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Abstract: Copper oxide nanoparticles (nano-CuO) are recognized as an emerging pollutant. Arbuscu-
lar mycorrhizal fungi (AMF) can mitigate the adverse impacts of various pollutants on host plants.
However, AMF’s mechanism for alleviating nano-CuO phytotoxicity remains unclear. The goal of
this study was to evaluate how AMF inoculations affect the physiological features of Canna indica
seedlings exposed to nano-CuO stress. Compared with the non-AMF inoculated treatment, AMF
inoculations noticeably improved plant biomass, mycorrhizal colonization, leaf chlorophyll con-
tents, and the photosynthetic parameters of C. indica under nano-CuO treatments. Moreover, AMF
inoculation was able to significantly mitigate nano-CuO stress by enhancing antioxidant enzyme
activities and decreasing ROS levels in the leaves and roots of C. indica, thus increasing the expression
of genes involved in the antioxidant response. In addition, AMF inoculation reduced the level of
Cu in seedlings and was associated with an increased expression of Cu transport genes and metal-
lothionein genes. Furthermore, AMF inoculations increased the expression levels of organic acid
metabolism-associated genes while facilitating organic acid secretion, thus reducing the accumulation
of Cu. The data demonstrate that AMF–plant symbiosis is a feasible biocontrol approach to remediate
nano-CuO pollution.

Keywords: arbuscular mycorrhizal fungi; nano-CuO; antioxidant; stress-response gene

1. Introduction

Engineering nanomaterials (ENMs) are generally defined as ultra-fine particles with
at least one dimension measuring less than 100 nm. They primarily consist of metals, metal
oxides, and metalloids, which largely contain carbon and other elements. Nano-CuO is an
indispensable engineering nanomaterial because of its prominent physical and chemical
properties. Nano-CuO production has increased rapidly worldwide and has applications in
the agricultural industries, next-generation medicine, plastics, textiles and paints, energies,
fuel additives, the chemical and food industries, environmental remediation, electronics
and optics, cosmetics, coatings, and consumer products [1]. With the increasing demand for
nano-CuO, global production is estimated to be 1600 tons by 2025, of which approximately
25% will be released into the soil, air, and water systems [2]. Nanoparticle increase within
groundwater and soil is likely to cause nanoparticles to accumulate within the tissues
of plants. Moreover, nano-CuO has high toxicity to humans, plants, and other aquatic
creatures (e.g., crustaceans, fish, algae, and mussels) [3–5].

Existing studies have reported the phytotoxicity of nano-CuO. For instance, nano-CuO
significantly inhibited Coriandrum sativum seed germination [6]. Stampoulis et al. [7] found
that nano-CuO stress reduced Cucurbita pepo biomass by 90%. In addition, nano-CuO
stress reduced the length of Brassica juncea’s lateral and main roots [8]. According to
Deng et al. [9], nano-CuO may damage and reduce the root cap, meristematic zone, and
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root tip development in Allium cepa. Nano-CuO exhibited stronger adsorption into the soil
as compared with Cu ions. Nano-CuO may cause toxicity either by releasing Cu ions from
particles or through direct interactions with plant tissues. As indicated by Shi et al. [10],
nano-CuO can be absorbed and accumulate in plant cells. The accumulation of nano-
CuO disrupts the integrity of cellular and subcellular organelles, ultimately changing
the plant’s physiological processes. In addition, through nano-CuO accumulation, the
metabolic activity and production of reactive oxygen species (ROS) in plant tissues can be
impacted, thus damaging DNA [11]. When the concentration of nano-CuO is high, plant
physiological, biochemical, and photosynthetic performance is impaired, resulting in cell
disorder [10]. Metal nanoparticles can cause phytotoxicity by dissolving and releasing high
concentrations of essential ions or producing excess ROS. However, the exact mechanisms
by which plants defend against nano-CuO toxicity are not fully understood.

Arbuscular mycorrhizal fungi (AMF) are obligate biotrophs that are widespread in the
microbial population of the rhizosphere. They can establish sustained mutualist symbioses
with 80% of vascular plant species and have a major impact on the structure and nutritional
dynamics of plant roots [12]. AMF can help host plants survive by improving nutrient
availability, notably phosphorus (P), increasing plant biomass [13]. Moreover, they also
improve the physicochemical properties of soil and act as filters to block xenobiotics
within their mycelium. As a result, AMF operate as physical barriers and sheaths for
mycorrhizal plants, immobilizing heavy metals in plant roots. In addition to the generally
recognized effects on metal immobilization within the cell wall of the intraradical and
extraradical mycelium or fungal secreted compounds, including glomalin [14], it has been
suggested that AMF re-regulate the expression of genes involved in plant metal transport
processes [15]. Other studies also found that AMF can significantly alter the expression of
P and arsenite transporters in plants [13]. For metal nanoparticles, previous studies found
that AMF can reduce the phytotoxicity of Ag nanoparticles and zinc oxide nanoparticles by
reducing metal bioavailability or the improvement of glomalin secretion, which reduces
metal accumulation in plants [16,17]. However, it is still unclear how AMF influences plant
gene expression to mediate the phytotoxicity of nanoparticles. Moreover, the mechanism
governing AMF-mediated tolerance based on nano-CuO stress remains to be elucidated.

Canna indica L. and AMF can create a stable symbiotic connection, with AMF colo-
nization reaching up to 98% [18]. The use of AMF–C. indica symbiosis in the regeneration
of polluted soil in mining zones demonstrated that AMF inoculation might substantially
enhance heavy metal absorption from the contaminated soil [19]. This species is considered
the most valuable plant for metal phytoremediation technology in urbanized areas. How-
ever, there is no research on the use of AMF–C. indica symbiosis to reduce copper oxide
nanoparticle toxicity. Thus, the present study aimed to investigate the roles of AMF in
influencing the responses of C. indica to different concentrations of nano-CuO. The biomass,
photosynthetic parameters, antioxidant enzyme activity, and organic acids of C. indica
seedlings were measured. Genes potentially involved in the antioxidant response, Cu
transport, metallothionein, and organic acid metabolism of C. indica roots were studied.
We hypothesized that: (1) AMF facilitate C. indica seedling establishment under nano-CuO
stress; (2) AMF induce a high-efficiency ROS scavenging mechanism that protects C. indica
seedlings exposed to nano-CuO stress from oxidative damage; (3) AMF facilitate organic
acid generation and secretion to chelate nano-CuO. Our findings provide a theoretical basis
that furthers our understanding of AMF regarding improving the phytoremediation of
ENM-contaminated soils.

2. Materials and Methods
2.1. Preparation of Plant, Soil, and Fungal Materials

Annual tubers of C. indica L. were purchased at Xiaoshan flower and tree market in
Zhejiang Province, China. The Institute of Root Biology of Changjiang University provided
Funneliformis mosseae. The AMF inoculum received a 5-month spread on Trifolium repens,
grown in high-temperature sterilized sandy soil. Meanwhile, the non-AMF inoculum was
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prepared with the same sterilized substrate, and host plants were cultured under the same
conditions. The prepared AMF inoculum, including extraradical hyphae and cultivation
substrates containing spores (nearly 200 g−1), was air-dried. The planting soil (mainly
humus), which was purchased in the market, was passed through a 4 mm mesh sieve and,
before use, underwent 2 h of sterilization at a temperature of 121 ◦C. The soil properties
were as follows: pH 6.86, organic matter 25.0%, and the available N, P, and K were 166.20,
50.34, and 213.74 mg·kg−1, respectively. Nano-CuO (copper II oxide) was purchased from
Sigma–Aldrich, USA. In this paper, we used transmission electron microscopy (TEM)
(JEM-2100F, Joint-stock Company, Japan) to characterize the nano-CuO properties and the
particle size distribution. We carried out elemental analysis using energy-dispersive X-ray
spectroscopy (TEM–EDX) using an energy-dispersive spectrometer EDAX (XFlash 5030T).
The electron microscope observation showed that the sample was composed of spherical
particles with an average diameter of less than 50 nm (Figure 1).
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Figure 1. Characterization of nano-CuO: (a) TEM micrograph of nano-CuO; (b) spectrogram of the
selected area.

2.2. Growth Conditions and Experimental Design

In late February 2021, the surfaces of the tubers were sterilized with 75% (v/v) ethanol
for 30 s, rinsed several times with sterile distilled water, and then planted into polystyrene
pots (8 × 8 × 16 cm) with 1 kg of a sterile substrate. In addition, half of the pots were
inoculated with AMF inoculum and the other half with non-AMF inoculum, using 20 g of
inoculum in each pot. In the culture media, AMF and non-AMF inoculum were uniformly
distributed. The experimental pots were placed in a greenhouse at an average temperature
of 25 ± 2 ◦C (day/night), with a relative humidity of 60−80%. The photon flux density
was in the range 1200 ± 200 mol m−2 s−2 with a 14/10 h (light/night) photoperiod.

A two-factorial design with nano-CuO and AMF inoculation as factors was performed.
Three levels of nano-CuO (0, 300, and 600 mg kg−1 of sterilized soil) were added, and
all the above were either AMF inoculated (+AMF) or non-AM fungal inocula (−AMF).
Each treatment was repeated 10 times. After 60 days of C. indica planting, nano-CuO were
dispersed in water with a sonicator (600 W, 20 min) and then dripped onto the soil surface
to ensure that the particles were fully mixed into the soil.

The pots were irrigated weekly with 20 mL of half-strength Hoagland’s nutrient
solution. All C. indica plants were harvested after 100 days of growth. We found a remark-
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able difference in terms of plant growth between treatments. Root and leaf samples were
stored at 4 ◦C or −80 ◦C for the physiological index determination and gene expression
analysis, respectively.

2.3. Leaf Chlorophyll Content and Photosynthetic Parameters

According to the method of Porra et al. [20], the top leaves were selected for the
chlorophyll content measurement (chlorophyll a, b, and total chlorophyll). With the use of
the fluctuating natural outdoor light, the measurements of transpiration rate (Tr), stomatal
conductance (Gs), intercellular CO2 concentration (Ci), and net photosynthetic rate (Pn)
were performed from 9:30 am to 10:30 am. The photosynthetic parameters were monitored
in LI-6400 (Li-COR, Lincoln, NE, USA) at 10 s intervals.

2.4. Morphological Parameters

C. indica plants were harvested on the 100th day of the experiment, each plant was
rinsed with deionized water, and the stem and root length were determined. Thereafter,
the samples were divided into aboveground parts (shoot) and underground parts (root).
The biomass was weighed after being oven-dried at 60 ◦C for 48 h.

2.5. AM Colonization Rate

Roots were cut into 1 cm pieces. Then, the cut roots were made transparent with
10% KOH in a 90 ◦C water bath for 20 min. Subsequently, the sample underwent 5 min
acidification treatment with 2% HCl and then stained using 0.01% fuchsin acid [21]. The my-
corrhizal colonization rate was determined using the gridline intercept approach, according
to the method of Giovannetti and Mosse [22].

2.6. Cu and P Content Analysis

We ground the dried plant tissue samples into powders and passed them through
a 60 mesh sieve. A total of 0.2 g of the sample was subsequently digested with an acid
mixture (HNO3/HClO4 = 3:1). The Cu concentration of the plant sample was analyzed
using ICP-OES (Agilent 5800). The total P content was evaluated using molybdenum-blue
colorimetry after the sample was digested with a combination of H2SO4 and H2O2 [23].

2.7. Antioxidant Enzyme, Lipid Peroxidation (MDA), and Reactive Oxygen Species (ROS)

Fresh leaf and root tissues (0.4–0.5 g) were homogenized in a buffer solution (50 mM
potassium phosphate, pH 7.8) under pre-chilled conditions to assess the antioxidant en-
zyme activity. The homogenate was centrifuged at 10,000× g for 20 min at 4 ◦C, and the
supernatant was utilized for further investigation. According to Li et al. [24], the overall su-
peroxide dismutase (SOD, EC 1.15.1.1) activity was determined by measuring the enzyme’s
capability to inhibit the photochemical reduction of nitroblue tetrazolium. The peroxidase
(POD, EC 1.11.1.7) activity was determined based on guaiacol oxidation [25], and the
catalase (CAT, EC 1.11.1.6) activity was measured following the degradation of H2O2 for
60 s at 240 nm [26]. The glutathione reductase (GR, EC 1.6.4.2) activity was estimated by
Jiang and Zhang [27]. Malonaldehyde (MDA) content was determined by Naeem et al. [28].
Hydrogen peroxide (H2O2) contents were measured at 390 nm, and a standard curve was
used to calculate the H2O2 level according to Velikova et al. [29]. Superoxide radicals (O2

−)
were determined according to Jiang and Zhang’s [27] method. SOD, POD, CAT, GR, MDA,
O2

−, and H2O2 analyses were conducted in three biological replicates.

2.8. Collection and Measurement of Organic Acids Released from Roots

The approach of Ding et al. [30] and Yang et al. [31] was used to enhance the extraction
and determination of root exudates. After washing the dirt from the plant roots with tap
water, the roots were rinsed 3–4 times with distilled water until they were clean. The roots
were then steeped in a thymol solution with a concentration of 5 mg L−1 for 5 min. After
that, the roots were transferred into a collecting device containing 500 mL of distilled water
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and coated in tin foil to protect them from light. Root exudates were gathered over 6 h of
natural light ventilation. After the root system was removed, the collected solution was
filtered through a 0.45 m filter to remove the abscission from the root system. Rotation
at 50 ◦C evaporated the collected solution, which was then concentrated to 10 mL. The
concentrated solution was filtered through a 0.45 m membrane and cryo-preserved at
−20 ◦C for later use. The concentration of organic acids (oxalic acid, malic acid, and citric
acid) was measured using HPLC with an ion-exclusion column (Shodex Rspak Kc811,
300 mm × 8 mm) equipped with a guard column (50 mm × 8 mm) at a wavelength of
210 nm.

2.9. Gene Expression Analysis

We performed the total RNA extraction using 0.1 g of fresh roots and leaves from
C. indica seedlings under different treatments with the plant RNA extraction tool (Sangon
Biotech, Shanghai, China) in strict accordance with the manufacturer’s instructions. cDNA
was synthesized with the PrimerScriptTM RT reagent Kit (Takara, Kyoto, Japan). The real-
time quantitative PCR was conducted using three biological and two technical replicates
with the SYBR PremixEx Taq (Takara) in a Bio-Rad CFX96 real-time PCR system (Bio-Rad,
Hercules, CA, United States). The conditions of the qRT-PCR included 30 s pre-denaturation
at a temperature of 95 ◦C, followed by a 5 s 40 cycle denaturation at a temperature of 95 ◦C
and a 30 s annealing and extension process at a temperature of 58 ◦C, in accordance
with Li et al. [32]. Premier 5.0 was used to design the primers for RT-PCR amplification
(Table S1). The 18S rRNA gene was selected as an internal control gene to perform relative
qRT-PCR. We obtained the relative expression level using the 2−∆∆Ct method, according to
Livak and Schmittgen [33].

2.10. Statistical Analysis

Plots were generated in excel and R language with the ggplot2 package. We carried
out significant experiments using the Tukey–Kramer test using the SPSS 20.0 software with
a significance level of 0.05.

3. Results
3.1. Plant Growth, AM Colonization, and Cu Content of Seedlings

With the elevation of nano-CuO levels within the soil, the C. indica root and shoot dry
biomass and length exhibited remarkable reductions (Figure 2, Table 1). In the absence of
nano-CuO in the soil media, AMF-inoculated plants exhibited higher biomass and length
values than non-AMF inoculated plants, including root length, shoot dry mass, root dry
mass, and shoot length. Under 300 mg kg−1 nano-CuO stress, when seedlings were treated
with AMF, the total dry mass, root dry mass, shoot dry mass, shoot length, and root length
were all significantly increased by 12.3%, 23.3%, 14.6%, 11.9%, and 10.1%, respectively, in
contrast with the non-AMF treatment plants (Table 1). In contrast, AMF-inoculated plants
exposed to 600 mg kg−1 nano-CuO demonstrated no difference in terms of biomass and
length relative to non-AMF inoculated plants. As revealed by the above result, based on
normal and nano-CuO conditions, AMF facilitated C. indica seedling growth.

We did not find AM colonization within non-inoculated seedling roots of C. indica,
while C. indica roots were colonized by F. mosseae in the inoculated seedlings. All AMF
inoculation treatments showed mycorrhizal colonization in C. indica roots. The mycorrhizal
colonization varied among different nano-CuO treatments, ranging from 22.1% to 52.5%
(Figure 3). The highest colonization was found in the AM fungal-inoculated treatment
plants without nano-CuO stress. The nano-CuO concentration in the soil had a negative
impact on AM colonization.
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Figure 3. AM colonization of C. indica roots under nano-CuO stress.

Increased nano-CuO levels in the substrate increased Cu content while decreasing
P concentration in C. indica shoots and roots. Under nano-CuO stress and AM fungal
inoculation circumstances, the Cu content in shoots and P content in roots of C. indica plants
did not differ from the non-AMF inoculation treated plants. However, the Cu content in
the C. indica roots decreased by 20.1% and 11.7% under 300 and 600 mg kg−1 nano-CuO
stresses, respectively (Table 1). The P content in the shoots of C. indica inoculated with
AMF was significantly higher than that in the treated plants without AMF under 0, and
300 mg kg−1 nano-CuO stresses, but AMF inoculation had no influence on the P content in
the C. indica roots under the 600 mg kg−1 nano-CuO stress.
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Table 1. Effects of AMF on the biomass, the Cu content, and the P content in tissues of C. indica seedlings under nano-CuO stress.

Nano-CuO
Treatment

Shoot dry Root Dry Shoot Height Root Length Cu Content
in Shoots

Cu Content
in Roots

P Content
in Shoots

P Content
in Roots

Levels mg kg−1 Mass (g) mass (g) (cm) (cm) (mg kg−1, DW) (mg kg−1, DW) (mg g−1, DW) (mg g−1, DW)

0 −AMF 2.63 ± 0.19b 0.65 ± 0.09b 36.9 ± 1.8a 22.3 ± 1.3a 8.45 ± 0.21c 33.52 ± 0.3e 2.41 ± 0.08bc 2.06 ± 0.04a
+AMF 3.13 ± 0.21a 0.79 ± 0.06a 38.6 ± 1.9a 24.5 ± 1.5a 8.19 ± 0.11c 33.92 ± 0.056e 2.79 ± 0.05a 2.11 ± 0.04a

300 −AMF 2.06 ± 0.13d 0.46 ± 0.07c 27.5 ± 1.4c 15.1 ± 0.9c 68.37 ± 3.11b 218.73 ± 0.34c 2.32 ± 0.07c 1.94 ± 0.07ab
+AMF 2.35 ± 0.08c 0.60 ± 0.06b 31.2 ± 1.6b 16.8 ± 1.0b 57.16 ± 4.62b 174.33 ± 1.72d 2.55 ± 0.08b 2.01 ± 0.06a

600 −AMF 1.59 ± 0.05e 0.31 ± 0.04d 22.6 ± 1.1d 10.9 ± 0.6d 88.05 ± 2.71a 278.3 ± 3.31a 2.02 ± 0.04d 1.74 ± 0.05c
+AMF 1.71 ± 0.04e 0.39 ± 0.02d 24.5 ± 1.2cd 12.3 ± 0.7d 80.61 ± 2.52a 245.71 ± 5.01b 2.11 ± 0.05d 1.80 ± 0.07bc

Data are the means of three replicates (mean ± SE). Different lowercase letters show significant differences between treatments at p < 0.05.
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3.2. Leaf Chlorophyll Contents and Photosynthetic Parameters

The chlorophyll content of leaf samples from each treatment was determined. Accord-
ing to Table 2, with the elevation of nano-CuO levels in the growth media, leaf chlorophyll
contents decreased. AMF inoculation significantly upregulated leaf chlorophyll contents
under the medium nano-CuO level (300 mg kg−1), and chlorophyll a, chlorophyll b, and
total chlorophyll contents were elevated by 17.65%, 28.13%, and 20.00%, respectively, as
compared to the non-AMF inoculation plants. However, AMF inoculation insignificantly
impacted leaf chlorophyll contents under the high nano-CuO concentration (600 mg kg−1)
and without nano-CuO stress.

Table 2. Effects of AMF on the photosynthetic parameters and chlorophyll contents of C. indica
seedlings under nano-CuO stress.

Nano-CuO
Content Treatment

Pn GS Ci Tr Chlorophyll a Chlorophyll b Total
Chlorophyll

mg kg−1 µmol m−2 s−1 µmol m−2 s−1 mmol m−2 s−1 mmol m−2 s−1 mg g−1 mg g−1 mg g−1

0 −AMF 7.9 ± 1.6a 0.7 ± 0.07a 333.3 ± 8.9c 4.0 ± 0.2a 4.7 ± 0.21a 2.6 ± 0.17a 7.3 ± 0.32a
+AMF 8.5 ± 0.76a 0.8 ± 0.03a 332.7 ± 3.9c 3.9 ± 0.07a 4.8 ± 0.17a 2.8 ± 0.07a 7.6 ± 0.16a

300 −AMF 4.5 ± 0.65c 0.5 ± 0.03b 348.09 ± 6.7b 3.1 ± 0.2b 3.7 ± 0.16b 1.9 ± 0.06b 5.6 ± 0.14c
+AMF 7.3 ± 0.4ab 0.8 ± 0.06a 326.4 ± 6.9c 4.2 ± 0.2a 4.4 ± 0.27a 2.4 ± 0.1a 6.8 ± 0.32ab

600 −AMF 3.5 ± 0.51d 0.3 ± 0.004c 365.2 ± 5.4a 1.9 ± 0.1c 2.9 ± 0.14c 1.5 ± 0.1c 4.4 ± 0.24d
+AMF 4.8 ± 0.13c 0.5 ± 0.05b 342.8 ± 3.9b 2.8 ± 0.2b 3.1 ± 0.22c 1.7 ± 0.1bc 4.8 ± 0.28d

Data are the means of three replicates (mean ± SE). Different lowercase letters show significant differences
between treatments at p < 0.05.

The Pn, Gs, Ci, and Tr were significantly influenced by the nano-CuO treatment
(Table 2). The Pn, Gs, and Tr decreased as nano-CuO in the soil increased. Ci exhibited
the opposite trend. When there was no nano-CuO stress, AMF inoculation insignificantly
impacted plant photosynthetic parameters in relation to the non-AMF inoculation treatment
plants. Nevertheless, under the 300 mg kg−1 or 600 mg kg−1 nano-CuO stress in the soil,
AMF inoculation significantly improved the Pn, Gs, and Tr in the C. indica leaves.

3.3. Antioxidant Enzyme Activities, Lipid Peroxidation (MDA), and Reactive Oxygen
Species (ROS)

Nano-CuO stress at 300 mg kg−1 increased SOD, POD, and CAT activities in the
leaves and roots of C. indica plants. Subsequently, we found a significant decrease in
the activity of the above three antioxidant enzymes at the highest level of nano-CuO
(Figure 4). Antioxidant enzyme activities, including GR, significantly increased with the
increase in nano-CuO levels. In substrates with no nano-CuO stress, AMF inoculation
treatment insignificantly impacted GR, CAT, POD, and SOD activities. For the medium
nano-CuO level (300 mg kg−1), AMF inoculation significantly increased the activities of
SOD, POD, CAT, and GR. The activities of SOD, POD, CAT, and GR were increased by
9.46%, 13.57%, 21.76%, and 15.58%, respectively, as compared to the non-AMF inoculation
plants. However, the AMF inoculation treatment had no significant influence on the
activities of SOD, POD, or CAT, although it affected GR activity under a high level of
nano-CuO treatment (600 mg kg−1).

The plants exposed to nano-CuO had significantly elevated levels of ROS (H2O2
and O2

−) in the root and leaf tissues compared to the control plants (Figure 5). When
the AMF treatment was performed, H2O2 and O2

− accumulation showed a remarkable
reduction compared to the non-AMF inoculated treatment plants. MDA, an indicator of
lipid peroxidation, was examined to verify whether excessive nano-CuO caused oxidative
stress in the leaves and roots of C. indica seedlings (Figure 5). Under the nano-CuO stress,
the MDA content improved with the increase in nano-CuO levels in the growth media,
which demonstrated that the permeability of the cell membrane and the conductivity of
outer permeation increased. However, the MDA contents in the leaves and roots of the
seedlings after AMF inoculations decreased significantly compared to the control group.
In this study, AMF was shown to alleviate the level of lipid peroxidation induced by
nano-CuO stress.
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Figure 4. Effects of AMF on the antioxidant enzymes of C. indica seedlings under nano-CuO stress.
Total superoxide dismutase (SOD) activity in C. indica roots (a) and leaves (b); peroxidase (POD)
activity in C. indica roots (c) and leaves (d); catalase (CAT) activity in C. indica roots (e) and leaves (f);
glutathione reductase (GR) activity in C. indica roots (g) and leaves (h). Different lowercase letters
show significant differences between treatments (p < 0.05).
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Figure 5. Effects of AMF on MDA and ROS in leaves of C. indica under nano-Cu stress. Malon-
aldehyde (MDA) content in C. indica roots (a) and leaves (b); hydrogen peroxide (H2O2) contents
in C. indica roots (c) and leaves (d); superoxide radicals (O2

−) in C. indica roots (e) and leaves (f).
Different lowercase letters show significant differences between treatments (p < 0.05).

3.4. Impacts on the Organic Acid Content in Roots Arising from Stress

A plant root’s organic acid secretion significantly affects a plant’s responses to Cu
toxicity. We measured the concentrations of malic, citric, and oxalic acids in C. indica
roots. The results revealed remarkable elevations of the concentrations of malic, citric,
and oxalic acids in C. indica roots in response to nano-CuO stress (Figure 6). Moreover,
the concentrations of malic, citric acids, and oxalic acid in the AMF treatment plants were
noticeably higher than those in the nano-CuO treatment plants (Figure 6).
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Figure 6. The function of AMF in the secretion of citric acid (a), malic acid (b), and oxalate (c) in
C. indica roots in response to nano-CuO stress. Different lowercase letters show significant differences
between treatments (p < 0.05).

3.5. Impacts on Gene Expression Arising from AMF in Response to Nano-CuO Stresses

To explore the molecular regulation of C. indica seedlings in the AMF inoculation
treatment plant group based on nano-CuO stress, the expressions of genes that play a role
in metal transport (Nramp2, Nramp5, MT2a, MT2c, COPT2, and COPT6) and the antioxidant
response (Cu-Zn SOD, POD, and GR) were assessed. Figure 7 illustrates the relative
expression levels of genes in C. indica roots due to different stresses. As revealed by the
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qRT-PCR analysis, C. indica leaves and roots exhibited elevated relative expression levels of
Nramp2, Nramp5, MT2a, MT2c, Cu-Zn SOD, POD, and GR resulting from nano-CuO stress,
as compared with the control. Without nano-CuO in the media, AMF inoculation treatment
insignificantly impacted the relative expression levels of Nramp2, Nramp5, MT2a, MT2c,
Cu-Zn SOD, POD, and GR. Nano-CuO at 300 mg kg−1 and AMF inoculation significantly
improved the relative expression levels of Nramp2, Nramp5, Cu-Zn SOD, POD, and GR, but
not MT, as compared with the non-inoculated AMF treatment plants. Inoculation with
AMF significantly increased the antioxidant response gene (Cu-Zn SOD and GR) and Nramp
expressions, but not MT expression, under a high level of nano-CuO (600 mg kg−1).
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Figure 7. The effect of AMF on the expression of antioxidant enzyme-related genes and metal ion
transport-related genes under nano-CuO stress in C. indica roots and leaves. Cu-Zn SOD: superoxide
dismutase (Cu-Zn); GR: probable glutathione S-transferase parA; POD: peroxidase; Nramp: metal
transporter Nramp; MT: metallothionein-like protein; COPT: copper transporter. Different colors
represent gene expression levels from lowest (green) to highest (red) in the entire database. The RT-
PCR assays were performed in three independent biological replicates and three technical replicates.

AMF noticeably elevated the transcription levels of organic acid synthase-associated
genes in C. indica seedlings, consistent with the results of the organic acid concentration
analysis. The expressions of MDH and CS in the AMF treatment plants were significantly
higher than those in the non-AMF treatment plants (Figure 8). Thus, it was proposed that
AMF application might promote the secretion of malic and citric acids in C. indica roots
in response to nano-CuO stress. ALMT (aluminum-activated malate transporter-related
genes) are key genes in malate secretion in the higher plant. The expression levels of
AMLT1 and AMTL2 were remarkably upregulated in C. indica seedling roots exposed
to nano-CuO stress, while exogenous AMF further increased AMLT expression within
C. indica seedling roots.
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4. Discussion
4.1. AMF Significantly Facilitated C. indica Seedling Establishment in Response to
Nano-CuO Stress

AMF easily form symbiotic relationships with different types of plants and are ca-
pable of noticeably boosting the development of plants through an improvement in the
density of extraradical mycelium beyond the nutrient depletion zone around the root,
thus facilitating the absorption of minerals and water [34]. According to current findings,
C. indica and AMF (F. mosseae) can produce a steady symbiotic relationship [18,35,36]. In
this paper, we found considerable vesicles and hyphae within the root samples. AMF
colonization of C. indica roots reached 50% in spring, much higher than the colonization
rate recorded in other studies [36]. The Funneliformis genus is capable of more significantly
resisting exogenous stresses and quickly colonizing the plant root [37]. It has been reported
that F. caledonium and F. versiforme can alleviate the adverse impacts arising from heavy
metals [17]. Moreover, several studies report positive and negative impacts arising from
ENMs on AM colonization [38,39]. The findings in this paper support the perspective that
metal oxide nanomaterials decrease AM colonization [16], possibly because nano-CuO
inhibits the propagation and diffusion of fungal spores. However, nano-CuO’s impacts
on AM colonization seem to depend on the nano-CuO concentration. High nano-CuO
(600 mg kg−1) stress significantly inhibited the AMF colonization rate in the study.

AMF are capable of alleviating the damage attributed to ENM stress and promoting
host plants to be more resistant and grow more rapidly [40]. This is in accordance with
our findings which revealed the impacts arising from AMF treatment on photosynthesis,
plant growth, and chlorophyll content in C. indica seedlings under nano-CuO stress. Under
Fe3O4NPs stresses, the levels of certain nutrient elements (e.g., Ca, K, P, and N) within the
aerial part of maize seedlings subjected to AMF inoculation were elevated by over 10% [41].
This arose from the sizeable extra root mycelial system that emerged after AMF symbiosis
and the formation of the anise root system. The plant root’s acquisition range of nutrients
is broadened due to extra mycorrhizal hyphae growth. As a result of AMF inoculation,
nutrient absorption throughout the roots and the cycling process of rhizosphere nutrients
are enhanced, which can lead to an improvement of the plant’s nutrition status [42].

C. indica is invasive in numerous countries and potentially invasive in other coun-
tries/regions where it is cultivated. AMF play a significant role in the successful invasion
of alien plant species because of their capacity to stimulate growth [43]. Qi et al. [44]
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discovered that AMF improved Solidago canadensis’ ability to absorb phosphorus under
stress circumstances, allowing them to shift their resource allocation strategy to favor more
aboveground biomass. This was comparable to our findings, which showed that AMF
inoculation can increase aboveground biomass and P content of C. indica under nano-CuO
stress. The findings also show that AMF improves invasive species’ competitiveness by
increasing plant P accumulation.

4.2. AMF Led to a High-Efficiency ROS Scavenging Mechanism for the Protection of the C. indica
Seedlings Exposed to Nano-CuO Stress from Oxidative Damage

Plants can become more tolerant to heavy metal stress through various biochemical
channels (e.g., particular proteins managing water flux, ions, free radicals, and osmotically
dynamic metabolites) [45]. As indicated by the results in this paper, plants inoculated
with AMF exhibited an increased concentration of MDA under nano-CuO conditions. In
this paper, the accumulation of O2

− and H2O2 due to nano-CuO stress decreased after
AMF inoculation of C. indica seedling. ROS scavenging is important to reduce oxidative
stress and maintain normal plant metabolism [46,47]. Enzymatic antioxidants (e.g., GR,
CAT, POD, and SOD) can significantly alleviate excessive ROS and balance generation
and scavenging [48,49]. AMF-inoculated plants exhibited upregulated GR, POD, and
Cu-Zn SOD expressions and improved antioxidant enzyme activity under nano-CuO
stress. Thus, it was demonstrated that AMF led to a high-efficiency ROS elimination
mechanism to protect the C. indica seedlings under wide-ranging oxidative damage. AMF
inoculation led to a huge improvement in enzyme activity and the expressions of genes
that play a role in ROS homeostasis due to abiotic stresses; thus, the host plants could
more significantly protect themselves against oxidative stresses. There was a correlation
between the above responses and plant tolerance to abiotic stress [50]. Furthermore,
non-enzymatic antioxidants are also the key factor that provide tolerance against heavy
metal stress [51]. Ascorbate and glutathione are vital in reducing Pb(II) ions toxicity in
Scenedesmus dimorphus [52]. The role of non-enzymatic antioxidants in nano-CuO stress
will be investigated in future studies.

4.3. AMF Inhibited Cu Uptake in C. indica Seedlings to Alleviate Nano-CuO Stress

The mitigation of metal-induced phytotoxicity by AMF is often significantly correlated
with metal acquisition inhibition by plants or the prevention of metal transport from
plant roots to shoots [53]. A recent study showed that under ZnONP treatment, AMF-
inoculated plants increased biomass and decreased Zn accumulation as compared to
non-AMF-inoculated plants [16]. We reported a remarkable reduction in Cu acquisition
in the roots and shoots of mycorrhizal plants under nano-CuO treatment, demonstrating
that AMF likely protects the plant by reducing their Cu acquisition rather than preventing
Cu transportation to the plant shoots. The AMF hyphae combined with Cu in the soil
increased the secretion of glomalin, produced glomalin-associated proteins, and decreased
the uptake of Cu by the plant roots [54,55].

AMF may regulate the expression of genes that play a role in the metal transportation
of their hosts [56]. It was considered that metals are actively carried by the proteins respon-
sible for metal transport from the soil to the roots [57]. Existing studies reported that Cu
or nano-CuO is likely absorbed through the membrane channels (e.g., aquaporins) [58].
According to the results in this paper, the expressions of genes involved in metal transport
(Nramp, COPT) in C. indica roots were downregulated in AMF-inoculated plants compared
with non-AMF-inoculated plants, which is in accordance with a recent study [59]. Sim-
ilarly, it was reported that a gene encoding metallothionein (MT) decreased within the
roots of AMF inoculation-treatment plants. Extensive studies demonstrated that MT can
adjust metal homeostasis and create a vital cellular mechanism related to metal detoxifi-
cation [13,60]. According to Ouziad et al. [13], AMF led to decreased MT gene expression
due to the reduction in metal concentrations in mycorrhizal plants.
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4.4. AMF Facilitated Organic Acid Generation and Secretion to Chelate Nano-CuO

Root secretion of organic acid (OA) anions (e.g., citric acid, malic acid, and oxalic
acid) is significantly correlated with the plant’s response to heavy metal stress [61]. How-
ever, organic acids from the roots exhibit differences according to the species, including
aluminum-induced citric acid secretion in maize [62] and rice beans [63], malate secretion
in wheat [64], and oxalate secretion in buckwheat [65]. In contrast, triticale and oilseed
rape can secrete malate and citrate simultaneously [61]. In this paper, nano-CuO stress-
induced malate, citrate, and oxalate secretion in C. indica roots, while AMF treatment
mainly increased the secretion of malate and citrate under nano-CuO stress conditions.
Moreover, AMF treatment noticeably led to a corresponding gene expression (MDH, CS) in
C. indica roots under nano-CuO stress. AMF inoculation can increase OA anion secretion
by improving the malate and citrate synthesis ability, thus enhancing the nano-CuO stress
tolerance. Rice bean roots consisted of two phases of Al-induced citrate secretion [66]. In
fact, citrate and malate secretion patterns within C. indica roots under the regulation of
AMF should be studied in depth. Transporters or anion channels play an important role
in the secretion of OA. OA transporters within the higher plant can fall into MATE and
ALMT, thus separately mediating citrate and malate secretion [67]. GmAMLT1, AtALMT1,
and TaALMT1 are the genes that are reported to be central to malate secretion in soybean,
Arabidopsis thaliana, and wheat [57,68]. ALMT’s physiological function correlates with
mineral uptake, seed development, ion homeostasis, and heavy metal resistance [69]. We
provide evidence that the expression levels of AMLT1 and AMTL2 were remarkably up-
regulated in C. indica seedling roots exposed to nano-CuO stress, while exogenous AMF
further increased AMLT expression within C. indica seedling roots. The data confirmed that
AMF inoculation treatment regulates citrate and malate secretion within anionic channels;
therefore, an unknown signaling channel is likely involved.

5. Conclusions

Under nano-CuO treatments, AMF symbiosis dramatically increased plant biomass,
P content, leaf chlorophyll contents, photosynthetic parameters, and antioxidant enzyme
activities of C. indica, in parallel with elevated expressions of antioxidant response genes
(Cu-Zn SOD, POD, GR). Furthermore, AMF may effectively alleviate nano-CuO stress
by lowering MDA, H2O2, and O2

− levels in C. indica leaves and roots. Moreover, AMF
inoculation decreased the Cu concentration in plant leaves and roots while also lowering
the expression of genes involved in Cu transport (COPT) and metallothionein (Nramp,
MT). In addition, AMF inoculations increased the production of organic acids (malic,
citric, and oxalic acids) and upregulated the expression of genes involved in organic acid
metabolism (MDH, ALMT, and CS), lowering Cu buildup. These findings reveal that AMF
application improved the growth capacity and alleviated nano-CuO-induced phytotoxicity
in C. indica seedlings by inducing antioxidant enzyme activities and organic acid secretion
and suppressing excessive ROS generation. This research proposes a novel approach to
addressing ENMs contamination in soil.
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