series (mean,

standard deviation, median, interquartile range, skewness, kurtosis)

Permutation Entropy Metrics EN_PermEn 2 Permutation entropy and multiscale entropy of a time series

Pre-processing comparisons PH_walker 2 Simulation of a hypothetical walker moving in response to values of the

time series at each point

PP_iterrate 1 Pre-processing transformation iteratively applied to the time series

AutoMutual Information CO_Histogram 1 Automutual information of the distribution using histograms

CO_AddNoise 1 Changes in the automutual information with the addition of noise

Autocorrelation metrics AC_33, AC_14 2 Autocorrelation of a time series at different lags

Heart Rate Variability MD_hrv_classic 2 Classic heart rate variability statistic that describes non-linear fluctuations

in time intervals

Local Forecasting FC_LoopLocalSimple 1 Simple local forecasting as a function of window length

FC_surprise 1 Quantification of "surprise" for a next data point given recent memory

values.

https://doi.org/10.1371/journal.pcbi.1008820.t001
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individual probe stimulus. Briefly, we asked the combined classifier to categorize each probe

stimulus (these exemplars were not used for network training; performance accuracy on probe

stimuli from these five males was 89.1±3.8%). We then calculated a “confidence score” as the

distance from the decision threshold on each probe stimulus, to reflect how confident and

accurate the classifier was in its prediction (see Methods). With this metric, higher positive val-

ues indicate greater confidence and accuracy, while negative values indicate incorrect classifi-

cation. We then tested the extent to which the confidence score of the combined classifier

predicted performance of female birds. Broadly speaking, probe stimuli that the classifier

incorrectly categorized were also those that females misclassified more often, whereas probe

stimuli that the combined classifier correctly categorized were stimuli that females also accu-

rately categorized (mixed effects model: F(1,155.8) = 15.7; p = 0.0001). Furthermore, the confi-

dence score of the classifier significantly and positively predicted the accuracy of female zebra

finches in categorizing individual probe stimuli as courtship vs. non-courtship motifs (F(1,101)

= 11.34; p = 0.0011; Fig 5). This was also true for the classifier that used only the top 50

HCTSA features for classification (F(1,105.2) = 10.42; p = 0.0017). This suggests that the features

weighted in the classification decisions by the algorithm could be comparable to those used by

females during this form of social decision-making.

Discussion

Identifying the features that provide information about performance and social context is fun-

damental for understanding animal communication. Across a range of species, males adjust

Fig 5. Machine learning algorithm predicts female performance. The confidence score of the combined classifier,

quantified as the distance of the BGDT prediction score from the decision threshold (0.5; higher positive values

indicate greater confidence and accurate classification, negative values indicate incorrect classification), on probe

stimuli significantly predicted the accuracy of female performance on the same stimuli. Colors indicate the male

stimulus set.

https://doi.org/10.1371/journal.pcbi.1008820.g005
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features of vocal performance depending on their audience, and changes in acoustic features

when males direct songs to females are hypothesized to increase the salience or attractiveness

of their songs to females [10,20,28]. Thus, the comparison of courtship and non-courtship

song offers an excellent opportunity to discover acoustic features that can be used by female

receivers to encode male performance and used for social decision-making. Here we first dem-

onstrated that females can discriminate between brief epochs of courtship and non-courtship

song (<1 sec each) that contain similar syllables and syllable sequencing. We then adopted a

bottom-up approach to reveal acoustic features of these short motifs that female songbirds

could use for social discrimination. In particular, we computed thousands of time-series fea-

tures of acoustic waveforms of courtship and non-courtship motifs (HCTSA; [25,26,29]) and

then trained machine learning algorithms to discriminate between these types of motifs. The

algorithm reliably discriminated between courtship and non-courtship motifs, generalized to

novel exemplars, and identified clusters of features that could be used for classification. More-

over, the algorithm reliably predicted the discrimination performance of females.

Spectral features of individual syllables have been reported to vary between courtship and

non-courtship song (reviewed in [21]) and, consistent with this, our algorithm captured differ-

ences in spectral features (e.g., features based on power spectral densities (PSD) using different

transformations). For example, the distribution of the PSD was found to be consistently wider

for non-courtship song than for courtship song (i.e., higher variance (log iqr) of the PSD; S1

Table). This suggests that males produce a narrower range of sounds when directing songs to

females during courtship interactions, despite using the same syllables in courtship and non-

courtship motifs. In addition, while the central tendency of the PSD was not among the top 50

features for discrimination, we observed that the medians of the PSDs were generally higher

for courtship motifs than for non-courtship motifs. This observation is consistent with previ-

ous studies demonstrating that zebra finches produce syllables with flat, harmonic structure at

higher fundamental frequencies during courtship singing [30,31]. Consequently, our approach

reveals patterns of context-dependent song modulation that are consistent with previous

studies.

Importantly, our analyses also revealed novel operations that can be used to differentiate

courtship and non-courtship songs. For example, in addition to spectral operations, time irre-

versibility and entropy operations could be used to classify individual motifs. Time irreversibil-

ity is a fundamental feature of non-linear systems and relates to the degree to which processes

that describe the forward signal differ from those that describe the time-reversed signal

(reversible signals have values closer to zero)[32–34]. The operations in the HCTSA

toolbox are based on the assumption of conservation of entropy, as time irreversibility

increases when a time series is more entropic across time [35–37]. Time irreversibility has

been used to characterize ecological, epidemiological, and engineering time series data

[33,38,39], as well as to classify normal and pathologic patterns of neural and cardiac activity

and of limb movements [40–45]. However, time irreversibility has not been considered as a

metric to describe social behavior, including the structure of communication signals. Inspec-

tion of raw and normalized values revealed that the acoustic waveforms of non-courtship

motifs were consistently more time irreversible than courtship motifs (S1 Table) and suggest

that non-linearities that manifest over time in vocalizations could be an important feature

encoded by sensory processing areas.

In general, time irreversibility measures indicate non-linear (non-Gaussian) properties in

the signal. Non-linearities are apparent in the vocal signals of a range of species and can be

introduced by the vocal periphery [46]. For example, in zebra finches, the isolated syrinx acts

as a non-linear dynamical system and shows rapid transitions between distinct oscillatory

states [47]. On the sensory side, while feature extraction occurs throughout the auditory
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system [17], the degree to which neurons encode non-linear features such as irreversibility is

unclear. However, a number of regions in the auditory and associative pallium, such as the

caudomedial and caudocentral nidopallium (NCM and NCC, respectively) and the caudome-

dial mesopallium (CMM) differentially respond to courtship and non-courtship songs

[22,23,48], and it is possible that neurons in these regions may be sensitive to variation in time

irreversibility or other non-linearities in acoustic signals.

Our findings indicate that there is sufficient information in a single motif for females to

assess differences in social context and to make social decisions. Previous studies have found

that female zebra finches can distinguish between bouts of courtship and non-courtship song

and prefer to listen to courtship song bouts. Courtship and non-courtship song bouts differ in

broad scale patterns of song structure, including the number of motifs and introductory notes

in a bout (reviewed in [21]); for example, whereas courtship song bouts typically contain 5–7

motifs, non-courtship song bouts often consist of only 1–2 motifs [49–52]. Females could dis-

criminate between courtship and non-courtship song bouts using these broad scale features

or, given the repeated nature of song motifs in a bout, discern the stereotypy of vocal perfor-

mance across motifs. However, it had been unclear whether females could use information

available in a single motif to distinguish between courtship and non-courtship songs (see

also [53]). We found that females were able to consistently and accurately classify motifs,

and do so by forming general categories of stimuli and not by memorizing the individual

examples.

Taken together, these data highlight the power of expansive time-series phenotyping to

reveal acoustic features that could be important for social discrimination and underscore the

promise of such approaches for other classification problems. While other studies have also

implemented bottom-up approaches to focal questions in animal communication (e.g.,

[12,54,55]), none have integrated such an expansive extraction of time-series features, and

we highlight the potential of this approach to reveal novel features for deciphering and decod-

ing animal communication signals. This exploratory approach could serve as the basis for

additional experiments using other types of acoustic stimuli, in other species, and across

sexes. Future studies should consider the degree of collinearity between features and

integrate methods to manipulate key aspects of stimuli. Finally, by linking the performance

of computational algorithms to behavior, our analyses suggest the biological plausibility of

these computations and the potential impact of this approach to understanding complex

phenotypes.

Methods

Ethics statement

Procedures adhered to UCSF and McGill University IACUC approved protocols and National

Institutes of Health guidelines for the care and use of animals.

Animals

Zebra finches (>90 days post-hatch) were housed either at the University of California, San

Francisco or McGill University and were kept on a 14:10 light:dark schedule. Females were

housed in operant training boxes within sound isolation chambers (“soundboxes”) and earned

access to food based on the task (see below). Food was provided ad libitum and enrichment

(lettuce, egg food) was provide once per week to females when they were not undergoing

behavioral training and to males used for song recording. All animals were provided with

water ad libitum.
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Behavioral task and training

We trained adult female zebra finches (n = 11) to perform a classification task in a two-alterna-

tive forced-choice paradigm. Birds were house individually in custom-built operant cages (D.

Floyd and K. McGary, University of California at San Francisco) inside soundboxes. The oper-

ant cages interfaced with a TDT RX8 board (Tucker Davis Technologies, Alachua, FL) via cus-

tom-written MATLAB software (K. Nagel and H. McLendon). Each soundbox contained a

single speaker (Bose, Framingham, MA), and playback intensity was calibrated using pure

tones and a calibrated microphone (Brüel and Kjaer, Naerum, Denmark).

During operant training and testing, birds earned access to a food hopper by performing

the task (water was provided ad libitum). To begin a trial, the female hopped onto a central

“song perch” that triggered playback of a single song motif from one male zebra finch (Fig

1A). The female then determined whether the motif was a courtship or non-courtship motif,

and reported her choice by hopping on one of two response perches. If she classified the song

correctly, a feeder located under the song perch was raised for 4–5 s, providing her with tem-

porary access to food. If she classified the song incorrectly, no new trials could be initiated for

a time-out period of 30–90 s. Females were not allowed to respond until motif playback was

complete. If the bird did not respond within 5 s of the end of the motif, the trial was scored as

having no response, and the female could initiate a new trial by hopping again on the song

perch.

There were four stages of training. In the “song stage,” food was freely available, and hop-

ping on the song perch led to playback of a song that was drawn at random from a database of

28 song renditions from four different zebra finch males (“habituation database”). Impor-

tantly, none of these stimuli were used for training and classification trials. In the “food stage,”

birds hopped on the song perch, which triggered playback of a song from the habituation data-

base, or hopped onto one of the two response perches, which raised the feeder for 4–5 s. Food

and song could be procured independently. In the “sequence stage,” birds had to hop first on

the song perch, and then hop on either of the two side perches within 5 s of hopping on the

song perch to receive a food reward. Finally, in the “discrimination stage,” birds began classifi-

cation trials of courtship and non-courtship song. The habituation song set was replaced with

courtship and non-courtship songs from one male, and trials were rewarded (with food) or

punished (with a 30–90 s time-out) depending on which response perch the female chose.

Birds spent one or two days on each of the first three training stages (song, food, and sequence)

and moved to the next stage of training when they performed at least 200 hops per day (for

song stage), or earned at least 200 rewards per day (for food and sequence stages).

If females developed a side bias during the song discrimination phase (i.e., consistently chose

the perch on one side regardless of the stimulus), we altered the reward rate so that the preferred

perch was rewarded at a lower rate (60–85%). Once biases in performance were corrected,

reward rates were equalized over the next one to three days. We excluded data from days on

which the two perches were rewarded at different rates from further analyses (see [56]).

Females could work continually for the duration of their 14-h day and generally received all

of their food by performing this task. Bird weight was monitored closely, and birds received

supplemental food if their weight decreased by more than 15% of their baseline weight. After

birds reached criterion in their discrimination behavior, we moved to a variable-ratio partial

reinforcement schedule to maintain a high response rate and reduce extinction [57–59]. For

this, the overall reward rate for correct trials was lowered to 75–95%. Whether a bird was

rewarded or not on a given trial in which they answered correctly was determined randomly.

Correct trials that did not produce a reward did not produce punishment, but all incorrect tri-

als continued to be punished with a time-out.
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Classification of novel (probe) stimuli

We used probe trials to test the ability of trained females to generalize the learned classification

to new stimuli. Probe stimuli were novel motifs from the same male heard in the training set.

Probe trials were introduced only after birds reached asymptotic performance and were per-

forming stably at the partial reinforcement reward rate. Probe trials were randomly inter-

spersed between training trials at a low rate (10–20% of trials), rewarded at a fixed rate equal to

the overall reward rate (75–95%) regardless of which response perch the female chose, and

never punished. This ensured that no information about the “correct” category of a probe

stimulus was contained in its reward rate and that females could not easily discriminate probe

trials from normal trials on the basis of reward. Probe stimuli were pseudorandomly selected

and all stimuli were played before restarting the stimulus list. Probe trials that did not receive a

response were not rewarded and remained on the stimulus list until they elicited a response.

We considered females that performed above chance for both courtship and non-courtship

probe stimuli to have ‘generalized.’

Song stimuli

We used song bouts from 17 male zebra finches as they sang to females (courtship song) and

as they sang alone (non-courtship song). For songs from 12 of the males, motifs were taken

from a stimulus set used in a previous study testing female preferences for whole bouts of

courtship and non-courtship song [22]. For these 12 males, we extracted all motifs from each

courtship and non-courtship song bout (mean: 32 motifs/context; range 6–85 motifs/context).

For an additional five males, we generated stimuli using the first motif of a song bout. We

prepended the same two introductory notes before the start of the motif for all stimuli. Thus,

for song discrimination, females were limited to the spectral and temporal cues present within

a single motif. From the song bouts of each male, we selected 23–29 courtship motifs and an

equal number of non-courtship motifs for use as training stimuli and an additional 13–24

courtship and non-courtship motifs (an equal number of each) for use as probe stimuli (Fig

4B). The stimulus amplitudes were set to 73 dB RMS. Probe stimuli for each male were pulled

from a random subset of the original recordings. Songs selected for probe stimuli were inter-

spersed between songs selected for training stimuli within a recording session. The overall

power spectra were similar for the courtship and non-courtship stimuli for both training and

probe stimulus sets.

All songs were recorded as previously described [23,60]. Briefly, males were housed individ-

ually in a cage inside a soundbox containing a microphone and a video camera. Sound foam

was placed on the floor of the cage to minimize movement-related noise. Vocalizations were

recorded using a custom written sound-activated recording system or Sound Analysis Pro

(SAP; [27]; 44.1 kHz). To collect courtship song, we placed a cage containing a female next to

the male’s cage in the soundbox and observed the male’s behavior on a video monitor. In 12

cases the female stimulus animal was muted, whereas in 5 cases, non-muted females were used

as stimulus animals. During the performance of courtship song, males orient toward the

female, fluff the body feathers while flattening feathers on top of the head, hop, dance, and

beak wipe. Only songs where males performed at least two of the above courtship components

were considered to be courtship songs. After removing the female, we waited up to 10 minutes

before reintroducing the female in order to collect interleaved bouts of non-courtship song.

We also recorded an additional one hour of non-courtship song before the first and after the

last female presentation on each recording day. Males were recorded in the morning and were

recorded over multiple days to increase the collection of courtship and non-courtship song

bouts for stimulus generation.
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Only motifs without background noise or movement artifacts were used as stimuli. Stimuli

were normalized (mean intensity for all stimuli was 73 dB RMS SPL, calculated over the total

duration of the stimulus) and filtered (Butterworth 2-pole 250 and 8000Hz). Distributions of

total duration, RMS volume, and overall power spectrum were similar between all stimuli, but

subtle differences in syllable structure and timing between courtship and non-courtship song

were preserved.

For songs from three of the five males used for the operant conditioning experiments, we

removed the recorded sound between syllables to reduce noise between syllables, and cosine-

ramped the beginning and end of syllables to prevent harsh onsets and offsets. This did not

affect the performance of females or the machine learning algorithm.

Quantifying learning during operant training

To quantify learning, we first fit a sigmoid curve to a plot of performance accuracy (% correct)

across all days in which females performed at least 20 responses. We then calculated the proba-

bility of performing above the lower 95% confidence interval of the horizontal asymptote.

Using a geometric distribution we determined the number of consecutive times this level

would have to be repeated to appear non-random given the number of days in which females

performed the task. Learning was defined as the first day of a set of consecutive days above the

asymptotic threshold. If the criteria was not reached, birds were considered to have not learned

the task for the stimulus set (n = 2 females), and these data were excluded from the analyses.

For probe trials, we calculated the percent of correct responses on all days of probe testing. We

did not see significant differences between the first and last day of probe trials, which is as

expected because responses to probes were not rewarded or punished.

Feature extraction using HCTSA

The HCTSA toolbox extracts thousands of features from time series data. For the HCTSA fea-

ture extraction, each of the motifs in the datasets was represented as a vector �xki where the sub-

script and superscripts correspond to the ith motif in kth dataset (i.e., bird) respectively. Pj

represents the jth operation and its output is a feature vector Fij
k = Pj(�xki ). Therefore, the

HCTSA toolbox operates over each motif and provides a feature matrix Fij
k (belonging to Rmxn)

where m is the number of motifs within the kth dataset and n is the number of features (Fig 3;

[25,29]). For example, the HCTSA toolbox extracts features from two operations related to time

reversal asymmetry indices (i.e., time irreversibility), CO_trev and DK_trev [26,43,61]. CO_trev

computes a normalized nonlinear autocorrelation of a time series data and is computed as:

CO TREVðtÞ ¼

1

N� t

PN

n¼tþ1

ðxn� t � xnÞ
3

1

N� t

PN

n¼tþ1

ðxn� t � xnÞ
2

� �3=2

where xi is the time series value at the ith time point, τ is a specified time lag, and N is the length

of the time series. In the HCTSA feature computation, this operation is calculated with various

time lags (τ; 1–3), including the first zero-crossing of the autocorrelation function and the first

minimum of the automutual information function. We modified this equation slightly from the

original HCTSA toolbox such that CO_trev and DK_trev values have similar directionality with

regard to irreversibility.

DK_trev, another time reversal asymmetry statistic, computes values at a defined time lag

(τ) and embedding dimension (M) [26]. It first computes a lag embedding matrix A (of
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dimension ((N-τ) x M)) for a given time series (where N is the length of the time series), and

then it performs an element-wise multiplication. In the HCTSA calculation, M = 3 and the

index is computed as:

DK TREVðtÞ ¼ hða1 � a1 � a2 � a2 � a3 � a3Þi

Where <> represents the calculation of the average, and ai is the ith column of the matrix

A. In the HCTSA toolbox, this feature is computed with time lags of τ = 1,2,3,4.

Feature extraction using Sound Analysis Pro (SAP)

We used the “Explore and Score function” within SAP2011 (http://soundanalysispro.com/;

[27]) to compute 12 default features from each motif (n = 17 birds): the mean pitch and mean

amplitude and the mean and variance of the mean frequency, Wiener entropy, pitch goodness,

frequency modulation, and amplitude modulation.

Classifier training

A bagged decision tree (BGDT) classifier was used to classify motifs as belonging to courtship

or non-courtship songs. The BGDT classifier was run using MATLAB (Mathworks, Natick,

MA) on each individual dataset (i.e., a set of courtship and non-courtship motifs from one

bird; “individual classifiers”) as well as on the aggregate dataset in which data from all birds

were combined (“combined classifier”; see Results). Before classification procedures, features

extracted from HCTSA or SAP were normalized using a robust sigmoidal transformation,

which is resistant to outliers [25]. In addition, because songs varied across individual zebra

finches and because we wanted the combined classifier to differentiate between courtship and

non-courtship motifs and not between individual birds, data were also normalized after aggre-

gating the data for all 17 birds. Data were normalized by subtracting the minimum value for

the feature and dividing the data by the maximum value (i.e., data normalized to 0–1).

Bagged decision trees derive their name from a bootstrap algorithm with aggregation. Boot-

strapping is process of re-sampling (with replacement) from a large dataset to create different

subsets of data. In this case, subsets of randomly chosen features from each motif were created

using bootstrapping. A separate decision tree is trained on each randomly bootstrapped sam-

ple, and each decision tree outputs a “vote” as to whether a motif is a non-courtship or court-

ship motif. In the end, the majority vote across all trees is computed for classification. Hence

separate decision trees models are trained on slightly different features and the results are aver-

aged together (aggregation). The aggregation of predictions from sets of decision trees typically

results in a model with less variance (compared to a single decision tree whose output can be

highly variable), less overfitting, and more generalization.

Observations that are not selected for each sample set are called out-of-bag samples, and

these can be used as a “test set” for each model. We performed a 10-fold validation of the

BGDT model to get a reliable assessment of performance. For this, we used the ‘KFold’ option

provided in Matlab’s Classification Tree model. First, we randomized the entire dataset (e.g.,

all motifs for the combined classifier) and then divided each dataset into 10 equal subsamples.

We then trained the classifier on nine of the subsamples (i.e., 90% of the data) and tested the

accuracy of the trained algorithm on the remaining subsample (i.e., “test set”; i.e., 10% of the

data). We repeated this process 10 times such that each of the 10 sets was used once as the test

set. Performance of the algorithm across test sets was computed across the 10 iterations and

reported in the manuscript. Matlab provides built-in functionality of this process through the

crossval and kFoldPredict functions. Repeated iterations of classification lead to small
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variation in cross-validation accuracy, and the median accuracy across 10 iterations is reported

here.

In addition, BGDT classifiers also provide predictor importance scores for each input vari-

able (i.e., each of the features from the HCTSA extraction), which can be used to identify rele-

vant features for categorization. These importance scores were used to identify features that

are most useful for discrimination (Tables 1 and S1 and S2 Fig).

Confidence scores for the classification of probe stimuli were computed and compared

with female performance on these stimuli. The BGDT algorithm outputs a score that ranges

from 0–1, with values<0.5 leading to a prediction of “non-courtship” and values >0.5 as

“courtship”. Thus, the difference of the output from 0.5 reflects the confidence of the algorithm

in its estimate, and we labelled this difference as the “confidence score” of the classifier. We

also factored in whether the classifier was correct or incorrect in its classification such that pos-

itive confidence scores reflect confidence for correct classifications and negative scores reflect

confidence for incorrect classifications. Female performance was the average performance

(percent correct) of females on the individual probe stimuli.

Statistical analysis

In general, we used linear mixed effects models that included female ID as a random variable

to analyze female performance on motif discrimination. All models were conducted using a

restricted maximum likelihood approach with unbounded variance components. To test for

changes in performance over time (percent correct), the model included the day of testing

(first day vs. first day post-asymptote for training, first day vs. last day for probes), male stimu-

lus set, context (courtship vs. non-courtship) and the interactions as independent variables.

We ran separate models for training and probe data sets. To investigate performance differ-

ences between courtship and non-courtship stimuli for training and probe stimuli (i.e., average

percent correct on all tests after asymptote; see Results), we used a model with context (court-

ship vs. non-courtship), male stimulus set, and the interaction as independent variables. For

comparisons of performance on training versus probe stimuli, we used a model with stimulus

type (training vs. probe), male stimulus set, and context (courtship vs. non-courtship) as inde-

pendent variables, and with percent correct or response times as the dependent variable. To

investigate the changes in reaction times over time we used a model with reaction time as the

dependent variable and context (courtship vs. non-courtship), male stimulus set, response

(correct vs. incorrect), time (before vs. after asymptote), and the interactions as independent

variables. We tested for whether distributions were significantly different from chance (0.5)

using t-tests (H0: mean = 0.5). Finally, to analyze similarities in female responses to various

stimulus sets, we calculated the Pearson product-moment correlation between all pairs of

females tested on each male stimulus set in the percent correct on each stimulus. There were

38 pairwise tests for females on training stimuli, and we report the number of significant corre-

lations out of the total number of tests. Significance was set to α = 0.05 for all tests. All statisti-

cal analyses were conducted using JMP Statistical Processing Software (SAS, Cary, NC, USA)

or custom-written Matlab code (Mathworks, Natick, MA).

Supporting information

S1 Fig. Lack of relationship between sample size and accuracy. There was not a significant

relationship between sample size (total number of courtship and non-courtship motifs; n = 17

datasets) and performance of either the individual classifiers (A) or of the combined classifier

on each of the datasets (B; Pearson’s correlation coefficient; p>0.85 for each).
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S2 Fig. Bagged decision tree feature importance. Plot of the normalized feature importance

score for the 250 features with the highest importance scores. The feature importance

decreases sharply and plateaus within the first 50 features.

(TIFF)

S1 Table. Top 50 features based on bagged decision trees of HCTSA features. Features are

sorted by feature name and operation type for organization and structure. Also included is the

direction of difference in average HCTSA score.

(XLSX)
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