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Abstract

Motivation: DNA methylation has been used to identify functional changes at transcriptional

enhancers and other cis-regulatory modules (CRMs) in tumors and other disease tissues. Our R/

Bioconductor package ELMER (Enhancer Linking by Methylation/Expression Relationships) pro-

vides a systematic approach that reconstructs altered gene regulatory networks (GRNs) by combin-

ing enhancer methylation and gene expression data derived from the same sample set.

Results: We present a completely revised version 2 of ELMER that provides numerous new fea-

tures including an optional web-based interface and a new Supervised Analysis mode to use pre-

defined sample groupings. We show that Supervised mode significantly increases statistical power

and identifies additional GRNs and associated Master Regulators, such as SOX11 and KLF5 in

Basal-like breast cancer.

Availability and implementation: ELMER v.2 is available as an R/Bioconductor package at http://bio

conductor.org/packages/ELMER/.

Contact: dchlin11@gmail.com or benjamin.berman@csmc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Motivated by the identification of transcription factor binding sites

(TFBSs), enhancers and other cis-regulatory modules (CRMs) from

DNA methylation data in tumor samples (Berman et al., 2012;

Hovestadt et al., 2014; Johann et al., 2016), and the strong associ-

ation between DNA methylation and target gene expression in

tumors (Aran et al., 2013; Aran and Hellman, 2013), we previously

developed an R/Bioconductor package ELMER (Enhancer Linking

by Methylation/Expression Relationships) to infer regulatory elem-

ent landscapes and GRNs from cancer methylomes (Yao et al.,

2015). ELMER version 1 has been adopted by other groups

(Dhingra et al., 2017; Malta et al., 2018; Mishra and Guda, 2017),

and remains the only publicly available software tool to use matched

DNA methylation and expression profiles to reconstruct TF net-

works (reviewed in Teschendorff and Relton, 2017). Other tools

such as TENET (Rhie, 2016) and RegNetDriver (Dhingra et al.,

2017) have incorporated ELMER principles and code into cancer

network analysis.

We present here a substantially re-written ELMER v. 2 (Fig. 1A)

that implements new features and improvements including:
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(i) support for Infinium HM450 or EPIC arrays and RNA-seq using

the gold-standard MultiAssayExperiment (MAE) data structure, (ii)

integration with our TCGABiolinks package (Colaprico et al., 2015)

for cohort selection and data importing from the NCI Genomic

Data Commons (Grossman et al., 2016), (iii) integration with our

TCGABiolinksGUI tool (Silva et al., 2018) to run ELMER via a

web-based interface, (iv) output of all results in a single interactive

HTML file include all data tables, figures and source code, (v) adop-

tion of software engineering best practices including unit testing and

better exception handling, (vi) annotation of cell-type specific chro-

matin context for resulting genomic elements and (vii) a new

Supervised mode where the user can explicitly define sample groups

for comparison. In this brief Note, we highlight several of these new

features by analyzing TCGA Breast Cancer data to identify molecu-

lar subtype-specific networks. A complete description of new meth-

ods and features, along with computational benchmarking, is

presented in the Supplementary Methods and Notes (Supplementary

Figs S1–S16 and Supplementary Tables S1–S5). ELMER v. 2 has

been publicly available starting with v. 2.2.7 in Bioconductor

Release 3.6 (October 2017). Complete result reports for the BRCA

analyses are available in the Supplementary Material and at http://

bit.ly/ELMER_reports.

2 Feature highlights

2.1 Supervised versus Unsupervised mode
ELMER first identifies Differentially Methylated CpGs (DMCs)

occurring at distal (non-promoter) probes (Step 1), then searches for

downstream gene targets for each DMC (Step 2), and finally identi-

fies Master Regulator TFs based on enriched binding motifs and TF

expression (Step 3), as shown in Supplementary Figure S1. ELMER

v. 1 identified DMCs by comparing methylation in all cancer versus

non-cancer samples, while the subsequent steps used correlation be-

tween methylation and expression in the n% of tumors with the

most extreme methylation values (by default, n¼20). The rationale

was that any particular GRN might only be altered in a subset of

tumors with a specific molecular phenotype, which would not al-

ways be known a priori. While 20% was an arbitrary definition, we

found this to be a useful exploratory strategy given the heterogeneity

of cancer molecular phenotypes.

In ELMER v. 2, we continue to support this original

Unsupervised strategy. However, we have found many practical use

cases where the group structure is known in advance, and a

Supervised search strategy is preferable. This is especially true for

“case–control” experimental designs such as treated versus untreat-

ed samples. The major difference is that in Supervised mode, all

samples must be contained in one of the two comparison groups,

whereas Unsupervised mode still uses only the n% most extreme.

Furthermore, this subset of samples with the most extreme methyla-

tion values changes from one genomic locus to the next.

To compare Supervised versus Unsupervised modes, we used

ELMER v. 2.4.3 to analyze TCGA BRCA (Breast Invasive Carcinoma)

data (Supplementary Figs S2–S15 and Supplementary Tables S2–S3).

When considering enhancer-gene pairing, Supervised mode had greater

statistical power (Fig. 1B), and identified more enhancer-gene pairs

overall when molecular subtypes were pre-defined using the PAM50

molecular subtypes (Ciriello et al., 2015) (Supplementary Fig. S3).

Specifically, Supervised mode not only re-identified most of the results

obtained by Unsupervised mode, but also generated many additional

subtype specific enhancer-gene pairs. This comparison suggests that

while Unsupervised mode can serve as a useful exploratory tool when

sample subtype is unknown a priori, Supervised mode offers greater

statistical power when sample subtype is pre-defined.

While it is very difficult to directly assess the false positive rates

of Supervised versus Unsupervised analyses, we gained insight into
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Fig. 1. (A) ELMER architecture, showing external data sources (gray) and Bioconductor packages (blue). (B) Association of enhancer probe methylation and expression

of the nearby GATA3 gene, showing TCGA breast cancer sample groups used in the Unsupervised versus Supervised analysis modes. In Unsupervised mode, the 20%

of samples with the lowest (blue) and highest (red) methylation levels are compared; in Supervised mode, the predefined Luminal A (blue) and Basal-like (red) tumors

are compared. (C) StateHub chromatin state enrichment analysis for 1076 regulatory elements identified in the Unsupervised analysis. (D) Master Regulator analysis

for the top motif in the Unsupervised analysis, FOXA2. All TFs are ranked by their correlation with methylation changes of distal probes within 250 bp of a FOXA2 bind-

ing motif. Colored dots indicate the top 3 most anti-correlated TFs (FOXA1, GATA3 and ESR1), and all TFs classified in the same family as FOXA2
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the question by comparing ELMER-predicted enhancer-gene links

to pairs identified using PolII looping (ChIA-PET) in Luminal type

MCF7 cells (Li et al., 2012). This analysis showed that while all of

the Luminal-specific Supervised analyses produced pairs that were

enriched in ChIA-PET loops (compared to randomized ELMER

data), the pairs from the Unsupervised analysis were more strongly

enriched based on both Precision and Recall values (Supplementary

Fig. S8). For heterogeneous patient samples composed of multiple

subtypes, it thus appears that Unsupervised and Supervised analyses

can offer complementary merits, with Unsupervised analysis dis-

playing a higher false negative rate, but a lower false positive rate. It

is recommended to run both Supervised and Unsupervised analyses,

as we demonstrated here, to gain maximum insight. This approach

is discussed more below in the context of the Master Regulators

identified.

2.2 Functional interpretation of chromatin states
While ELMER v.1 was limited to analyze only probes overlapping

known enhancers, ELMER v.2 analyzes all distal probes, and thus it

is now important to provide a functional interpretation of the result-

ing regions. We perform a chromatin state enrichment analysis using

states automatically downloaded from the http://StateHub.org data-

base, a publicly-available resource that integrates histone modifica-

tion and other publicly-available epigenomic data for over 1000

different human samples (Coetzee et al., 2018). Enrichment of these

states is calculated against a randomly sampled background set

drawn from the same distal probe set used as input. We used

ELMER v.2 to perform this state enrichment analysis for the BRCA

dataset, yielding insights into the cell-type specificity of the genomic

regions identified (Fig. 1C and Supplementary Fig. S6). The stron-

gest enrichment was for active enhancer and promoter states having

cell-type specificity for MCF7, a Luminal Breast Cancer cell line.

2.3 Motif enrichment analysis and identification of

Master Regulator TFs
The final step of ELMER identifies enriched TF binding motifs with-

in candidate regulatory regions, followed by correlation with TF ex-

pression to identify upstream Master Regulators (Supplementary

Fig. S1). ELMER v. 1 used a hand-curated selection of 145 TF

motifs, which were grouped into binding domain families manually.

We re-implemented these sections in ELMER v. 2 to use publicly

available databases for these steps, making the package more com-

prehensive and easier to update in future versions. ELMER v. 2 uses

771 human binding models from HOCOMOCO v11 (Kulakovskiy

et al., 2018). Each of these is associated with one or more of 1639

transcription factors defined in Lambert et al. (2018), which are

grouped into 82 different binding domain families and 331 sub-

families using the TFClass database (Wingender et al., 2018). We

use the Fisher’s exact test and Benjamini-Hochberg multiple hypoth-

esis correction to compare the frequency of each motif flanking the
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Fig. 2. (A) List of all Master Regulators TFs identified in pairwise Supervised analyses between all PAM50 subtypes (left 15 columns) and an Unsupervised ana-

lysis (the right-most column). Each row is a Master Regulator TF, with expression vs. TFBS methylation FDR values color-coded in the corresponding analysis.

TFs were clustered based on binary values (Jaccard dissimilarity), and four TF clusters were identified. TFs that were ranked among top five most significant hits

were highlighted on the right. (B–D) Scatter plots showing TFBS probe methylation and expression of example TFs from different subtypes: FOXA1 from Luminal

(B), OSR1 from Normal-like (C), and SOX11 from Basal-like (D)

1976 T.C.Silva et al.
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positive CpG probes to a background defined by all distal probes on

the array, plotting the top hits as odds ratios with 95% confidence

intervals (Supplementary Fig. S15).

For each enriched motif, we then calculate a mean DNA methy-

lation value for all probes having a motif instance within 6250 bp,

and correlate this value to each of the 1639 TFs in our database.

This helps to distinguish between different members of the same TF

family, which often have nearly indistinguishable binding motifs.

For instance, in the BRCA analysis, the most highly enriched motif

corresponded to FOXA2, but this Master Regulator (MR) analysis

showed the likely family member to be FOXA1 (Fig. 1D), which has

been extensively validated as a MR in luminal subtypes of breast

cancer (Meyer and Carroll, 2012; Nakshatri and Badve, 2009).

In order to directly compare the results of Supervised and

Unsupervised modes, we performed a Supervised analysis for each

pair of known PAM50 molecular subtypes (Ciriello et al., 2015)

(Fig. 2, Supplementary Table S3). Luminal-specific analyses success-

fully identified almost all of the MR TFs obtained by the

Unsupervised analysis. More importantly, Supervised modes identi-

fied many additional MR TFs. For example, the Basal-specific analy-

ses identified several factors that have been recently been described

as functional in BRCA, including SOX11 (Shepherd et al., 2016)

and KLF5 (Ben-Porath et al., 2008).

3 Conclusions and future directions

ELMER v. 2 has been substantially re-written based on Bioconductor

standards and user needs. The new Supervised mode significantly

improves the comparisons of two homogeneous groups, such as

treated versus untreated, mutant versus wildtype, etc. For heteroge-

neous groups, we showed that Unsupervised and Supervised analyses

can have complementary strength. Showcasing TCGA BRCA data,

we used PAM50 (which was originally defined by unsupervised clus-

tering of tumor expression data) for subtype definitions, but any

multi-omic unsupervised clustering method can used, depending on

what data types are available.

In addition to the new Supervised mode, our improved TF analysis

identified additional known and novel Master Regulators candidates

in TCGA BRCA analyses. ELMER v. 2 has only been tested on data

from Illumina methylation arrays, which cover only 5-15% of all en-

hancer regions based on whole-genome bisulfite sequencing (WGBS).

While ELMER does not currently support WGBS due to lack of suffi-

cient test data, the number of WGBS datasets is quickly growing, and

we expect the same basic ELMER approach will scale well in the fu-

ture to take advantage of this more comprehensive data type.
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