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Abstract

Stimulus discrimination depends on the selectivity and variability of neural responses, as well as 

the size and correlation structure of the responsive population. For direction discrimination in 

visual cortex, only the selectivity of neurons has been well characterized across development. 

Here we show in ferrets that at eye opening, the cortical response to visual stimulation exhibits 

several immaturities, including: a high density of active neurons that display prominent wave-like 

activity, a high degree of variability, and strong noise correlations. Over the next three weeks, the 

population response becomes increasingly sparse, wave-like activity disappears, and variability 

and noise correlations are markedly reduced. Similar changes are observed in identified neuronal 

populations imaged repeatedly over days. Furthermore, experience with a moving stimulus is 

capable of driving a reduction in noise correlations over a matter of hours. These changes in 

variability and correlation contribute significantly to a marked improvement in direction 

discriminability over development.

Introduction

Accurate visual discrimination depends critically on the selective responses of neurons in 

visual cortex for features of the visual scene such as the orientation of edges and their 

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
7Present addresses: Department of Organismal Biology and Anatomy and Department of Neurobiology, University of Chicago, 
Chicago, IL 60637
8Equal contributions: Contributed equally
9These authors jointly directed this work

Author contributions
G.B.S, A.S., M.K. and D.F. designed the study, analyzed the results, and wrote the paper. G.B.S. performed the acute and longitudinal 
GCaMP imaging. Y.M.E. developed the method for longitudinal imaging. S.D.V.H. originally acquired the motion training data and 
prepared this data for the additional analyses reported here.

HHS Public Access
Author manuscript
Nat Neurosci. Author manuscript; available in PMC 2015 August 01.

Published in final edited form as:
Nat Neurosci. 2015 February ; 18(2): 252–261. doi:10.1038/nn.3921.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/authors/editorial_policies/license.html#terms


direction of motion. Other aspects of cortical responses, especially those that influence the 

spatial and temporal patterns of neuronal activity, also play an important role in visual 

discrimination. These include response variability1–3, the number of responsive neurons4–6, 

and the degree of correlation in neuronal response, all of which impact the performance of 

population coding in the mature visual cortex. 7. 8–10. How these four features of the 

population response emerge and reach their mature state during the development of the 

visual cortex remains unclear.

Most is known about the development of stimulus selectivity, and studies in the ferret 

indicate that the time course of emergence and the role of experience differ according to the 

type of selectivity. For example, orientation selectivity is present and organized in a 

columnar fashion around the time of eye opening11, while tuning for direction selectivity 

emerges shortly after eye opening in a process that requires visual experience12. Much less 

is known about the development of the temporal properties of the cortical population 

response, beyond the characterization of single units as “sluggish” and unreliable prior to 

and around the time of eye opening, becoming more crisp and reliable with continued 

experience13, 14. Moreover, how these changes in single unit properties are related to the 

number of responsive neurons and the correlation structure of evoked responses remains 

unclear. However, two recent reports in rodents suggest that both of these properties may 

undergo significant postnatal maturation15, 16.

In this study we used 2-photon in vivo calcium imaging to characterize the spatial and 

temporal response properties of large numbers of single neurons in ferret visual cortex in 

order to assess how these factors change during postnatal development. We found that 

cortical responses at eye opening are characterized by a high density of active neurons that 

display prominent wave-like activity, a high degree of variability, and strong noise 

correlations. Over the next three weeks, the population response becomes increasingly 

sparse, wave-like activity disappears, and variability and noise correlations are markedly 

reduced. The decrease in variability and noise correlations both contribute significantly to 

improvements in the ability of cortical neuronal activity to discriminate motion direction, 

and both the decrease in noise correlations and improvement in direction discriminability 

appear highly sensitive to visual experience. Taken together with previous observations in 

the ferret12, 17, the period following eye opening is distinguished by rapid changes in a 

number of neuronal response properties that are critical for motion discrimination.

Results

Ferrets were imaged in 3 age groups (naive: P29–32, immature: P33–36, and mature: P48–

50, with 0–1, 4–6, and >15 days visual experience, respectively) following intracortical 

injections of AAV-expressing GCaMP3 (Fig. 1a). In animals imaged at eye opening, we 

observed dense and vigorous responses with strong orientation selectivity but weak direction 

selectivity, whereas in older animals, responses were considerably sparser and direction 

selectivity was greatly increased (Fig. 1b,c). Pooling across animals, we observed similar 

results to previous work12, with strong selectivity for orientation and weak selectivity for 

direction in naive animals, both of which increased significantly over the following weeks 

(Fig. 2a, orientation: Kruskal-Wallis test (KW): Χ2(2)=309.45, p<0.001, pairwise Mann-
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Whitney U test (MW): naive: Z(1811)=−12.23, p<0.001; immature: Z(1447)= −15.30, 

p<0.001; mature: Z(992)= −6.99, p<0.001, Fig 2b, direction: KW: Χ2(2)=473.87, p<0.001, 

pairwise MW: naive: Z(1555)= −16.51, p<0.001; immature: Z(1174)= −18.06, p<0.001; 

mature: Z(883)= −7.56, p<0.001). Beyond these expected changes, we found that the trial-

to-trial response variability decreased significantly in immature and mature animals 

compared to naive animals (Fig. 2c, KW: Χ2(2)=190.24, p<0.001; MW: naive vs. immature: 

Z(1555)= −16.51, p<0.001; naive vs. mature: Z(1174)= −18.06, p<0.001). Variability 

rebounded slightly but significantly from immature to mature animals (MW: Z(883)= −7.56, 

p=0.001;). Over this same period, the amplitude of the response evoked by the preferred 

stimulus did not change (Fig. 2d, ΔF/F mean ± SEM: 0.148±0.004, 0.147±0.006, and 

0.138±0.007 for naive, immature, and mature respectively; KW: Χ2(2)=2.99, p=0.22).

To quantify the population sparseness4, we examined the fraction of identified neurons 

within a field of view that exhibited a response to at least one stimulus on a given trial, 

making this measurement resistant to changes in direction selectivity. The fraction of 

responsive cells did not change from naive to immature animals (Fig. 2e; mean ± SEM 

across all trials for all stimuli: 70.2±1.7% vs. 68.7±2.1%; KW across groups: Χ2(2)=103.2, 

p<0.001; MW: naive vs. immature: Z(226)=0.35, p=0.72). However, responses in mature 

animals were considerably sparser (44.4±1.2%; MW: naive vs. mature: Z(238)=9.38, 

p<0.001; immature vs. mature: Z(202)=8.13, p<0.001). These results cannot be explained 

through enhanced direction selectivity, decreased responsivity to preferred stimuli (Fig. 2d), 

a change in the density of labeled neurons (KW: Χ2(2)=2.69, p=0.26), or toxicity related to 

GCaMP expression (correlations between expression time and response density are non-

significant in all groups; naive: r(7)=0.48, p=0.19; immature: r(3)= −0.65, p=0.24; mature: 

r(3)= −0.27, p=0.65), but rather may result from developmental changes in receptive field 

structure13, 18. Notably, the response density in naive animals does not reflect a global non-

specific hyper-excitability, but rather was highly specific for both stimulus orientation and 

direction (Fig. 2f, within group KW across stimuli: naive: Χ2 (7)=227.03, p<0.001; 

immature: Χ2 (7)=107.99, p<0.001; mature: Χ2 (7)=139.40, p<0.001; dominant vs. 

orthogonal: naive: Z(526)=14.12, p<0.001; immature: Z(382)=8.36, p<0.001; mature: 

Z(430)=9.53, p<0.001; dominant vs. opposite: naive: Z(262)=4.09, p<0.001; immature: 

Z(190)=3.31, p<0.001; mature: Z(214)=4.78, p<0.001;).

Wave-like propagating responses in naive animals

In addition to the high density of the responsive neurons, a prominent feature of the visual 

response in young animals was a wave-like propagation of activity during the stimulus 

period (Fig. 3a, Supplemental movie 1). The spatial-temporal pattern of activity was largely 

consistent both within and across stimuli (Fig. 3b,c), and frequently resembled a linear 

traveling wave (Fig. 3d). Both the fraction of trials eliciting a linear wave and the wave 

velocity exhibited age-dependent declines (wave incidence: Fig. 3e, mean ± SEM: naive: 

30.7±5.0%, n=3 FOV from 3 animals; immature: 10.2±4.5%, n=6 FOV from 3 animals; 

mature: 1.6±0.5%, n=4 FOV from 2 animals; KW: Χ2(2)=8.62, p=0.013; wave velocity: Fig. 

3f, naive: 256±24 μm/sec, n=115; immature: 91±11 μm/sec, n=60; mature: 44±7 μm/sec. 

n=6, KW: Χ2(2)=65.07, p<0.001).
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The stimulus-evoked wave-like pattern of activity demonstrated here does not propagate 

continuously over the surface of the cortex but is limited to domains that are tuned to the 

orientation of the stimulus. Consistent with the significant orientation tuning that is present 

at eye opening, the likelihood of eliciting a linear wave within the field of view was highly 

dependent on the orientation of the stimulus (Fig. 3g, Friedman’s test: naive: Χ2(7)=19.05, 

p=0.008; immature: Χ2(7)=16.00, p=0.025; mature: Χ2(7)=21.00, p=0.004). There was also 

a bias towards a directional preference in the likelihood of eliciting a linear wave in all age 

groups (compare preferred to null stimulus in Fig. 3g).

The waves had a strong tendency to travel across the cortex in a consistent direction that was 

distinct for each animal (Fig. 3h–j; for FOVs with minimum 10 traveling waves (5 of 13, 3 

naive and 2 immature; Hodges-Ajne test for non-uniformity: p<0.05 in 4 of 5 cases with ≥30 

waves each; fifth case p=0.49 with 13 waves, statistics in Supplementary table 1). The 

propagation direction varied significantly across animals (circular non-parametric multi-

sample test for equal medians (CM)19: P(4)=35.075, p<0.001), and did not vary as a 

function of the direction of stimulus motion (CM within animal: p>0.14 in all cases, 

statistics in Supplementary table 2).

Noise correlations decrease with age

The presence of highly variable but highly dense responses in naive animals suggests a large 

degree of correlated variability at this age. As shared trial-to-trial variability has strong 

implications for neural coding8, 10, we examined pairwise noise correlations across 

development. Across all neuronal pairs, noise correlations exhibited a significant decline 

with age (mean ± SEM across animals after averaging pairs within each FOV: 0.125±0.023, 

0.020±0.003, 0.010±0.002 for naive, immature, and mature, respectively; KW: Χ2(2)=19.94, 

p<0.001; MW: naive vs. immature: U(15)=72, p<0.001; naive vs. mature: U(16)=81, 

p<0.001; immature vs. mature: U(15)=63, p=0.008).

In mature animals, noise correlations tend to be higher between nearby neurons with similar 

tuning properties20–22 and we examined how this difference emerged during development. 

Noise correlations declined with increasing spatial distance for all groups (Fig. 4a, 

Friedman’s test within group: naive: Χ2(13)=106.55, p<0.001, r(98643)= −0.49, p<0.001; 

immature: Χ2(13)=84.23, p<0.001, r(34222)= −0.19, p<0.001; mature: Χ2(12)=35.79, 

p<0.001, r(7617)= −0.14, p<0.001), and the decrease in correlations with age was evident at 

all distances examined (Mack-Skillings test for age while controlling for distance: 

Χ2(2)=253.76, p<0.001). Noise correlations also decreased with age for all intra-pair tuning 

differences (Fig. 4b, Mack-Skillings test for age while controlling for angular difference: 

Χ2(2)=130.44, p<0.001). We further observed a strong relationship across ages between the 

mean noise correlation and the mean direction selectivity of each neuronal population we 

imaged (Fig. 4c, r(24)= −0.59, p=0.001), indicating that these changes occur over similar 

timescales during development. Notably, neuron pairs with similar tuning and small spatial 

separation exhibited the highest noise correlations in naive animals (Fig. 4d, lower left 

corner), and also showed the largest decreases with age (Fig. 4e,f).

To determine if the strong wave-like activity present in naive animals contributes to high 

noise correlations, we selected stimuli capable of eliciting linear waves and calculated noise 
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correlations using only trials with and without waves. Trials with wave-like activity showed 

significantly higher noise correlations than those without (mean ± SEM across 3 animals: 

wave present, 0.266±0.019, absent, 0.125±0.021; WSR: Z(2195)=39.54, p<0.001, n=2197 

pairs from 3 animals), indicating that wave-like responses are a major, albeit not the only 

source of correlated variability in the naive cortex.

Chronic 2P imaging of emergence of direction selectivity

To track the developmental changes that occur in individual neurons, we performed 

longitudinal imaging of a defined neuronal population over several days following eye 

opening. We successfully imaged 4 ferrets over 2–3 imaging sessions starting around eye 

opening (Fig. 5a, b). In these experiments, we only considered neurons that could be 

conclusively identified across all imaging sessions (73.8±7.8 of cells identified in first 

imaging session, mean ± SEM across 4 animals). In the example shown in Fig. 5c,d, we 

imaged 126 visually-responsive neurons over 3 imaging sessions from P32 to P37. In this 

population, we found an increase in direction selectivity from P32 to P35, which did not 

change further by P37 (Fig. 5d, Friedman’s test: Χ2(2)=14.02, p<0.001; post-hoc WSR: P32 

vs P35: Z(124)= −3.84, p<0.001; P32 vs P37: Z(124)= −3.33, p<0.001; P35 vs P37: Z(124)= 

−0.31, p=0.754). In order to examine the changes underlying this increase in selectivity, we 

compared orientation and direction preferences for identified neurons across imaging 

sessions. We found that orientation preference is largely stable over this period, while 

orientation selectivity increased significantly as would be expected from previous work11 

(Supplemental figures 1 & 2a, c, e; WSR: Z(317)=12.66, p<0.001). Interestingly, direction 

preference exhibited approximately 180° reversals in a subset of neurons (Fig. 5e, example 

neuron shown in 5g middle row). Amongst neurons with a stable preferred direction, 

selectivity increased significantly over imaging sessions (Fig. 5f cyan points; WSR: 

Z(239)=5.61, p<0.001).

Increased direction selectivity could occur through either potentiation of responses to the 

preferred direction, suppression of null responses, or both. In neurons which maintain a 

stable direction preference (see methods, e.g. Fig. 5g, top), the rise in selectivity was due to 

a potentiation of the response to the preferred direction (Fig. 5h, top; mean ΔF/F ±SEM, 

with WSR: initial vs. final: preferred: 0.33±0.02 vs. 0.43±0.02, Z(113)=5.051, p<0.001; 

null: 0.17±0.01 vs. 0.18±0.01, Z(113)=1.066, p=0.286; orthogonal: 0.04±0.01 vs. 

−0.01±0.00, Z(113)=–7.725, p<0.001; n=115), consistent with the initial changes reported 

using pooled acute single-unit recordings23. Interestingly, neurons that exhibited reversals in 

preference (e.g. Fig. 5g, middle) showed both a potentiation of the final preferred response 

and a depression of the initial preferred (final null) (Fig. 5h, middle; mean ΔF/F ±SEM, with 

WSR: initial vs. final: preferred: 0.24±0.03 vs. 0.53±0.06, Z(22)=4.286, p<0.001; null: 

0.34±0.04 vs. 0.27±0.03, Z(22)=–2.171, p=0.030; orthogonal: 0.04±0.01 vs. −0.04±0.01, 

Z(22)=–3.829, p<0.001; n=24), as did cells with an initially uncertain preference which 

developed over time (Fig. 5g & h, bottom; mean ΔF/F ±SEM, with WSR: initial vs. final: 

preferred: 0.26±0.02 vs. 0.37±0.02, Z(96)=5.732, p<0.001; null: 0.21±0.02 vs. 0.17±0.01, 

Z(96)=–2.748, p=0.006; orthogonal: 0.07±0.01 vs. 0.00±0.01, Z(96)=–6.844, p<0.001; 

n=98).
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These changes in single-cell response were accompanied by a significant decline in pairwise 

noise correlation amongst the longitudinally imaged populations (Fig. 6a, Supplementary 

Fig. 3, WSR: Z(18946)=–98.10, p<0.001, n=18948 pairs). We next assessed the relationship 

between the change in selectivity of individual neurons and the structure of the population 

response during the period following eye opening (Fig. 6b). In 3 of 4 longitudinal imaging 

experiments, direction selectivity had increased from the initial to the final imaging session 

(Friedman’s test: p<0.05 for each experiment with 33, 147, and 126 neurons per experiment, 

respectively, statistics in Supplementary table 3), while pairwise noise correlations amongst 

this same population decreased (Friedman’s test: p<0.001 for each experiment, with 489, 

10618, and 7770 pairs per experiment, respectively, statistics in Supplementary table 3). In 

the fourth experiment, only 13 neurons were both identifiable and visually responsive across 

days and neither changes in in direction selectivity nor in noise correlation were significant 

(Friedman’s test: direction selectivity: p=0.58, n=13 cells, correlation: p=0.49, n=69 pairs). 

We also observed a strong decrease in trial-to trial variability over this same period (initial 

vs. final imaging session, WSR: Z(317)=15.48, p<0.001). These results clearly show that 

individual neurons in defined populations become both more selective for direction of 

motion, less variable, and less correlated following eye opening.

Given that noise correlations can reflect the influence of common inputs and recurrent 

connectivity24, 25, it is possible that high noise correlations amongst pairs of neurons early in 

development may predict shared tuning properties later on. To examine this, we compared 

noise correlations during the initial imaging session for neurons with similar preferred 

directions (within 45°), which maintained that similarity (S–S pairs) versus those which 

adopted opposite preferences by the final imaging session (S–O pairs) (Fig. 6c, 

Supplementary Fig. 4). Initial noise correlations were significantly higher for S–S pairs than 

S–O pairs (Fig. 6d, MW: Z(4857)=3.01, p<0.001, n=3098, 1761 for S–S and S–O, 

respectively). Likewise, initial noise correlations were higher amongst pairs with opposite 

preferences that would ultimately adopt similar tuning (O–S pairs) than for pairs which 

would maintain opposing preferred directions (O–O pairs) (Fig. 6e, MW: Z(2448)=8.74, 

p<0.001, n=921, 1529 for O–S and O–O, respectively). Taken together, these results 

indicate that initial pairwise noise correlations may predict future tuning similarity, 

suggesting the presence of functionally interconnected subpopulations destined to adopt 

similar tuning.

Decline in variance improves direction discriminability

Traditional measures of direction selectivity are based on the average response of neurons 

over multiple stimulus trials in order to ‘average out’ the noise that can be present on a 

single trial. However, reliable behavioral discriminations of motion direction are made based 

on neuronal responses to a single stimulus presentation. Thus, in addition to selectivity, the 

variability in single neuron response and correlation in response of the active population 

may impact the capacity of network activity to discriminate different directions of motion.

As would be expected, the direction discriminability (Supplementary Fig. 5a) of single 

neurons improved considerably from the naive to immature groups (Fig. 7a, MW: 

Z(1920)=–18.3, p<0.001). To assess whether this increase resulted primarily from an 

Smith et al. Page 6

Nat Neurosci. Author manuscript; available in PMC 2015 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



increase in the selectivity of individual neurons (Fig. 2b), or a decrease in the variance of 

their response (Fig. 2c), we computing direction discriminability for two hybrid data sets 

(see Methods). Replacing the variance in naive neurons with that of immature neurons 

resulted in much higher direction discriminability than using immature tuning together with 

naive variance (Fig. 7a). This suggests that within a few days after eye opening, the 

reduction of variance, albeit modest, has a stronger impact on improvements in direction 

discriminability than the increase in direction selectivity (MW: Z(1998)=–4.10, p<0.001). 

Between the immature and the mature stage, single neuron discriminability changed little 

(Fig. 7a) despite an increase in direction selectivity during this period (Fig. 2b), which is 

consistent with the slight increase in variability observed over the same period (Fig. 2c).

To determine the degree to which developmental reductions in trial-to-trial variability 

enhance discriminability in individual neurons, we examined direction discriminability in 

longitudinally imaged animals. We find a significant increase in discriminability over days 

(Supplementary Fig. 6a, b; WSR: WSR: Z(201)=–6.56, p<0.001), including within a subset 

of neurons which exhibited reduced selectivity (termed LS, for low selectivity; 

Supplementary Fig. 6c). In LS neurons, the response amplitude to both the preferred and 

null stimuli did not change (Supplementary Fig. 6d WSR: preferred: Z(30)=1.46, p=0.145; 

null: Z(30)=0.79, p=0.432, n=32), in contrast to neurons with increased selectivity (termed 

HS neurons), in which the preferred response was enhanced and the null suppressed 

(Supplementary Fig. 6e; WSR: preferred: Z(110)=5.33, p<0.001; null: Z(110)=–5.20, 

p<0.001 n=112). Notably, although in both groups variability decreased and this decrease 

contributed significantly to a rise in discriminability, the decline in variability and 

corresponding contribution to improved discriminability were both significantly greater in 

cells lacking an increase in selectivity (Supplementary Fig. 6f–i; WSR: variance: LS: 

Z(30)=–3.85, p<0.001, HS: Z(110)=–4.26, p<0.001; MW: LS vs. HS: Z(142)=–2.38, 

p=0.017; effect of variance on discriminability: WSR: LS: Z(30)=4.02, p<0.001, HS: 

Z(110)=4.23, p<0.001; MW: LS vs. HS: Z(142)=3.09, p=0.002). These results show that 

developmental reductions in variability are capable of driving increased discriminability in 

the absence of improved selectivity.

Decrease in noise correlations improves discriminability

While direction discriminability based on the responses of single neurons is enhanced with 

age, behaviorally relevant direction discriminations are likely to depend on the distribution 

of activity in populations of cortical neurons where both trial-to-trial variance and noise 

correlations are contributing factors (Supplementary Fig. 5b). Therefore we sought to assess 

changes in discriminability in groups of neurons over the course of development and the 

contribution of a reduction in noise correlation and variance to these changes. As expected, 

the median discriminability increased with group size (Fig. 7b, c). Consistent with the single 

cell results, discriminability improved considerably from the naive to the immature stage for 

group sizes up to N=20 (Fig. 7b). To disentangle the different factors contributing to this 

improvement, we again constructed hybrid data sets combining aspects of both the naive and 

immature data sets (see Methods). Combining direction selectivity of the naive set with the 

variance and correlation structure of the immature cortex, we obtained levels of 

discriminability close to those reached by the true immature set (Fig. 7b), confirming the 
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single cell result above that early on the increase in direction selectivity is not the prevalent 

factor in strengthening direction discriminability.

To estimate how much of this enhancement is due to a change in noise correlation, rather 

than a decrease in (single cell) variance, we generated a second hybrid set, which shared the 

direction tuning and variance with the naive, but the structure of noise correlations with the 

immature set. For group sizes of four or larger, discriminability was higher in this set 

compared to the true naive set (Fig. 7b, MW: p<0.05, full statistics in Supplementary table 

4) and nearly as high as when destroying all noise correlations in the naive set by shuffling 

(Fig. 7c), with the effects of noise correlations increasing with group size (Fig. 7b,d). For the 

immature and mature sets, differences between the real and trial-shuffled controls were close 

to zero for all group sizes. These results indicate that on a population level, changes in the 

structure of correlations contribute considerably to the improvement in direction 

discrimination early in development.

Motion training decreases noise correlations

Our results showing changes in variance and noise correlation, and their contributions to 

improvements in discriminability raise two important questions: 1) how rapidly can these 

changes in selectivity, variance, and correlation, as well as their contributions to 

discriminability, occur? and 2) are these changes affected by the visual experience of the 

animal?

Previous results have shown that the emergence of direction selectivity is highly sensitive to 

the impact of visual experience shortly after eye opening. Stimulation with a moving (but 

not static) grating for as little as 4–6 hours can induce significant changes in direction 

selectivity17, 26, indicating that the nature of visual stimulation is critical. We therefore 

asked, does exposure to a moving stimulus induce a rapid decrease in variability and noise 

correlations, and if so, do these changes improve discriminability beyond that expected from 

gains in selectivity alone?

Data originally reported in Li et al. (2008)17 from ferrets that underwent 4–6 hours of 

motion training (Fig. 8a) was analyzed for changes in pairwise noise correlations as a 

function of training. In a population of 13 neurons from an example animal shown in Fig. 8b 

and c, we observed a strong increase in direction selectivity as would be expected following 

motion training (Fig. 8b, single FOV, n=13 cells, mean difference ± SEM: +0.29±0.11, 

MW: Z(24)=2.46, p=0.014; for all experiments: n=396 cells, +0.22±0.02, MW: Z(394)=–

11.80, p<0.001). Among this same population, we also observed a significant decrease in 

pairwise noise correlations (Fig. 8c, single FOV: n=14 pairs, mean difference ± SEM: 

−0.10±0.04, MW: Z(26)=–2.37, p=0.018; for all experiments: n=1247 pairs, −0.022±0.004, 

MW: Z(1245)=–4.47, p<0.001). In contrast, flash training with non-moving stimuli, which 

fails to elicit changes in direction selectivity17, not only failed to produce a decrease in noise 

correlations but actually significantly increased noise correlations (change +0.05±0.01, MW: 

Z(253)=4.78, p<0.001, n=255 pairs). Importantly, in control experiments where no training 

stimulus was given, neither direction selectivity nor noise correlations exhibited significant 

changes (change −0.006±0.005; MW: Z(1026)=–1.19, p=0.234, n=1028 pairs). When 

analyzed over all experiments, there was a clear relationship between increasing direction 
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selectivity and decreasing noise correlations (Fig. 8d, e; correlation r(13)=–0.57; p=0.025, 

n=15 experiments (10 motion; 2 flash; 3 control)). These results demonstrate that visual 

experience with moving stimuli drives rapid changes in both selectivity and in noise 

correlation, and demonstrate that these changes depend on the nature of visual experience.

Next, we tested the degree of specificity by which changes in noise correlations are 

interrelated with changes in direction selectivity. Similar to what we observed during normal 

development, the largest training induced decrease in noise correlations occurred in pairs 

with similar tuning properties (similar preferred direction and small cortical distance; Fig. 8f 

and g; compare Fig. 4d–f). However, only the cell pairs with similar tuning before and after 

training (the prevalent case) showed a significant decrease in noise correlation, whereas for 

pairs that changed from same to opposite preferred direction over training, noise correlations 

remained significantly larger (change in correlation: similar: −0.016±0.007, n=314; 

opposite: +0.007±0.009, n=121; MW: Z(433)=–2.35, p=0.018). Similar results were 

obtained when comparing noise correlations from identified populations in longitudinally 

imaged animals, where correlations for cell pairs with similar preferences on the final day 

underwent greater reductions than those for pairs with opposite final day preferences 

(Supplementary Fig. 7; MW: S–S vs. S–O: Z(4857)=–3.55, p<0.001, n=3098, 1761; O–S vs. 

O–O: Z(2448)=–2.60, p=0.009, n=921, 1529). As positive noise correlations are most 

detrimental amongst pairs with similar tuning10, 27, our results suggest the changes in noise 

correlations both over normal development and induced by motion training are not simply a 

general decrease in the strength of all correlations, but may be specifically structured in such 

a way as to improve discriminability.

Motion training significantly improved discriminability in single cell responses along the 

trained orientation (Fig. 8h, mean ± SEM: 0.05±0.19, n=396 cells, MW: Z(394)= −3.28, 

p<0.001). Unlike in our acute data set, we failed to detect a significant change in variance 

(Supplementary Fig. 8, Z(394)=–0.64, p=0.52), and the increase in single cell 

discriminability could be explained by an increase in selectivity (Fig. 8h). However, the 

impact of altered variability became apparent when examining larger populations (Fig. 8i). 

Removing noise correlations through shuffling resulted in improved discriminability, both 

pre- and post-training (Fig. 8j, k, pre-training: p<0.05 for group size >3, post-training: 

p<0.05 for group size > 7; full statistics in Supplementary table 5). However changes in 

variance made a larger contribution to improved discriminability than changes in correlation 

(Fig. 8i, MW: for group size > 2, p<0.05; full statistics in Supplementary table 6). These 

results demonstrate not only that changes in noise correlations and discriminability can 

occur rapidly in as little as hours, but also that these changes are dependent on the nature of 

visual experience.

Discussion

Over a brief period of time following eye opening, the population response in the visual 

cortex of the ferret undergoes a series of changes that dramatically improve stimulus 

discriminability. In addition to previously documented increases in direction selectivity12, 

we find that in the two to three weeks following eye opening, the active population 

undergoes a striking transformation from a highly dense response with complex 
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spatiotemporal wave-like dynamics to a sparse distribution of active neurons. This 

transformation is characterized by a decline in variance and pairwise noise correlations over 

this period, occurring with the same timecourse and in the same neuronal population as the 

rise in direction selectivity. The high noise correlations present at eye opening limit the 

direction discriminability of the neuronal population, which improves significantly with the 

decline in noise correlation. In naive animals, the nature of visual experience appears to play 

a major role in these processes: experience with moving, but not static, stimuli drives both 

an enhancement in direction selectivity and a decrease in noise correlations, resulting in 

improved discrimination.

Dense wave-like responses dominate at eye opening

At eye opening, visual stimulation engages a high percentage of layer 2/3 neurons and the 

calcium responses in these neurons exhibit complex spatiotemporal dynamics that have the 

appearance of propagating waves. Spontaneous wave-like activity appears to be a common 

feature throughout the developing brain including the retina, thalamus, and cortex, and is 

thought to play a role in establishing orderly maps of retinotopy and ocular dominance 

through its ability to synchronize the activity of nearby neurons28–30. This supra-threshold 

activity is distinct from the traveling waves of fast sub-threshold depolarization observed in 

adult visual cortex in response to focal sensory stimulation31, 32.

The wave-like responses and the sparsification with age that we report here are reminiscent 

of changes observed in the spontaneous calcium activity in the developing mouse cortex, 

which is especially prominent prior to eye opening15. However, there are several notable 

differences between the waves we observe and those described previously in mice15, 33–35. 

First, wave-like activity in naive ferrets is stimulus specific and local, rather than 

propagating across the entire cortical surface33, 35. Secondly, the propagation direction 

varies greatly across animals, suggesting the absence of a stereotypic wave pattern34. Lastly, 

the developmental profile of cortical waves appears to differ across species, with waves in 

mice reflecting, at least in part, the transmission of spontaneous retinal wave activity 

through the early visual system33, 34, whereas spontaneous retinal wave activity is thought to 

have diminished by eye opening in the ferret36.

Regardless of whether the wave-like patterns of activity evoked in the developing ferret 

cortex are a reflection of retinal waves or downstream processes, it is clear that these 

patterns of activity reflect an interaction of this input with cortical circuitry37, 38 as they are 

constrained by the architecture of orientation selective domains. It is possible that these 

intracolumnar waves serve as a source of local temporal correlation that promotes map 

refinement and local response coherence.

Response decorrelation with visual experience

In visually naive ferrets, we find that removing noise correlations via shuffling results in 

considerable improvements in direction discriminability. Thus in the developing ferret 

cortex, correlated noise limits the performance of the population. As noise correlations 

decrease with visual experience, these limits are relaxed and the population nears the 

performance achievable by a completely decorrelated network. Moreover, by factoring out 
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any increase in direction selectivity taking place over the considered period, we find that the 

observed early changes in noise correlation and variance alone can lead to strong 

improvements in direction discriminability. The relative contribution of noise correlations 

becomes more apparent when considering larger groups of neurons (n<20). We expect their 

impact to be even more pronounced in larger groups or neurons, but a direct assessment was 

not possible in our data, due to the limited number of stimulus repetitions and the early 

saturation in discriminability encountered with moving grating stimuli.

One concern that may arise is whether the use of anesthesia for these experiments 

undermines the significance of the observations. It is possible that the patterns of cortical 

activity in the awake animal at these ages differ from those encountered in our preparation; 

however, our results show that animals maintained under the same anesthetic regime at 

different ages exhibit profoundly different patterns of activity in response to an identical 

stimulus, which results in major differences in discriminability. How the developmental 

changes in cortical responses observed under these conditions manifest in the awake animal, 

and how these changes contribute to behavioral performance remain important questions for 

future studies.

Potential circuit mechanisms for response maturation

The decline in noise correlations during the period following eye opening represents a major 

operational shift for the developing cortex, from a design that is well suited for maximizing 

the correlations in patterns of spontaneous activity necessary to build circuits, to a design 

that minimizes correlation in order to improve discrimination of activity patterns evoked by 

sensory stimulation. A refinement of feedforward inputs along with an increase in the degree 

of preferential interconnectivity amongst similarly tuned cells39, 40 could account for many 

of our results, including the increases in selectivity and sparseness, as well as the decrease in 

wave-like activity. As noise correlations can reflect common inputs24, 25, such refinement 

could also drive reductions in noise correlations.

An additional role is likely played by the maturation of intracortical inhibition over this 

period of development41, 42, which likewise can promote response selectivity43 and 

sparsification44, dampen wave-like activity, and decrease noise correlations45–49. 

Ultimately, whether the result of a refinement of excitatory connections, a maturation of 

inhibition, or both, population response properties undergo dramatic changes following eye-

opening which have profound effects on stimulus discriminability.

Materials and Methods

All experimental procedures were approved by the Max Planck Florida Institute for 

Neuroscience or the Duke University Institutional Animal Care and Use Committee, and 

were performed in accordance with guidelines from the US National Institutes of Health.

Female ferrets were obtained from Marshall Farms and were housed with a jill on a 16 hour 

light / 8 hour dark cycle. Kits were examined daily to determine the precise date of eye 

opening.
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Viral injections and GCaMP imaging

Microinjections of AAV2/1.hSyn.GCaMP3.WPRE.SV4050(obtained from University of 

Pennsylvania Vector Core) were made into the visual cortex approximately 7–14 days prior 

to imaging (range 6–22 days) using pulled glass pipettes and aseptic surgical technique. 

Anesthesia was induced with ketamine (50 mg/kg) and maintained with isoflurane (1–2%) 

and nitrous oxide (0 – 50% in oxygen). Atropine (0.2 mg/kg) was given at induction to 

reduce bronchial secretions. Animals were maintained at approximately 37 °C with a 

homeothermic heating blanket. Skin and muscle overlying visual cortex were reflected, and 

a small burr hole was made with a hand held drill (Fordom Electric Co.). Approximately 1 

μL of virus was injected over 10 minutes using a Nanoject-II (WPI). Following the injection, 

muscle and skin were sutured closed, and the animal was recovered and returned to its home 

cage.

After allowing time for expression of GCaMP3, animals were anesthetized as before, a 

tracheotomy was performed and an IV catheter was inserted into either the femoral vein or 

the external jugular vein. Animals were mechanically ventilated and heart rate and end-tidal 

CO2 were monitored throughout the experiment. A metal headplate was implanted over the 

injected region and a crainiotomy (~5 mm) was performed. Dura was resected and the brain 

was stabilized with 2% agarose and a coverslip.

For imaging, isoflurane was reduced to 0.5–1% and animals were paralyzed with 

vecuronium bromide (2 mg/kg/hr in lactated ringers, delivered IV). This anesthetic regime 

produced highly stable heart rates of 280–300 bpm for the duration of imaging, with end-

tidal CO2 levels stably maintained between 35–40 mmHg. Phenylephrine (5 %) and 

tropicamide (0.5%) were applied to the eyes to retract the nictitating membrane and dilate 

the pupil, and the cornea was protected with silicon oil.

Visual stimulation and 2-photon imaging

Visual stimuli were delivered on an LCD screen placed approximately 25–30 cm in front of 

the eyes. Stimuli were full field sinusoidal gratings at 100% contrast, at 0.06–0.08 cycles per 

degree, drifting at 4 Hz, presented at one of 8 directions of motion. Stimuli were randomly 

interleaved, and were presented for 5 seconds followed by a five second gray screen. A 5 

second gray screen was used as a “blank” stimulus and was interleaved with grating stimuli. 

Stimuli were produced using either MATLAB (The Mathworks Inc.) and Psychtoolbox51, 52 

or PsychoPy53.

Two-photon imaging was performed with an Ultima IV (Prairie Technologies) driven by a 

Mai-Tai DeepSee (Spectra Physics) at 910 nm. 512 x 512 pixel images were collected at 0.6 

– 1.6 Hz. In a subset of experiments, imaging was performed using a resonant scanner 

(Prairie Technologies). In these experiments, rectangular images (512 pixel by 256 line 

images with a 1:2 aspect ratio) were collected at 60 Hz and downsampled to 15 Hz by 

averaging every 4 successive frames. Prior to analysis, these images were resized to 512 x 

512 via bilinear interpolation along the vertical dimension.
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Data analysis

Data analysis was performed in ImageJ and MATLAB, utilizing MIJ54. In this study, we 

utilized fluorescent calcium sensors to report the activity levels of large populations of 

neurons simultaneously. The relative change in fluorescence of all three calcium sensors 

used in this study (GCaMP3, GCaMP6s, and OGB) has been shown to be proportional to 

firing rate and this relationship is roughly linear over the range of firing rates commonly 

observed in the visual cortex of juvenile ferrets13, 23, 50, 55–58. To extract fluorescence traces 

from image stacks, ROIs were manually drawn around identified neurons, and raw 

fluorescence for each frame was computed as the mean of all pixels in the ROI. 

Fluorescence traces were filtered with a first-order high-pass Butterworth filter with a cut-

off time (TC) of 300 seconds. Similar results were obtained using F/F with F0 taken as the 

last 2 seconds of the ISI immediately preceding stimulus onset. Stimulus evoked responses 

were taken as the average high-pass filtered fluorescence over the full stimulus interval. 

Neurons were considered visually responsive and analyzed further if the response to the 

preferred stimulus (averaged across trials) was both greater than zero and 2 standard 

deviations above the “blank” response.

To determine the density of the population response, a neuron was considered responsive on 

a given trial if its response to any stimulus on that trial was greater than 2 standard 

deviations above the response to a blank stimulus. Only neurons exhibiting at least 1 

response during the imaging session (>90% of neurons) were included in this analysis to 

prevent counting poorly labeled or unhealthy neurons as unresponsive. To examine the 

stimulus-specificity of response density, we aligned all FOVs by the dominant stimulus - 

that which evoked a response in the largest fraction of neurons within the imaging field.

To compute tuning curves and determine the preferred direction (θpref), responses were 

averaged across trials and fit with a 2 peaked Gaussian function, where the peaks were 

constrained to be 180° apart. Poorly fit (correlation between fit and actual responses with 

p>0.05) or unresponsive neurons were excluded from further analysis. Orientation and 

direction selectivity were computed as described17:

(1)

(2)

(3)

(4)

(5)
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Only neurons with significant orientation selectivity (Hotelling’s t2-test with p < 0.05, see 

ref. 17) were included for analysis of direction selectivity.

Pairwise noise correlations were calculated by first attempting to remove all signal 

correlations between neurons. This was achieved by filtering the data with a short cut-off 

time first-order Butterworth filter (TC=5 seconds), then Z-scoring the data individually for 

each stimulus with respect to the mean of that stimulus. The z-scored responses (containing 

all data points acquired during the stimulus presentation) were then concatenated across all 

stimuli and the blank condition. Pairwise noise correlations were then computed using the 

MATLAB corrcoef function. To prevent contamination of the fluorescence signal from 

neighboring neurons, we only considered pairs separated by at least 30μm. Due to the slower 

scanning rate (0.5–0.7 Hz) for the training data, two cells were required to be sampled 

within 100 ms of each other to be included in the pairwise correlation analysis.

Non-parametric statistics were used unless noted, with Kruskal-Wallis (KW) tests followed 

by post-hoc Mann-Whitney U tests (MW). Wilcoxon signed-rank tests (WSR) were used for 

paired comparisons. Data are presented as mean ± SEM.

Analysis of wave-like responses

Only experiments performed with a resonant scanner were used for the analysis of wave-like 

responses. To compute temporally colored images (Fig. 3a,b), images were Z-scored pixel-

wise relative to the mean and standard deviation of images collected during blank simuli. 

Images were then smoothed with a mean filter (2 x 2 pixels in x and y and 2 frames (.133 

sec) in t). Frames were then binned into 0.26 second intervals, averaged, and pseudocolored 

by time. Finally, pseudocolored images were summed across the full stimulus period. For 

calculating the average wave image (Fig 3c), only trials with a significant linear wave (see 

below) were included.

To determine the presence of a linear wave we utilized methods based upon Siegel et al. 

(2012)34. First we found the peak response time (tpeak) for each responsive neuron on a 

given trial. For this analysis, a neuron was considered responsive if its fluorescence was > 3 

standard deviations above the response to a “blank” stimulus for 6 successive frames. 

Response onset was defined as the first time during the response that the fluorescence 

exceeded 1 standard deviation above the blank. Peak response times were then fit with a 

linear traveling wave, where the response time (tfit) is given by

(6)

where v is the velocity of the wave along its propagation direction, and t0 is the time the 

wave crossed the origin of the image coordinate system (positioned at upper left pixel). p is 

the projection of the neuron’s x and y coordinates onto a unit vector describing the waves 

propagation angle:

(7)
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where x and y define a neuron’s position, and θ is the propagation angle of the wave. The 

error of the fit was defined as the SSE of tfit relative to tpeak, and v, θ and t0 were adjusted to 

minimize this error. For each stimulus, we then calculated a goodness-of-fit by shuffling 

tpeak 100 times, re-fitting each shuffled data set, and determining an error. The fraction of 

shuffled responses with errors larger than that of the original data set acts as a waviness 

index, giving an indication of the waviness of the response (for a wave-like event, shuffling 

the response times should produce fits with higher errors). Only responses with waviness 

indices > 0.9 were considered as waves and included for determining velocity and 

propagation direction.

Given the frame rate of our microscope and the size of our FOVs, there is an upper limit to 

the wave velocity which we are able to observe. We estimate that this detection limit is 

faster than 1500 μm/sec. At such a velocity, a wave would traverse our FOV (512 pixels at 

0.77 μm/pixel) in 4 imaging frames, ensuring that the wavefront position could be captured 

by at least three images. This threshold is approximately 6x greater than the mean velocity 

(and 8x greater than the median velocity) that we observed in naive animals (Fig. 3g).

If neurons are distributed in an elongated manner within a FOV, it is possible that our ability 

to detect waves propagating along the short axis could be reduced. If such an aperture effect 

is present in our data, then the ability to detect a wave traveling along the short axis should 

depend on the wave velocity, and fast moving waves should be underrepresented along this 

axis. To determine if such an effect is present in our data, we computed the velocity of 

waves travelling within 22.5° of either the long or short axis of a FOV. Considering only 

naive animals, in which both the frequency and velocity of waves are relatively high, there is 

no significant difference between velocity distributions for the two propagation directions 

(mean ± SEM: 310.0±63.2 vs. 281.2±58.9 μm/sec; n=30 and 17, respectively; MW: 

p=0.816). Furthermore, the asymmetry in wave propagation direction we report is present 

even if we discard from our analysis all waves that moved faster than the short-axis velocity 

detection limit (taken conservatively to be 400 μm/sec, see below), showing that this effect 

cannot be from a bias in detectability.

To demonstrate the robustness of our detection algorithm, we performed a sensitivity 

analysis using simulated wavefronts. We construct FOVs of 200 neurons with positions 

drawn from a 2-D gaussian distribution with covariance similar to our actual data. 

Propagation directions were drawn from a uniform distribution of 0 to 2pi, and velocities 

drawn from a uniform distribution of 2000–3000 μm/sec. To simulate a wave, response 

times were calculated for a subset of cells, with the number of cells participating in each 

wave drawn from a uniform distribution between 5 and 40, with a random selection of cells 

from within the 200 cell FOV for each wave. Detection is more difficult with low numbers 

of participating neurons, and this range covers the lower range observed in naive animals 

(mean ± stdev: 38 ± 28, with quartiles of 16, 31.5, and 53 cells / wave), where we required 

at least 5 active neurons to define a wave. After calculating the response times of 

participating cells, uniform noise (scaled to be 50% of the range of response times on a 

given wave) was added and response times were binned into 1/15 second intervals to match 

the imaging frame rate. Each simulated wave was then fit, and the same detection threshold 

used for the actual data was applied.
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In simulated data, our algorithm readily detected waves travelling between 2000 and 3000 

μm/sec (84.5%, 845/1000, with 5–40 active neurons per wave), suggesting that 1500 μm/sec 

is a conservative estimate of the upper limit for detection.

We also repeated our simulations using highly elliptical FOVs (mean ellipticity >0.84), with 

wave velocities drawn from a normal distribution with mean and standard deviation of 1000 

μm/sec. In these FOVs, our detection algorithm identified 92.7% (395/426) of waves 

travelling 1000–2000 μm/sec, containing on average 23 active neurons per wave, including 

87.8% (101/115) of waves travelling within 22.5° of the short axis. For waves travelling 

under 1000 μm/sec, the detection rate along the short axis increased to 98.1%. Within our 

dataset, FOVs have much lower ellipticity (< 0.61) and the majority of waves have velocity 

much less than 1000 μm/s (average is approximately 250 μm/s). Thus, for realistic ellipticity 

and wave velocity, we are able to detect waves travelling in all directions and that the 

asymmetries in propagation direction which we observe are not due to an inability to detect 

certain wave trajectories.

To determine the contribution of wave-like responses to noise correlations in the naive 

group, we calculated correlations using only trials with linear waves and compared these to 

correlations on trials with the same stimuli, but without waves. Only stimuli which evoked 

at least 2 waves were included in this analysis.

Longitudinal 2-photon calcium imaging

Kits were implanted with a custom-designed headplate at P24–25. The headplate design 

accommodates an 8 mm diameter coverslip (World Precision Instruments) held in place by a 

stainless steel retaining ring (McMaster Carr) that fits securely underneath a lip in the 

headplate, securing the coverslip in place and providing mild pressure (Fig. 5a). The 

headplate also features a protruding tab allowing the headplate to be clamped in a custom 

built animal holder during surgery and imaging. The imaging chamber was designed to 

allow ready and repeated access to the cortex in order to remove any tissue or neo-

membrane (see 59) that can regrow over the imaging field.

During surgery, animals were anesthetized as above, except that animals were intubated and 

ventilated mechanically. Respiration parameters were adjusted to maintain end-tidal CO2 at 

35–40 mmHg. During some portions of the surgery (durotomy and microinjection) animals 

were mildly hyperventilated to ~30 mmHg to reduce edema. The skull overlying visual 

cortex was exposed, and a thin layer of cyanoacrylate (Vetbond, 3M) was applied and 

allowed to dry. The headplate was then positioned in place, and attached to the skull with 

dental cement (C&B Metabond, Parkell Inc.). Once the cement had dried, a second layer of 

black cement (OrthoJet, Lang Dental mixed with powdered pigment: Iron Oxide, Dick Blick 

Art Supply) was applied.

A craniotomy (~5 mm diameter) was performed over visual cortex and dura was carefully 

removed. In two animals (F1317 and F1319) AAV expressing GCaMP3 was injected as 

above. In an additional two experiments (F1473 and F1509) conducted after the release of 

GCaMP6, AAV1.Syn.GCaMP6s.WPRE.SV40 (ref. 58, obtained from University of 

Pennsylvania Vector Core) was injected in place of GCaMP3. Following the injection, warm 
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agarose (2% in ACSF with Baytril (0.45 mg/mL)) was applied to the cortex and a glass 

coverslip was quickly inserted into place. The coverslip was secured with a retaining ring 

coated in silicone polymer (Kwik-Kast, World Precision Instruments) to seal the chamber. 

Following surgery, animals were recovered from anesthesia and returned to their home cage.

Approximately one week following this surgery, animals were returned to the imaging 

room, anesthesia was induced with ketamine, atropine was administered, and anesthesia was 

maintained with isoflurane as above. Animals were intubated and ventilated, and an IV 

catheter was placed in the cephalic vein. In some imaging sessions, it was not possible to 

catheterize the cephalic vein, in these cases an IP catheter was inserted. If necessary, the 

chamber was opened under aseptic conditions, any regrown tissue or neomembrane was 

removed, agarose and a coverslip were reapplied, and the chamber was resealed. This was 

usually necessary after about 1–2 weeks following implantation, and could typically be 

performed without causing apparent damage to the underlying cortex. In approximately half 

of the imaging sessions, the chamber remained optically clear and no tissue regrowth was 

apparent. Immediately prior to imaging, animals were paralyzed with vecuronium bromide 

(0.1 mg/kg/hr in lactated ringers).

2-photon imaging was performed as above and lasted approximately 3 hours, containing 

approximately 45 minutes of visual stimulation. Imaging sessions were kept as short as 

possible in order to minimize the potential for inducing training effects, which can be 

observed in young ferrets following 4–6 hours of continuous exposure to moving stimuli 17. 

The imaged field of view could be identified approximately based on surface blood vessel 

patterns, and 2-photon Z-stacks were taken from the cortical surface through the imaging 

plane to aid alignment. Following imaging, vecuronium was stopped and paralysis was 

antagonized with neostigmine (0.06 mg/kg), delivered with atropine (0.2 mg/kg). Isoflurane 

was discontinued, and animals were removed from the ventilator once spontaneous 

respiration was observed.

Sessions were repeated every 2–3 days until imaging quality degraded or the imaging FOV 

could not be conclusively identified. The imaging area was found on the basis of cortical 

blood vessel patterns, which were highly stable over days and on the local 3D pattern of 

GCaMP expression imaged with 2-photon Z-stacks.

Alignment of images across sessions was performed with an affine transform, and data was 

analyzed as above. Only neurons that were visible and could be conclusively identified 

across all imaging sessions were included in this analysis.

To identify neurons with stable and reversing direction preferences, a bootstrapping analysis 

was performed as in Li, et al. 200817. Neurons with less than a 10% likelihood of reversing 

preference were considered stable, and neurons with >90% likelihood of reversing were 

considered reversing neurons. Neurons in which the initial direction preference was highly 

uncertain17 (uncertainty > 10%) but became certain (uncertainty < 10%) by the final session 

were classified as having initially lacked a preferred direction but developed on over 

sessions. To compare average tuning curves across neurons, curves were aligned based on 

the preferred direction on the final imaging session.
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OGB data and analysis

Data from Li et al.17 was analyzed for changes in noise correlations as described above. 

Briefly, in these experiments animals were imaged shortly following eye opening after bulk-

loading the calcium indicator OGB1 (full methods available in ref 17). Direction tuning 

curves were measured both prior to and following 4–6 hours of motion training. Motion 

training consisted of repeated presentations of a grating drifting in a single orientation (both 

directions of motion were interleaved). An additional group of animals received flash 

training, in which a static grating stimulus was shown. As a control, a third group of animals 

received no training and viewed a static gray screen during the entire training period. To 

ensure continuity within the studied population, we have restricted analysis to neurons that 

could be conclusively identified both before and after motion training and which were 

visually responsive throughout the experiment. We assessed responsiveness by computing 

the signal to noise ratio (SNR): the size of response to the preferred direction relative to size 

of fluctuations during unstimulated periods of each cell. We restrict our analysis to a 

subpopulation of cells for which the distribution of SNR did not change significantly over 

the training period. In this way, we insure that a net change in cell responsiveness did not 

underlie the change in mean correlation in the population.

Discrimination analysis

For a given set of neurons, we defined discriminability to be one minus the normalized 

overlap between the population-response distributions using a Gaussian approximation, 

which captured the observed responses well (Supplemental Figure 9). More concretely, 

consider a set of N neurons with ri,t being the response of N neurons at trial t = 1 …Nt to 

stimulus i = 1…Ns. We computed r̄i, the sample mean response to stimulus i:

(8)

Covariance was assumed to be stimulus-independent and computed over all eight stimuli 

after subtracting stimulus means:

(9)

With the covariance matrix C and mean responses to stimuli i and j, discriminability of 

stimulus pair {i,j} is

with
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(10)

where Ioverlap is the integrated product of the stimulus-dependent response distributions:

(11)

Here we assumed a multivariate Gaussian distribution of cell responses with covariance C. 

Equation 11 reduces to

(12)

Large overlap is a small discriminability. If the stimulus means r̄i are equal, the 

discriminability is 0. No overlap is perfect discriminability (1).

To compute the shuffled discriminability, we computed the covariance matrix from trial-

shuffled responses. Means r̄i are unchanged. The measure of discriminability used here is 

related to the sensitivity index, d′ (ref. 60), the argument of the exponential in Eqn (12). For 

a subset of the data, we computed discriminability using a low-rank approximation of the 

noise covariance matrix, which was obtained from the singular value decomposition (SVD) 

of the noise covariance matrix, and obtained results consistent with the full covariance 

matrix discriminability results.

In longitudinally imaged animals, discriminability was only assessed for neurons in which 

the stimulus orientation evoking the largest response did not change across sessions.

Variance and covariance exchange across datasets

To disentangle the effects of a shift in mean and a shift in variance over development, we 

computed direction discriminability for two hybrid cell sets: the first one was composed by 

using the average activities (direction selectivities) from the naive data set, but taking the 

variances from the immature set; the second one combined the variances of the naive set 

with the averages of the immature set. Since cells from the two data sets were not identical 

(typically from different animals), we assigned cell pairs across sets by matching the rank of 

their average activity, or variance, respectively.

Specifically, we computed discriminability by drawing mean responses from a population of 

cells in naive animals and variances from populations of cells in immature animals. Mean 

responses are rank-matched to variance in the following manner. We drew from the 

available naive (N = 1159 cells) and immature (N = 763 cells) populations equal-sized 

subsets of N = 700 cells. For each cell in the naive population, we computed the rank of the 

mean response to the preferred direction and the rank of the variance. This was repeated for 

the immature population. We then assigned cell pairs across sets to be rank-matched. For 

instance, if a cell in the naive population had mean response with rank m, it was matched 
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with the variance of the cell in the immature population that had mean response with rank m. 

This gives the set of “cells” with naive means and immature variances. For the reverse, 

naive variances with immature means, we took t nth rank variance from the naive population 

and matched it with the mean response corresponding to the nth rank variance in the 

immature population. This method ensures that the statistical relationship between mean 

activity and its variance is preserved.

The method for exchanging variance and covariance among subsets of cells is a two-step 

process: first, to match each group of cells from the naive set to a group of cells from the 

immature set, and second, to determine the cell-by-cell matching between each pair of 

groups. To construct groups of cells, we rank-matched as described above based on the 

highest group-average response and the determinant of the covariance matrix. Within each 

group of N cells, we used rank matching based on the N mean responses to the preferred 

direction and on the N individual-cell variances. Effectively, this reorders the rows and 

columns of the covariance matrix. At this stage, we can compute discriminability with naive 

means and immature variance and covariance. To separate covariance and variance, we 

computed the correlation matrix rij from the (immature) covariance matrix (Cij) using 

immature single-cell variances ( )

(13)

and transformed this back to a covariance matrix using the individual cell variances from the 

naive dataset ( ):

(14)

The matrix  was used to compute discriminability with immature correlation structure and 

naive mean and variance.

In the training dataset, we have the same populations of cells so rank matching was not 

required to match pre- and post-training covariance and means. Variance and covariance 

were separated as described above, by first converting to a correlation matrix and then using 

pre-training single-cell variance to compute the covariance matrix from the correlation 

matrix.

A supplementary methods checklist is available.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Response properties change dramatically following eye-opening
(a) Experimental timeline. GCaMP3.3-expressing AAV was delivered intracortically via 

microinjection and two-photon imaging was performed 7–14 days later. Animals were 

imaged at either P29–32 (naive), P32–36 (immature), or P48–50 (mature). (b) 

Representative responses from animals in each age group. Left column: Baseline image. 

Scale bar = 50 μm. Middle: Single trial response to preferred stimulus, maximum projection 

across stimulus duration. Right: Maximum response across all stimuli and all trials. (c) 

Responses for individual neurons highlighted in b. Left column: Response to 8 directional 

stimuli, averaged across trials. Right column: Tuning curves fit with a 2-peaked Gaussian. 

Horizontal line indicates the mean response to a blank stimulus.
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Figure 2. Stimulus selectivity increases and population response density decreases with age and 
experience
Black: Naive (P29–32, n = 9 animals). Blue: immature (P33–36, n = 5 animals). Red: 

mature (P48–50, n = 5 animals). (a) Orientation selectivity (OSI) increases significantly 

with age (n = 1134, 679, and 315 neurons for naive, immature, and mature, respectively). (b) 

Direction selectivity (DSI) increases significantly with age (n = 924, 633, and 252, for naive, 

immature, and mature, respectively). (c) Response variability (shown as standard deviation 

across trials) to the preferred stimulus decreases with age. (d) Response amplitude to the 

preferred stimulus does not change across age (mean response across trials). (e) The 

response density (fraction of active neurons on a given trial out of all identified neuronal 

ROIs with at least 1 response) declines significantly from the naive and immature groups to 

the mature group. (f) Response density is stimulus specific. In all age groups, the fraction of 

neurons active on a given trial is significantly greater for the dominant stimulus (the 

stimulus producing activity in the largest fraction of neurons, aligned across animals) versus 

a stimulus with opposite direction of motion (null, +180°) or an orthogonal orientation. 
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Dashed line indicates mean fraction of neurons active during blank stimuli. Error bars are 

mean ± SEM across animals.
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Figure 3. Wave-like responses to visual stimulation in young animals
(a) Pseudocolored timecourse of response to single stimulus. Propagating activity appears as 

a gradient from blue to orange. Scale bar = 50 μm; applies to a–d. (b) Single-trial example 

responses. Top row: responses to grating drifting down and to the left, bottom row: 

responses to stimulus of same orientation but opposite direction of motion. (c) Average 

response across all trials with strong wave-like activity. (d) Example response well fit by a 

linear traveling wave (wave index (WI) = 100) (e) Frequency of linear waves declines 

significantly with age (n=3 FOV from 3 animals, 6 FOV from 3 animals, and 4 FOV from 2 

animals for naive, immature, and mature, respectively). Circles indicate individual FOVs, 

Smith et al. Page 27

Nat Neurosci. Author manuscript; available in PMC 2015 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with squares indicating mean ± SEM. (f) Velocity of linear waves declines significantly with 

age (mean ± SEM: naive: 256.8 ± 23.7 μm/sec, n=115 waves; immature: 91.3 ± 10.6 μm/

sec, n=60 waves; mature: 44.2 ± 7.1 μm/sec n=6 waves). Dashed lines indicate geometric 

means. (g) Occurrence of linear waves is stimulus specific. Labels: ‘P’-preferred stimulus. 

‘N’-null stimulus with opposite direction of motion from preferred, ‘B’-blank stimulus. 

Error bars are mean ± SEM across animals. (h–j) Wave direction is largely consistent across 

all stimuli within an animal, but differs across animals. Each histogram shows propagation 

directions for one animal in the naive group. Bar color indicates the stimulus identity.
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Figure 4. Noise correlations decline with age and experience
(a) Pairwise noise correlation as a function of intra-pair spatial distance. There is a 

significant decrease in noise correlation across age groups, as well as a significant decrease 

in noise correlation as a function of distance within each group. (b) Pairwise noise 

correlation as a function of the intra-pair difference in preferred direction. For all age 

groups, noise correlations are significantly higher for pairs with similar orientation 

preferences than for those with orthogonal preferences. Likewise, all age groups exhibited 

significantly higher correlations for pairs with similar as opposed to opposite direction 

preferences. Data in a and b are represented as the mean ± SEM across animals after taking 

the mean across all pairs within an animal. (c) Noise correlations decrease and DSI increases 

with age. Circles: mean ± SEM for each FOV, squares: mean ± SEM across all animals in 

each age group. There is a significant correlation (R = −0.59; p<0.01) between noise 

correlation and DSI across all experiments. (d–f) Maps of pairwise noise correlation as a 

function of intra-pair spatial distance and difference in preferred direction (local average 

based on Gaussian kernel, σx=15 micron, σy=15 deg). Early, noise correlation is large for 

small distances, in particular in pairs with similar preferred direction. In the mature cortex, 

this bias is reduced and noise correlations are small irrespective of distance and tuning 
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difference. Black regions indicate regions with insufficient data (less than 20 pairs per 30 

micron by 22.5 deg region).
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Figure 5. Longitudinal 2P imaging reveals emergence of direction selectivity in identified 
neurons
(a) Schematic of chronically implanted headplate. (b) Timecourse of imaging experiments. 

(c–d) Longitudinal imaging across 5 days following eye opening. (c) Top row: cortical 

blood vessel pattern from day 0 to day 5. Blue box indicates area for functional imaging. 

Bottom row: Imaging field over days. Yellow boxes outline examples of corresponding 

neurons. 126 neurons (63% of day 0) remained visible and visually responsive across all 

imaging sessions. Images were aligned across days with an affine transform. Purple symbols 

indicate example neurons shown in (g). Scale bar: top: 500 μm, bottom: 50 μm. (d) 

Direction selectivity increases in a population of neurons imaged from a single animal over 

5 days (n = 126 neurons). (e) Direction preference is stable in the majority of neurons, 

whereas a subset of cells exhibit 180 degree reversals. Red dashed lines indicate 180 degree 

shift from d0. (f) DSI increases in neurons with stable preferences (blue symbols, mean ± 

sem indicated with red circle) from the initial to final imaging session. Neurons that reverse 

preference (black, mean ± SEM in green) do not show an increase in selectivity. (g and h) 

Example (g) and average (h) tuning curves showing neurons that maintain a preferred 

direction (top), reverse preferred direction (middle), and develop a clear preferred direction 

(bottom). Purple symbols in c, & e–g indicate corresponding neurons. For ease of 

comparison, tuning curves were shifted to align preferred stimuli on day 5.
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Figure 6. Correlation between decrease in noise correlation and direction selectivity
(a) Pairwise noise correlations decrease significantly from the initial to the final imaging 

session. Red dot indicates mean across all pairs and animals. (b) Relationship between 

change in pairwise noise correlation and direction selectivity (relative to day 0) for 4 

animals in which chronic imaging was performed. In 3 of 4 cases, noise correlations 

exhibited a significant decrease by the final imaging session, whereas direction selectivity 

significantly increased (n = 33, 147, and 126 neurons per experiment). In one experiment 

(F1319, shown in orange, n=13 neurons) neither changes in DSI nor correlations were 

significant. Data are shown as mean ± SEM across all neurons. Averaging across all neurons 

and pairs on the final imaging session (black line) reveals a significant decrease in noise 

correlation and a significant rise in direction selectivity. (c) Cartoon depicting possible 

relationships in pairwise angular preference across imaging sessions. (d) Initial pairwise 

noise correlations are higher for pairs that will maintain similar preferences (S-S pairs) than 

those that adopt opposite preferences (S-O pairs). (e) Initial correlations are higher for pairs 

with opposite preferences if that pair will adopt matching preferred directions on the final 

imaging session (O-S) than for pairs that maintain opposite preferences (O-O).
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Figure 7. Changes in variance and correlation structure contribute to increased discriminability 
over development
(a) Single-cell direction discriminability increases significantly between the naive and 

immature ages (black vs. dark blue). Combining immature levels of variance with naive 

levels of selectivity (gray) results in near immature levels of discriminability, whereas the 

gain in selectivity alone between the naive and immature ages (light blue) has a much 

smaller effect on discriminability (gray vs. blue). (b) Effects of variance and structure of 

noise correlations on discriminability by groups of cells. The overall change in variance and 

correlation structure increases discriminability substantially between the naive and immature 

ages. A considerable fraction (increasing with group size) is due to a change in the structure 

of noise correlations alone (black dashed line). (c) Effect of eliminating correlations by trial 

shuffling on discriminability by groups of cells. (d) Differences between solid and dashed 

lines from c. Shaded region shows ±1 SEM.
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Figure 8. Motion training induces decrease in noise correlations and increase in direction 
selectivity
(a) Experimental timeline. Shortly after eye opening animals received 4–6 hours of motion 

training. (b) Example of (black point in d) direction selectivity increase following motion 

training. (c) Example of decrease in pairwise noise correlations following motion training. 

(d) Following motion training, noise correlations decrease and direction selectivity 

increases, while direction selectivity did not change and noise correlations increased 

following flash training. In control (no training) animals, noise correlations and direction 

selectivity remained unchanged. (e) Change in noise correlation as a function of training 

type, pooled across all animals. (f) Before training, noise correlation is highest in pairs for 

which the difference in preferred direction and cortical distance is small (map generated as 

in Fig. 4d–f using a Gaussian smoothing kernel, σx=15 micron, σy=15 deg). (g) The 

correlation in this group is reduced after training, primarily due to the subset of pairs 

maintaining a small difference in preferred direction, as opposed to those preferring opposite 

directions after training. (h–k): Discriminability measures in training data set. (h) 

Discriminability of the trained orientation increases with training. Switching the pre- and 
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post-training variances (light green) does not change discriminability. (i) In larger groups of 

cells, the change in variance, but not noise correlation, had a detectable effect on 

discriminability. (j) Effect of eliminating noise correlations by trial shuffling on 

discriminability in training dataset. (k) Difference between solid and dashed lines from j. 
Shaded regions show ±1 SEM.

Smith et al. Page 35

Nat Neurosci. Author manuscript; available in PMC 2015 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


