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Fgf10 is necessary for the development of a number of organs that fail to develop or

are reduced in size in the null mutant. Here we have knocked out Fgf10 specifically in

the neural crest driven by Wnt1cre. The Wnt1creFgf10fl/fl mouse phenocopies many of

the null mutant defects, including cleft palate, loss of salivary glands, and ocular glands,

highlighting the neural crest origin of the Fgf10 expressing mesenchyme surrounding

these organs. In contrast tissues such as the limbs and lungs, where Fgf10 is expressed

by the surrounding mesoderm, were unaffected, as was the pituitary gland where Fgf10

is expressed by the neuroepithelium. The circumvallate papilla of the tongue formed but

was hypoplastic in the conditional and Fgf10 null embryos, suggesting that other sources

of FGF can compensate in development of this structure. The tracheal cartilage rings

showed normal patterning in the conditional knockout, indicating that the source of Fgf10

for this tissue is mesodermal, which was confirmed usingWnt1cre-dtTom to lineage trace

the boundary of the neural crest in this region. The thyroid, thymus, and parathyroid

glands surrounding the trachea were present but hypoplastic in the conditional mutant,

indicating that a neighboring source of mesodermal Fgf10 might be able to partially

compensate for loss of neural crest derived Fgf10.

Keywords: Fgf10, ocular glands, thyroid, palate, cranial glands, CVP

INTRODUCTION

Fgf10 is an essential signaling molecule from the fibroblast growth factor family and is involved in
the development of many organs, signaling through Fgfr2b in the epithelium (Ohuchi et al., 2000).
Patients with mutations in one copy of the Fgf10 ligand or its receptor have Lacrimo Acoustic
Dental Digital (LADD) syndrome (OMIM 149730) or the related Aplasia of Salivary and Lacrimal
Gland (ASLG) syndrome (OMIM 180920), characterized by defects in a variety of cranial glands
(Rohmann et al., 2006). Mice with a complete knockout of Fgf10 die at birth due to a complete
lack of lungs and limbs and formation of a cleft palate (Min et al., 1998; Sekine et al., 1999; Rice
et al., 2004). As in patients, loss of Fgf10 also impacts on the development of a number of cranial
glands, with null mutants showing complete loss of the salivary glands, thyroid gland, pituitary
gland (Ohuchi et al., 2000), ocular glands (Govindarajan et al., 2000; Makarenkova et al., 2000)
and the circumvallate papilla (CVP) housing the Von Ebner’s glands in the tongue (Petersen et al.,
2011). The salivary glands have been shown to arrest at the prebud stage, with heterozygous mice
showing a delay in development that leads to later gland hypofunction (Jaskoll et al., 2005; May
et al., 2015). The pituitary gland starts to initiate in the Fgf10 null with an infolding of the oral
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epithelium to form Rathke’s pouch at the back of the mouth, but
the ectoderm is associated with high levels of apoptosis and the
pouch disappears by E13.5 (Ohuchi et al., 2000). Other glands
form but are reduced in size, such as the thymus glands (Ohuchi
et al., 2000; Revest et al., 2001), and more subtle defects are also
observed in the inner ear, in the patterning of the trachea cartilage
rings, in the teeth and in the skin and hair follicles (Ohuchi et al.,
2000; Pauley et al., 2003; Sala et al., 2011). In these organs loss of
Fgf10 may be compensated for by the presence of Fgf7 or Fgf3,
which can both bind to the same receptor (Zhang et al., 2006).
In keeping with this loss of both Fgf10 and Fgf3 leads to a more
severe defect in the inner ear (Wright and Mansour, 2003), and
knockout of the receptor Fgfr2b leads to additional defects not
observed in Fgf10 knockouts, such as arrest of tooth development
at the bud stage (De Moerlooze et al., 2000).

During development Fgf10 is expressed in the mesenchyme
that surrounds many developing organs (lungs, limbs, ocular
glands, palatal shelves, salivary glands (Bellusci et al., 1997;
Moustakas et al., 2011; Wells et al., 2013). In contrast its receptor,
Fgfr2b, is expressed in epithelial structures overlying these
regions, emphasizing the importance of epithelial-mesenchymal
interactions (Peters et al., 1992; Orr-Urtreger et al., 1993; Rice
et al., 2004). In the developing brain Fgf10 is expressed in the
infundibulum, which signals to the developing oral epithelium
during pituitary gland development (Takuma et al., 1998). Early
on during facial development Fgf10 is expressed in the oral
epithelium of the first pharyngeal arch (Kettunen et al., 2000;
Wells et al., 2013), with expression also observed in the tooth
germ epithelium in some species (Moustakas et al., 2011). In
the otic region Fgf10 is first expressed in the mesoderm derived
mesenchyme around the otic epithelium at E8.75 and then in the
otic cup and otic vesicle at E9 and E9.5 (Wright and Mansour,
2003). Fgf10 is therefore expressed in a range of tissues during
development.

In this paper we have conditionally knocked out Fgf10
specifically in neural crest derived tissue using the Wnt1cre
transgenic line (Chai et al., 2000). Previously a conditional
knockout of Fgf10 has been carried out using Dermo1 cre,
which led to specific loss of Fgf10 in the mesoderm around the
developing lungs, resulting in lung branching defects (Abler et al.,
2009). By knocking out Fgf10 in neural crest derived tissues
only we aim to investigate which phenotypes in the null mutant
are a consequence specifically of Fgf10 expression in the neural
crest. A number of tissues in the head are known to be derived
from the neural crest. These include the mesenchyme around
the developing salivary glands, thyroid and thymus glands, teeth,
and the palatine bone (Chai et al., 2000; Jiang et al., 2000; Jaskoll
et al., 2002; Müller et al., 2008; Johansson et al., 2015). The
Fgf10 expressing mesenchyme that underlies the forming CVP in
the tongue is also neural crest derived (Hosokawa et al., 2010).
The origin of the tissue around the developing ocular glands
has not been confirmed as the developing eye is surrounded by
neural crest derived mesenchyme and lateral plate mesoderm,
which together forms the periocular mesenchyme (Langenberg
et al., 2008). In contrast the limbs and lungs are surrounded by
mesoderm and so would be predicted to develop normally in
the conditionalWnt1cre Fgf10mice. The pituitary would also be

expected to be normal in these conditional mutants as the source
of the Fgf10 is the neuroectodermal infundibulum (Takuma et al.,
1998). In addition we compare the conditional knockout to the
phenotype in the null Fgf10 mouse to clarify the role of neural
crest derived Fgf10 in a variety of craniofacial tissues, and identify
a few discrepancies with the published literature.

MATERIALS AND METHODS

Transgenic Mice
Fgf10 floxed (Fgf10A02 tmc1c) mice on a C57Bl6 background
were produced by MRC-Harwell as part of the International
Mouse Phenotyping Consortium (IMPC; Pettitt et al., 2009;
Skarnes et al., 2011; Bradley et al., 2012). Fgf10fl/fl females
were crossed to Wnt1cre/Fgf10 fl/+ males to generate
Wnt1creFgf10fl/fl embryos (3 litters), collected at E14.5,
E15.5, and E19.5 (E14.5 n = 3; E15.5 n = 3; E19.5 n = 2). These
conditional mutants were compared to Fgf10fl/fl littermates
that did not carry the cre and were therefore phenotypically
wildtype. A total of 6 Fgf10 null embryos generated on a mixed
C57Bl6/CD1 background (E14.5, E15.5, E18.5) were used to
compare the conditional phenotype with that of the complete
null.

Wnt1cre males were mated to tdTomato reporter females
(Gt(ROSA)26 Sor tm14(CAG-tdTomato)Hze JAX labs) to
lineage trace the neural crest and were viewed with a Nikon
SMZ25 fluorescence microscope.

The Wnt1cre mouse is widely used for neural crest specific
knockout studies, however, it has been linked to elevated levels
of Wnt signaling in the midbrain, particularly inWnt1cre Tg/Tg
embryos (Lewis et al., 2013). We used Wnt1cre Tg/+ mice for
our crosses to reduce this effect. In addition, no facial phenotype
was observed in Wnt1cre embryos compared to WT littermate
controls (data not shown), agreeing with results that show that
anymidbrain dysmorphologies caused by theWnt1cre line do not
cause cranial shape changes (Heuze et al., 2014).

Pregnant mice were culled using schedule 1 culling methods
at E14.5 to E19.5, just prior to giving birth. All procedures
were carried out as agreed by the UK Home Office and
King’s College London. Animals were housed in approved non-
specific-pathogen-free conditions. Animal experiments conform
to ARRIVE (animal research: reporting of in vivo experiments)
guidelines.

Embryos were photographed using a Leica dissecting
microscope.

Skeletal Preps
E19.5 embryos were skinned and eviscerated before fixing in 95%
Ethanol. Samples were then stained in alcian blue and alizarin red
to stain cartilages and bones, respectively. Embryos were cleared
in 0.5% KOH and stored in glycerol and photographed using a
Leica dissecting microscope.

Histology
Embryos were fixed in 4% paraformaldehyde and dehydrated
through an ethanol or methanol series before embedding in wax.
Sections were cut on amicrotome at 8µm and slides were stained
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with a trichrome stain (Haematoxylin, alcian blue and sirrus red).
Sections were photographed using a Nikon microscope.

Thymus Analysis
To compare the size of the thymus glands in the conditional
mutants the thymus glands from 3 Fgf10fl/flmice and 4Wnt1cre
Fgf10fl/fl mice were assessed using histology sections at E14.5.
The number of sections with a thymus was multiplied by the
thickness of the sections (8µm) to give the total extent of the
gland. This was then compared using a student t-test where
significance was P < 0.05.

Radioactive In situ Hybridisation
CD1 mice were used for expression of Fgf10. Fgf10 probe was
a gift from Ivor Mason. In situ hybridisation on wax sections
was carried out according to previously published protocols
(Kettunen et al., 2000). Fgf10 antisense probe was synthesized
using 35S labeled UTP and signal was identified using sliver
emulsion, which when developed showed positive signal as white
grains under darkfield. The magic wand tool in photoshop was
used to pseudocolour the white grains red and this layer was
overlain on top of the light field image to produce a final
compound image.

RESULTS

Normal Lung, Limb and Pituitary
Development but Defective Palate
Formation in Wnt1cre Fgf10 Conditional
Mutants
In agreement with previous studies we observed expression of
Fgf10 in the developing lung, limb, ocular glands, palate, salivary
glands, and epithelium of the developing maxilla and mandible
(Figure 1). As expected conditional mutants (Wnt1creFgf10fl/fl)
had normally developing lungs at E19.5 (Figures 2A,B; N =

2/2). Histology of the lungs matched that of littermate controls
(Fgf10fl/fl; Figures 2C,D), as although there areWnt1cre positive
cells located within the developing lungs these are associated
with the intrinsic nervous system, which does not express Fgf10
(Freem et al., 2010). The limbs also formed normally (N = 8/8), in
contrast to complete loss of these structure in Fgf10 null mutants
(Figures 2E,F; N = 6/6).

In the palate Fgf10 is expressed in the mesenchyme
adjacent to the oral epithelium (Figure 1D). Palate development
was disrupted in the conditional mutants with a failure in
development of the palatal shelves at E15.5 (Figures 3A,B; N =

3/3), suggesting problems in shelf development similar to those
observed in the null (Rice et al., 2004). Just before birth (E19.5)
defects in formation of the palatine processes of the maxilla and
palatine bone were clear, leaving the vomer visible when viewed
from the oral side (Figures 3C,D;N = 2/2). Due to the cleft palate
the conditional mutant would not be predicted to survive past
birth, and, in agreement with this, no mutants were discovered
at P1 (postnatal day 1) in one litter where the mother was left to
litter down.

In the Fgf10 null the ectoderm part of the pituitary (Rathke’s
pouch), which forms the anterior lobe, is completely lost due

to high apoptosis at early stages of development (Ohuchi et al.,
2000). In contrast the posterior lobe, which is derived from
the neuroectoderm, is apparent at E13.5 but regresses in the
absence of the anterior lobe and has been reported to be lost
by E15.5 (Ohuchi et al., 2000). In agreement with the published
data, we observed a complete loss of the ectodermally derived
portion of the pituitary at E15.5 in the Fgf10 null mice, but the
posterior lobe was still present at this stage (Figure 3G). It was
also still evident at E18.5 (Figure 3H), suggesting that this part
of the pituitary is not dependent on the presence of the anterior
lobe as previously proposed. The conditional mutant showed
normal development of both the anterior and posterior lobe of
the pituitary at E15.5 (Figures 3E,F), indicating no requirement
for neural crest derived Fgf10 in its formation.

Development of a Hypoplastic CVP and
Loss of Salivary and Ocular Glands in
Wnt1cre Fgf10 Conditionals
Salivary glands are absent in Fgf10 nulls. In keeping with
this result the salivary glands were completely absent in the
conditional mutant (Figures 4A–C,E–G; N = 8/8), although
a mesenchymal capsule still formed despite the lack of any
branching epithelium (Figure 4G), phenocopying the null
phenotype (Wells et al., 2013). These results are in agreement
with the neural crest origin of the salivary gland mesenchyme
(Jaskoll et al., 2002).

Slightly unexpectedly, the conditional mutants also formed
a circumvallate papilla (CVP) at the back of the tongue
(Figures 4D,H;N = 3/3). The CVP was smaller in size compared
to littermate controls and the two fingers of invaginating
epithelium were reduced, similar to the phenotype observed
in Eda pathway mutants (Wells et al., 2011). We checked the
development of the CVP in Fgf10 null embryos, where the CVP
has been recorded as missing, and found that the CVP was
present but reduced in size in the Fgf10 null embryos at E15.5
(N = 3/3), similar to the phenotype in the conditional knockout,
indicating that the CVP can initiate in the absence of Fgf10
(Figure 4K).

Fgf10 is expressed at high levels in the mesenchyme around
the developing eye during the stages of ocular gland development
(Figure 1C). At E15.5 the Harderian gland had initiated in
littermate controls at the back of the eye, while this gland
was missing in the conditional mutant, despite the presence
of a mesenchymal capsule (Figures 4I,J; N = 3/3). This is
in agreement with previous research that Fgf10 expression is
essential for the formation of ocular glands, and confirms that
the source of Fgf10 is the neural crest around the eye.

Hypoplasia of Neck Glands but Normal
Tracheal Cartilage Patterning in
Conditional Mutants
The thyroid gland was present, but reduced in size in the
conditional mutants (Figures 5A,B; N = 3/3). This suggests
either that not all Fgf10 signaling required for formation of
this gland is neural crest derived, or that in fact this gland can
develop in the absence of Fgf10. To confirm this we looked
at development of the thyroid in Fgf10 null mutants. A small
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FIGURE 1 | Expression of Fgf10 in the developing embryo. (A,B,F) E10.5 Frontal sections. (C,D) E15.5 frontal sections. (E) E12.5 Frontal section. Red grains

indicate signal. (A) Developing lungs. Fgf10 is expressed around the tips of the epithelial lung buds (arrows). (B) Developing Limb. Fgf10 is expressed in the

mesenchyme in the distal part of the limb (arrows). (C) Developing eye (e). Fgf10 is expressed in the mesenchyme at the back of the eye (arrow). (D) Developing

palate. Fgf10 is expressed in the mesenchyme adjacent to the palatal epithelium (arrowsheads). (E) Developing salivary gland. Fgf10 is expressed in the mesenchyme

(arrows) underlying the epithelial buds on either side of the tongue (T). (F) Developing pituitary and molars. Fgf10 is expressed at the base of the brain (arrow)

underlying rathke’s pouch and in the oral epithelium (arrowhead). Scale bars in (B) = 200µm, same scale (A,C–F).

thyroid was observed in 2/3 cases, and in both cases was
unilateral, indicating that the thyroid is able to initiate in the
absence of Fgf10 (Figure 5C). The gland tissue was located
in the correct place, under the cricoid cartilage, indicating
that migration cues were unaffected in the mutant, however
the gland did not extend as far anteriorly toward the thyroid
cartilage. The null gland when present was smaller than that
observed in the conditional mutant suggesting another source
of Fgf10 might be available for development of this gland in
the conditional mutant. Alternatively development of this gland
might depend on interaction with other tissues, not affected in
the conditional. As the parathyroids migrate to the thyroid we

checked for the presence of these glands in our samples. The
parathyroids were normally positioned next to the thyroid in
the conditional mutant, but as with the thyroid were slightly
hypoplastic (Figures 5D,E). No evidence of parathyroids were
observed in the Fgf10 null mutant mice (N = 3; Figures 5F),
suggesting again an alternative non-neural crest source for
parathyroid gland development in our conditional mutants. The
thymus glands in the Fgf10 null mutants have been shown
to be hypoplastic (Ohuchi et al., 2000; Revest et al., 2001).
In the conditional mutants the thymus glands were present
(Figures 5G,H) but appeared slightly reduced in size in the
conditional mutant at E15.5, although analysis at E14.5 showed
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FIGURE 2 | Normal development of lungs and limbs in Wnt1creFgf10 mutant mice. (A,C) Fgf10 fl/fl Control. (B,D,F) Wnt1creFgf10 fl/fl mutant. (E) Fgf10 null

mutant. (A,B) Dissected lungs E19.5. (C,D) Lung histology at E19.5. (E) Absence of limbs in null Fgf10 mutant at E14.5 (*). (F) Normal limb development in the

conditional mutant (arrow). Scale bars: 500 µm.

no statistically significant difference (P = 0.684). This is in
contrast to the null where the thymus glands are much smaller
by this stage (Revest et al., 2001). In each case, therefore, the neck
glands were less severely affected in the conditional compared to
the null mutant.

We therefore decided to confirm the position of the boundary
between the neural crest andmesoderm in this region of the neck.
Tracheas from Wnt1cre-tdTom reporter mice were dissected

out with the glands removed at P0 to identify the limit of the
neural crest, which was found to lie between the thyroid (Wnt1
positive) and cricoid (Wnt1 negative) cartilages, with the tracheal
rings being mesodermal (Figure 5K). This therefore places the
thymus, thyroid and parathyroids within the mesoderm, despite
the glands themselves having a neural crest origin. In the Fgf10
null the trachea cartilages are severely mispatterned (Sala et al.,
2011). We therefore investigated tracheal cartilage formation at
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FIGURE 3 | Cleft palate but normal pituitary formation in Wnt1creFgf10 mutant mice. (A,C,E) Fgf10 fl/fl Control. (B,D,F) Wnt1creFgf10 mutant. (G,H)

Fgf10 −/−. (A,B) Frontal histology sections through the palate at the level of the molars at E15.5. The palatal shelves have not formed correctly in the conditional

mutant. (C,D) Skeletal preps of the palate at E19.5. Arrow in C points to the WT palatal processes of the maxilla that have met in the midline. These processes are

missing in the conditional mutant and the underlying vomer (arrowhead) is visible. (E–H) Developing pituitary gland. (E,F) The anterior and posterior lobes form as

normal in the conditional mutant at E15.5. (G,H) The anterior lobe is missing but the posterior lobe is still evident in the Fgf10 null at E15.5 (G) and E18.5 (H). A =

anterior lobe derived from oral ectoderm. P = Posterior lobe derived from neuroepithelium. BS = Basisphenoid. Scale bars in (A,B) = 500µm. Scale bars (C,D) =

200µm. Scale bars (E–H) = 200µm.

E19.5 by skeletal prep in the conditional mutants. As expected,
given the limit of the neural crest in this region, the cartilage rings
were unaffected in the conditional mutants (N = 2/2), matching
the pattern in littermate controls (Figures 5I,J).

DISCUSSION

The development of the ocular and submandibular and
sublingual salivary glands was completely dependent on Fgf10
signaling from the neural crest derived mesenchyme, with
development arresting at early initiation stages as in the null.
This paper therefore confirms that the Fgf10 expressing ocular
and salivary gland mesenchyme is derived from the neural crest.
As expected, palate development was also disrupted after loss of
Fgf10 in the neural crest derived mesenchyme of the developing
palatal shelves, and the conditional mutation is likely to cause
lethality.

In contrast to these cranial glands othermore posterior glands,
such as the thyroid, thymus, and parathyroids did not phenocopy
the complete loss of Fgf10. The thymus, parathyroids and thyroid
initiate within neural crest derived mesenchyme (Müller et al.,
2008; Johansson et al., 2015) and then migrate more posteriorly
to sit within mesodermally derived mesenchyme, as supported
by our neural crest lineage analysis of the trachea, and previous
lineage tracing that mentions the tracheal rings are not neural
crest derived (Matsuoka et al., 2005). All of these glands are
severely affected in the Fgf10 null but the conditional mutants
had amilder phenotype. In all three glands it is possible that other
Fgfs and alternative signaling pathways are able to compensate
for the initial loss of Fgf10 in this tissue, allowing their initiation,
while mesodermal Fgf10may be able to act once the glands have

reached their final positions in the neck. In agreement with this
Fgf10 is expressed in the mesenchyme around the thymus at
E13.5, a stage after the glands have reached their final position
(Revest et al., 2001), and is strongly expressed in the ventral
mesenchyme of the developing trachea from E14.5 (Sala et al.,
2011). Mesodermal Fgf10 is therefore in the right place to be able
to signal to the more posterior glands. It is also possible that
signals between these tissues and other neighboring structures
are important for their development, and that their presence is
interdependent.

Early on in development Fgf10 is strongly expressed in the
oral epithelium. It was therefore possible that some of the
orally derived structures would have a reduced phenotype when
compared to the Fgf10 null. The glands of the oral cavity,
however, appeared to mimic the null phenotype indicating that
only the loss of Fgf10 in the neural crest was critical. Moreover
the epithelial expression appeared to have no influence on the
developing teeth, the molars having only a very minor defect in
relative size similar to the null (Ohuchi et al., 2000). It would
therefore be interesting to see whether knocking out Fgf10 in
the early epithelium has any effect on development of these key
structures. As expected development of the pituitary, limbs and
lungs was normal in the conditional knockout, in which Fgf10
was provided by the neuroepithelium and mesoderm rather than
neural crest. The tracheal rings were also normal highlighting
the fact that the Fgf10 expressing mesenchyme that forms the
cartilage rings is not neural crest derived.

Our comparison of the conditional mutants with the Fgf10
null mutants revealed a few differences between the phenotype
observed in our null mice and in previously published data. For
example, although it has been reported that the thyroid fails
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FIGURE 4 | Loss of Salivary and ocular glands in Wnt1creFgf10 mutant mice. (A–D,I) Fgf10 fl/fl Control. (E–H,J) Wnt1creFgf10 fl/fl mutant. (K) Fgf10 −/−.

(A,E) E15.5 head ventral view looking up at the paired submandibular and sublingual glands (arrow). The glands are missing in the mutant (asterix). (B,F) E15.5 head

dissected down the middle to reveal the glands at the base of the tongue, outlined in red and arrowed. The glands are missing in the conditional mutant (arrowhead).

(C,D,G,H,K) Frontal sections at the level of the tongue at E15.5. (C,G) The branching epithelial tissue of the salivary gland is observed in the control (arrow) but are

missing in the mutant. The mesenchymal capsule, however, is still evident (arrow). (D,H,K) Posterior tongue showing the single circumvallate papilla (CVP) in the center

(arrow in D). (H,K) A CVP formed in the null and conditional but was smaller than in the WT. (I,J) Frontal sections of the eye at E15.5. The harderian gland at the back

of the eye failed to form in the conditional mutant (asterix in J). Scale bars (A,B) = 500µm, same scale in (E,F). Scale bars (C,D,G,I) = 200µm, same scale in (H,J,K).

to form in Fgf10 null mice (Ohuchi et al., 2000) in our null
mice a small amount of glandular tissue was present around the
trachea in the region of the thyroid but this was only observed
unilaterally. Interestingly, in the Ohuchi paper although the text
states no gland forms the figures highlight a rudimentary thyroid.
The thyroid therefore does appear to be able to form in the
complete absence of Fgf10 but is severely hypoplastic, while we
saw no evidence of a parathyroid.

We also observed development of a hypoplastic CVP in the
tongue, which had previously been reported as missing in the
Fgf10 mutant (Petersen et al., 2011). Fgf7 is also expressed in
the mesenchyme of the developing tongue and may compensate
for the loss of Fgf10 in this structure (Sohn et al., 2011). These
differences with the published data may indicate variation due to
genetic background. For our studies we investigated Fgf10 nulls
on a mixed C57Bl6/CD1 background, while other papers have
used a mixed C57bl6/CBA or C57Bl6/129SVJ or not reported the

background used (Min et al., 1998; Sekine et al., 1999; Ohuchi
et al., 2000; Rice et al., 2004; Petersen et al., 2011). In fact the
arrest in limb development was reported to occur at slightly
different time-points when the Fgf10 knockout was originally
reported by two groups, with the difference being suggested to
be due to genetic background (Min et al., 1998; Sekine et al.,
1999). Our findings have therefore shed light on the structures
affected by neural crest expressing Fgf10 but have also revealed
some differences in the published literature which merit further
investigation.
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FIGURE 5 | Cranial gland and trachea development in the Wnt1creFgf10 mutant mice. (A,D,G,I) Fgf10 fl/fl Control. (B,E,H,J) Wnt1creFgf10 mutant. (C,F)

Fgf10 −/− null mice. Frontal sections E15.5. (A,B,C) Developing thyroid glands (arrowed) A severely hypoplastic gland was observed in the null mutant but was

missing on one side (asterix). (D,E,F) Developing parathyroid glands (arrows). No parathyroid was observed in the Fgf10 null. (G,H) Developing Thymus glands

(arrow). (I,J) Alcian blue staining for tracheal cartilages at E19.5. Dissected trachea show normal morphology with formation of cartilage rings. (K) The neural crest, as

marked by red in Wnt1cre/tdTom mice, does not extend down the trachea past the thyroid cartilage as shown at Postnatal day 0. PT = parathyroid. Scale bars

(A–C,G,H) = 200µm. Scale bars (D–F) = 100µm. Scale bars (I–K): 500 µm.
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