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Abstract
Determining how intrinsic cellular properties govern and modulate neuronal input–output processing is a critical
endeavor for understanding microcircuit functions in the brain. However, lack of cellular specifics and nonlinear
interactions prevent experiments alone from achieving this. Building and using cellular models is essential in these
efforts. We focus on uncovering the intrinsic properties of mus musculus hippocampal type 3 interneuron-specific (IS3)
cells, a cell type that makes GABAergic synapses onto specific interneuron types, but not pyramidal cells. While IS3
cell morphology and synaptic output have been examined, their voltage-gated ion channel profile and distribution
remain unknown. We combined whole-cell patch-clamp recordings and two-photon dendritic calcium imaging to
examine IS3 cell membrane and dendritic properties. Using these data as a target reference, we developed a
semi-automated strategy to obtain multi-compartment models for a cell type with unknown intrinsic properties. Our
approach is based on generating populations of models to capture determined features of the experimental data, each
of which possesses unique combinations of channel types and conductance values. From these populations, we
chose models that most closely resembled the experimental data. We used these models to examine the impact of
specific ion channel combinations on spike generation. Our models predict that fast delayed rectifier currents should
be present in soma and proximal dendrites, and this is confirmed using immunohistochemistry. Further, without A-type
potassium currents in the dendrites, spike generation is facilitated at more distal synaptic input locations. Our models
will help to determine the functional role of IS3 cells in hippocampal microcircuits.
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Significance Statement

For any given neuron, its intrinsic properties determine the conversion of synaptic inputs into spike output.
Nonetheless, the intrinsic profile of many neuronal types remains largely unknown due to the absence of
cell-specific tools and technical challenges. To overcome this, we developed multi-compartment models to
make predictions about cellular intrinsic properties and input–output relationships. We used a semi-
automated strategy involving populations of models to capture electrophysiological features of the cell type.
We focused on type 3 interneuron-specific cells, a class of GABAergic interneurons that may exert
disinhibitory control on hippocampal microcircuits. Our models predicted the presence of fast delayed
rectifier potassium currents and the absence of slow delayed rectifier channels, and this was confirmed
experimentally.
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Introduction
Uncovering the intrinsic cellular properties that control

the input–output processing within brain microcircuits is
highly challenging due to the large diversity of voltage-
gated ion channels (VGCs) expressed by individual
neurons and their variable distribution across the cell
structure. In particular, the spatial location of VGCs de-
termines the integration of synaptic inputs by specific
subcellular regions. Because of the difficulty in investigat-
ing subcellular properties with purely experimental means,
multi-compartmental modeling has been used as a key tool
to explore the contributions of different VGC types (Carnev-
ale and Hines, 2006).

Traditionally, morphologically detailed multi-compartment
models are developed using hand-tuning methods (De
Schutter and Bower, 1994; Migliore et al., 1995, 1999;
Saraga et al., 2003; Lawrence et al., 2006; Hu et al., 2010),
where passive and active parameter values are ad-
justed manually until the model reproduces experimentally
observed electrophysiology characteristics (e.g., spike fre-
quency). Recognizing that similar outputs can be achieved
with different sets of parameter values, along with inherent
biological variability, model database approaches have been
developed (Prinz et al., 2003; Günay et al., 2008; Hay et al.,
2011; Sekulić et al., 2014). These approaches typically gen-
erate populations of models by varying VGC maximal con-
ductances and extracting a subset of the models that best
match the experimental data. Often, however, information
on the types of VGCs and their biophysical details is
not available. While having multi-compartment models to
determine the roles of particular cell types in microcircuit
dynamics is useful, how best to proceed in building multi-
compartment models with limited experimental data is un-
clear. Furthermore, some sort of cyclic approach between
model and experiment is clearly warranted, as models re-
quire continuous updating as more experimental data be-

comes available. In particular, Sekulić et al. (2014) designed
a cyclic model database approach where the database de-
sign hinged on a particular question. In this way, they not
only obtained populations of models representing the par-
ticular cell type for subsequent examination, but they also
motivated specific experimental studies for future consider-
ation. However, their starting point requires that a “refer-
ence” multi-compartment model with known densities and
distributions of VGCs that can capture the experimental data
already exists. This would typically have arisen from previ-
ous hand-tuning work. Given that not all cell types possess
such multi-compartment model representations, and that
hand tuning is not the most efficient method for investigating
parameter spaces, developing other approaches would be
useful.

Here, we devised a strategy that uses populations of
models in conjunction with hand tuning to generate multi-
compartment models with characteristics that match fea-
tures from electrophysiological recordings. We chose not
to fully automate the process to allow flexibility in the
model-building process, when no particular VGC data
are available. At the same time, the partial automation
through use of populations of models reduced the sub-
jectivity and tediousness of pure hand tuning. We applied
our strategy to obtain reference multi-compartment
models for an identified cell type, the CA1 type 3
interneuron-specific (IS3) cell in the hippocampus. The
models provided suggestions of types, densities and
distributions of VGCs in IS3 cells.

The IS3 cell is a type of inhibitory interneuron that
exclusively targets other interneurons and does not con-
tact pyramidal cells (Acsády et al., 1996a,b; Gulyás et al.,
1996). IS3 cells may receive excitatory inputs from the
entorhinal cortex via the perforant path, from the CA3 area
via Schaffer collaterals (SCs) and from CA1 local collat-
erals (Francavilla et al., 2015). Through photostimulation
experiments and paired recordings, it has been shown
that IS3 cells provide a major local source of inhibition to
oriens-lacunosum moleculare (OLM) cells, and optimally
control their firing at theta frequencies (Chamberland
et al., 2010; Tyan et al., 2014). OLM cells in turn are known
to provide a gating function in the information flow from
the perforant path to the hippocampus (Maccaferri and
McBain, 1995; Leão et al., 2012). We used our developed
multi-compartment models with different combinations of
VGCs to investigate how the type and location of dendritic
conductances in conjunction with synaptic input influ-
enced the IS3 output.

Our strategy for building multi-compartment models
can be considered for other cell types where no VGC
information is available. The developed models can then
provide guidance to experimentalists in narrowing down
which biological details are both plausible and important
in microcircuit function. Moreover, the models can be
used as reference models for subsequent examination. In
this study, our developed multi-compartment IS3 cell
models with fast delayed rectifier potassium channels
distributed in the soma (S) and proximal dendrites (D) can
capture the experimental data.
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Materials and Methods
Slice preparation

Transverse hippocampal slices (300 �m) were prepared
from the vasoactive intestinal polypeptide/enhanced
green fluorescent protein (VIP-eGFP; Gensat) mice of ei-
ther sex (postnatal day 14–23) in accordance with the
animal welfare guidelines of Laval University. Animals
were anesthetized deeply with isoflurane and decapi-
tated. The brain was dissected carefully and transferred
rapidly into an ice-cold (0 to �4°C) solution containing the
following (in mM): 250 sucrose, 2 KCl, 1.25 NaH2PO4, 26
NaHCO3, 7 MgSO4, 0.5 CaCl2, and 10 glucose oxygen-
ated continuously with 95% O2 and 5% CO2, pH 7.4,
330–340 mOsm. Slices were cut using a vibratome (Mi-
crom, Fisher Scientific); were transferred to a heated
(35°C) oxygenated recovery solution containing the fol-
lowing (in mM): 124 NaCl, 2.5 KCl, 1.25 NaH2PO4, 26
NaHCO3, 3 MgSO4, 1 CaCl2, and 10 glucose; pH 7.4, 300
mOsm; and were allowed to recover for 45 min. Subse-
quently, samples were kept at room temperature until use.

Electrophysiological recordings
Slices were perfused with standard artificial CSF con-

taining (in mM): 124 NaCl, 2.5 KCl, 1.25 NaH2PO4, 26
NaHCO3, 2 MgSO4, 2 CaCl2, and 10 glucose saturated
with 95% O2 and 5% CO2, pH 7.4, at 28–32°C. VIP-eGFP
cells were visually identified for whole-cell patch-clamp
recordings. For current-clamp recordings, the intracellular
solution contained (in mM): 130 KMeSO4, 2 MgCl2, 10
diNa-phosphocreatine, 10 HEPES, 2 ATP-Tris, 0.2 GTP-
Tris, and 0.3% biocytin (Sigma-Aldrich), pH 7.2–7.3, 280–
290 mOsm/L. To block synaptic activity in some
recordings, gabazine (2 �M) as well as glutamate receptor
antagonists L-AP5 (50 �M) and NBQX (12.5 �M) were
applied. For hyperpolarization-evoked responses (i.e.,
�100 and �90 pA current injections), 25 traces were
taken from 14 different cells. For passive depolarization-
evoked responses (i.e., 10 and 20 pA current injections),
11 traces were taken from eight cells. For active
depolarization-evoked responses (i.e., 10–140 pA current
injection), 56 traces were taken from 14 cells. For
depolarization-evoked spike-block recordings (i.e., 450–
700 pA current injections), 18 traces were taken from
three cells.

Two-photon calcium imaging
Dendritic Ca2� imaging was performed using a TCS

SP5 two-photon laser-scanning microscope (Leica Micro-
systems) based on a Ti-sapphire laser (Chameleon Ultra
II, Coherent; �3 W, 140 fs pulses, 80 Hz repetition rate)
tuned to 800 nm. A long-range water-immersion objective
[40�; numerical aperture (NA), 0.8] was used to collect
photons in the epifluorescence mode with external
photomultiplier tubes. Neurons were filled with Oregon
Green® 488 BAPTA-1 (OGB-1) via the patch electrode for
20–30 min before imaging. Red fluorescence from Alexa
Fluor 594 was used to locate dendrites of interest. To
measure Ca2� signals, green fluorescence was collected
during 400 Hz line scans across dendritic segments of
2–15 �m. Fluorescence changes were quantified as changes in

green fluorescence from the baseline (i.e., (F � F0)/F0), referred
to as �F/F in Figure 1C–E.

Morphological reconstructions
For morphological reconstructions of IS3 cells, re-

corded neurons were filled with biocytin (Sigma-Aldrich)
during whole-cell recordings. Slices with recorded cells
were fixed with 4% paraformaldehyde (PFA), rinsed in
TBS, and incubated with Streptavidin-Alexa Fluor 488
overnight at �4°C, following which the slices were
mounted. Confocal z-stacks were acquired using a Leica
SP5 microscope (Leica Microsystems) with a 1 �m step.
Morphological reconstructions were performed using the
Neurolucida 8.26.2 software (MBF Bioscience).

Neurochemical analysis
For neurochemical analysis, animals were perfused

with 4% PFA and hippocampal sections (thickness, 30
�m) were prepared using a vibratome (VT1000, Leica
Microsystems). Sections were permeabilized with 0.1%
Triton X-100 in TBS and incubated in blocking solution
containing 20% normal goat serum for 1 h. After this step,
sections were incubated with anti-GFP (chicken, 1:1000;
Aves Labs) and either anti-KCNB1 (mouse, 1:1000;
Sigma-Aldrich) or anti-KCNC1 (rabbit, 1:500; Sigma-
Aldrich) primary antibodies at room temperature for
24–48 h. For KCNC1, slices were incubated the following
day with biotinylated anti-rabbit (goat, 1:200; Vector Lab-
oratories) antibodies for 4 h at room temperature, then for
24 h with A/B reagents (1:100; Vectastain ABC Kit, Vector
Laboratories) at room temperature. The following day,
slices were incubated for 2 h with the following conju-
gated secondary antibodies: anti-chicken Alexa Fluor 488
(1:1000; Jackson ImmunoResearch); and either anti-
streptavidin Alexa Fluor 546 (1:200; Jackson ImmunoRe-
search) or Alexa Fluor 647 (1:250; Invitrogen). Slices were
then rinsed and mounted on microscope slides. Confocal
images of labeled sections were obtained using a Leica
TCS SP5 imaging system equipped with a 488 nm argon,
a 543 nm HeNe, and a 633 nm HeNe laser, with a 63�
(NA, 1.4) oil-immersion objective (Leica Microsystems).
Based on previous observations (Tyan et al., 2014), GFP-
expressing bipolar cells with a small size cell body (10–15
�m) and vertically oriented dendrites were considered as
putative IS3 cells, and were used for analysis of the
voltage-gated K� channel subunit (Kv) expression.

Simulation and analysis software
All simulations were performed using the NEURON

software environment (Carnevale and Hines, 2006). In
some instances, these simulations were computed using
the Neuroscience Gateway for high-performance com-
puting (Sivagnanam et al., 2013). All simulations as well as
experimental recordings were analyzed using a MATLAB
toolbox called PANDORA (Günay et al., 2009) as well as
customized MATLAB code. Models will be made publicly
available on ModelDB (Hines et al., 2004) following pub-
lication of this article.
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Model morphology and compartmentalization
Topological information provided by the morphological re-

construction of an IS3 cell was imported directly into NEURON.
The morphological structure was then subdivided into multiple
compartments until the point where the compartments were
small enough to be considered isopotential. The topological
model is shown in Figure 1A. Because inclusion of the full axon
in the model requires more specifics regarding biophysical
axonal properties (i.e., channels types and distributions) and
more computational strain, we considered a reduced morpho-
logical version where the axon is cut down to a small remaining

section (M2) relative to the full version with the axon intact (M1;
Fig. 1A). In the M2 version, there were 221 compartments,
compared with 653 in the full M1 version, and the surface area
was reduced from 20,871 to 7297 �m2 (�35% of the original
surface area). While both morphologies were considered, we
focused on the M2 version.

Model passive properties
The passive parameters of the model were adjusted

such that resting membrane potential, input resistance,
and membrane time constant were matched with their

Figure 1. Morphological, membrane, and dendritic properties of IS3 cells. A, Topological model of an IS3 cell full morphology (M1) and with
axonal branches removed (M2). B, Experimental IS3 cell traces during current-clamp recording showing IS3 cell electrophysiological features in
two cells. In cell 1, current step injections show hyperpolarization with minimal sag (�100 pA; red), passive response without spiking (�10 pA;
green), and depolarization with irregular spiking (�50 pA; blue). In cell 2, current injections show hyperpolarization with minimal sag (�100 pA; red),
depolarization with spiking (�50 pA; blue), and depolarization block (�500 pA; orange). Recordings were obtained in the presence of synaptic
blockers (i.e., NBQX, AP5, and gabazine). C, Two-photon image of an IS3 cell filled with Alexa Fluor 594 and OGB-1. White lines indicate where
backpropagating action potential-evoked Ca2�-transient (bAP-CaT) line scans were performed. The protocol consisted of three consecutive 2 ms,
800 pA somatic current step injections in conjunction with dendritic CaT recordings. D, Representative examples of dendritic bAP-CaTs evoked
by three APs at the soma. E, Summary plot showing average changes (solid red) and individual changes (dotted gray) in the bAP-CaT amplitude
at different distances from the soma. The dashed black line indicates the threshold level below which the calcium signal was indistinguishable from
noise.
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appropriate experimentally observed values. The passive
properties of the model were matched with raw data from
the respective cell, and not with the experimental aver-
ages. The specific membrane capacitance and axial re-
sistance parameters were restricted to appropriate
experimentally estimated ranges. The average measure-
ment of specific membrane capacitance in cortical pyra-
midal neurons, spinal cord neurons, and hippocampal
neurons, including interneurons, is 0.9 �F/cm2 (Chitwood
et al., 1999; Gentet et al., 2000), suggesting that the range
for this parameter is fairly consistent across many neuron
types. Values for axial resistance in individual neurons can
range from 50 to 400 �/cm (Dayan and Abbott, 2005;
Holmes, 2010).

Furthermore, in the case of the M2 morphology, passive
parameter values in the soma and dendrites were kept the
same as the passive parameter values in the M1 morphol-
ogy, but the passive parameter values in the remaining
axon sections were readjusted in order to get appropriate
resting membrane potential, input resistance, and mem-
brane time constant values. This adjustment was per-
formed to compensate for the axonal surface area
difference and is a strategy that has been used previously
(Lawrence et al., 2006). Passive properties for M1, M2,
and experimental data are given in Table 1.

Electrotonic analysis in passive model
Using the passive model and the Electrotonic Analysis

toolbox in NEURON, we looked at the natural log of
voltage attenuation across the morphology of the model,
with the soma as the electrode reference point. In this
case, the natural log of voltage attenuation is considered
the electrotonic distance (i.e., L 	 log[A]), and attenuation
(A) is measured as: A 	 voltage upstream/voltage down-
stream (i.e., where voltage upstream is an applied 1 mV
signal and voltage downstream is the downstream re-
sponse to the 1 mV signal). This definition of electrotonic
distance allows for a direct relationship to attenuation,
regardless of the cellular morphology. For this analysis,
both voltage spreading toward the soma (Vin) as well as
away from the soma (Vout) were plotted.

Semi-automated strategy
To determine VGC types, densities, and distributions in

IS3 cells, we used an approach that combined hand
tuning with automation, allowing both automated simula-
tions and examination of multiple features to simultane-
ously capture various modes of IS3 cell dynamics. The
steps in this strategy (illustrated in Fig. 2) are outlined
here, where each step is prefaced by whether it is an
automated (Auto) or manual (Hand) step:

Table 1: Model passive properties

Morphology RN (M�) �m (ms) Resting Vm (mV) Cm (�F/cm2) Ra (�/cm) Gm (S/cm2)
M1 411.8 24.2 �69.7 0.9 255 0.000019
M2 414.3 24.2 �69.7 4 (Axon) 300 (axon) 0.000185 (axon)
Experimental/literature 413.0 24.2 �69.7 0.9 
 0.3 100-300 N/A

Passive property measurements (columns 2–4) and passive parameter values (columns 5–7) for both computational morphologies (without active properties)
compared with the experimental (columns 2–4) and literature (columns 5–7) values. Note that for M2, the parameter values listed refer to the values set for
the remaining axon segments. The M2 somatic and dendritic parameter values are the same as those listed for M1. RN, input resistance; �m, membrane time
constant; Vm, membrane potential; Cm, specific membrane capacitance; Ra, axial resistance; Gm, specific membrane conductance; N/A, not applicable.

Figure 2. Semi-automated strategy. Flowchart outlining the
steps in the approach that we used to develop the IS3 cell model
databases. Note that gray boxes indicate steps that were per-
formed manually through hand tuning, and green boxes indicate
steps that were automated within NEURON and MATLAB.
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0. [Hand] Setup stage: a model morphology with pas-
sive properties needs to be in hand along with the
chosen experimental electrophysiological signa-
ture features obtained at different current steps
[i.e., current injection protocols (CIPs)]. The key
signature features used for IS3 cells are a lack of
sag during hyperpolarization, a passive response
without spiking, depolarization with normal spiking,
and depolarization block (Table 2, second column;
Fig. 1B). Experimental traces with these features
were selected and they had CIPs of �100, �20,
�50, and �500 pA (Table 2, first column). Addition-
ally, an initial set of VGC types needs to be chosen and
hand tuning used to find a single set of parameter
values that approximately matches electrophysiological
features. These parameter values are then used as a
basis to generate a population of models. We chose
three to four parameter values that encompassed each
of the initial hand-tuned values (the maximal conduc-
tance values were used; see Table 6).

1. [Auto] Generate model database: a population of mod-
els was generated in the NEURON software environ-
ment where each model possessed a unique
combination of channel conductance values. The CIPs
were applied to each model, and the voltage traces
generated from each model were imported into MAT-

LAB using PANDORA (Günay et al., 2009) and orga-
nized into databases.

2. [Auto] Eliminate inappropriate models: the models that
did not capture IS3 cell features at the given CIPs were
eliminated. The criteria used were based on an exami-
nation of the experimental data (see Results and
Table 2, fifth column).

3. [Auto] Compute model measurements: for the remain-
ing models, characteristic measurements for each fea-
ture were determined (Table 2, third column).
Specifically, each CIP possessed its own set of char-
acteristic measurements (e.g., spike amplitude mean at
�50 pA, potential sag at �100 pA). For �100 pA, 5
measurements were evaluated; for �20 pA, 1 measure-
ment was evaluated; for �50 pA, 10 measurements
were evaluated; and for �500 pA, 2 measurements
were evaluated. Although computation of most of these
measurements already exists in the PANDORA toolbox,
the following two customized measurements needed to
be added: membrane potential (Vm) difference and
membrane potential difference in the last 700 ms of the
CIP.

4. [Auto] Generate a quality metric for each model: each
measurement for each model was compared with the
same measurement from the selected experimental
traces representing the signature feature. Dashed lines
in Figure 3 histograms show the measurements ob-
tained from the selected traces (Table 2, fourth column)
used in comparison with the model measurements. The
normalized Euclidean distance (Günay et al., 2009) be-
tween each model and selected experimental trace
measurements was then computed as follows:

dx,y � �
i�1

N
�xi � yi�

N�i

Table 2: IS3 cell signature features, CIPs, measurements, and model elimination criteria
CIP step Signature feature Characteristic measurements of feature Selected IS3 cell

measurement values

Elimination criteria (step 2)

�100 pA Lack of “sag” (1) Hyperpolarization Vm Difference

(mean pulse value � mean initial value)

�34.2649 mV None

(2) Minimum potential time 58.9000 ms
(3) Minimum potential �112.6709 mV
(4) Potential sag 6.7865 mV
5) Sag time constant 14.3000 ms

20 pA No spiking (1) Passive depolarization Vm difference

(mean pulse value � mean initial value)

12.4910 mV If spikes are observed

50 pA Normal spiking (1) Active depolarization Vm difference

(mean pulse value � mean initial value)

29.4174 mV If fewer than three spikes are observed

If membrane potential fails to repolarize
(2) Interspike interval 36.6898 ms
(3) First spike time 33.1000 ms
(4) Spike voltage threshold mean �44.3428 mV
(5) Spike half-width mean 1.0301 ms
(6) Spike amplitude mean 61.7296 mV
(7) Spike rate 35.0044 Hz
8) Spike maximum afterhyperpolarization mean 6.8820 mV
(9) Number of spikes 28.0000
(10) Spike frequency adaptation 1.3305

500 pA Depolarization block (1) Depolarization block Vm difference (final 700 ms mean

pulse value � mean initial value)

62.6461 mV If spikes in the last 700 ms of the CIP are observed

If membrane potential fails to repolarize

If spikes in the recovery period are observed(2) Initial 100 ms spike rate 60.0000 Hz

For each CIP step (1st column) we note a signature feature that is observed experimentally (2nd column), characteristic measurements that are used to quan-
tify the signature feature (3rd column), characteristic measurement values from the selected IS3 traces (4th column), as well as conditions where models
would be rejected for clearly not capturing the experimental feature (5th column). CIP, Current Injection Protocol; Vm, membrane potential.

Table 3: Statistical tests

Data
Data
structure Type of test Power

bAP-CaT amplitude
at soma vs 50 �m

Unknown Signed rank test 0.260

bAP-CaT amplitude
at soma vs 150 �m

Unknown Signed rank test 0.028

bAP-CaT amplitude
at 50 vs 150 �m

Unknown Signed rank test 0.043
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Figure 3. Experimental measurement histograms. A–R, The histograms are generated from data where the criterion is that they exhibit
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In this case, xi and yi represent the ith measurement
(Table 2, third column) of N total measurements for
the simulation (x) and experiment (y; Fig. 3, dashed
lines), respectively. Since dx,y was generated using
only one experimental trace for each CIP, the exper-
imental measurement SD �i was set to 1 for each
measure and, therefore, had no effect on the nor-
malization. The goal here is to use a metric to sort
the remaining models relative to the selected exper-
imental traces and so obtain representative models.
In this sense, dx,y serves as a quality metric. The
normalized Euclidean distance was evaluated for
each CIP, and then the four CIP normalized Euclid-
ean distances were averaged together so that equal
importance was given to each signature feature.
However, since there are a different number of mea-
surements for each CIP, each measurement did not
have equal importance. We felt that this was reason-
able to do at this stage, given that it is unknown
which specific dynamic regimes are more or less
important for IS3 cell function in hippocampal micro-
circuits.

5. [Auto] Find representative models: the models were
ranked using the quality metric from smallest (“best”)
normalized Euclidean distance to largest. This al-
lowed us to obtain ranked, representative models for
each database, albeit qualitative in nature.

6. [Hand] Adjust parameter space: the model parameter
space was adjusted to reduce the number of models
that were eliminated in step 2 of the following itera-
tion (i.e., in cycling back to step 1). This hand-tuning
step was performed using clutter-based dimensional
reordering (CBDR) plots, a method used previously
by Taylor et al. (2006). CBDR plots allow a visualiza-
tion of the parameter space such that it is easy to see
when models in the database are eliminated. Further,
these plots visualize the structure of the conductance
parameter space by reordering the channel conduc-
tance parameters along the N-dimensional tensor in
order to sort higher-order channels from lower-order
channels (i.e., channels that have a greater or smaller
impact, respectively, on normalized Euclidean dis-
tance). In other words, each pixel in these plots rep-
resents a different model with a unique set of VGC
conductance values, whose value can be extrapo-
lated from the scale bars on the x- and y-axes using
the maximal conductance values found in Table 6. To
minimize space in the CBDR plots where models had
been eliminated (Fig. 4B1–B3, black pixels) we ad-
justed the parameter values (in range and resolution)
to use in generating the next database (step 1) focus-

ing only on conductance parameter spaces that had
generated good models. A cycling process of this is
shown in Figure 5. In some instances, we avoided
parameter sets for particular reasons (e.g., low-
amplitude spikes caused by low transient sodium
conductances in SDprox.1; Fig. 5, Cycle 2) even
though they were not eliminated in step 2. Once it
was no longer possible to increase the parameter
space from the inspection of CBDR plots, we moved
to step 7.

7. [Hand] Adjust channel types: the model channel dis-
tributions and/or channel types were adjusted to im-
prove the ability of the models to capture signature
experimental features. That is, we analyzed different
cases where each case possessed different distribu-
tions of channels or had added, altered, or removed
channel types, and decided whether there were im-
provements (Fig. 4C). Once manual adjustments
were made, we returned to step 1.

The overall process is terminated when it is no longer
possible improve on the quality metric and the resulting
models capture the known experimental data. As these
last steps are manual, this termination point is qualita-
tively determined.

Uniform channel distributions in soma and proximal
dendrites

To incorporate dendritic VGC distributions consistent
with the calcium imaging data, we specified channel con-
ductance values that were uniform across the soma and
proximal dendrites. We considered this as reasonable
since there are no data to support particular distributions
(e.g., exponential). A Boltzmann function was used to
describe the relationship between the channel conduc-
tance and distance from the soma such that non-zero
conductances were present only in the soma and proxi-
mal dendrites (so, overall, a non-uniform distribution), as
follows:

f(p) � G �
G

1 � exp (k 	 (d � p))

where f(p) is the distance-dependent conductance, p is
the distance along the dendrite (in �m), G is the desired
conductance value in the proximal dendrite (in S/cm2),
and k is a value of 10 (in �m�1) in order to allow a sharp
decrease in conductance at around d, where a d of 55, 75,
or 95 ensures that the decrease in conductance occurs at
around 50, 70 or 90 �m from the soma. Thus, this equa-
tion describes the relationship between channel conduc-
tance and distance from soma, and the parameters are

continued
hyperpolarization (A–E; CIPs include �100 and �90 pA for the “lack of sag feature”), passive depolarization (F; CIPs include 10 and
20 pA for the “no spiking feature”), depolarization with spiking (G–P; CIPs range from 10 to 140 pA with 10 pA intervals for the “normal
spiking feature”), or depolarization block (Q, R; CIPs range from 450 to 700 pA with 50 pA intervals for the “depolarization block
feature”). Note that the dashed lines indicate the measurements obtained from the selected IS3 cell experimental trace used to
compute the distance metric for each model. The signature features, and characteristic measurements and their values are given in
Table 2 (second, third, and fourth columns).
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tuned in such a way that the conductance is uniform at a
value of G up to a distance of 50, 70, or 90 �m from the
soma, after which it drops sharply to 0 S/cm2.

Analysis of the input–output relationship in IS3 cell
models

To understand how the intrinsic properties could affect
spike generation in IS3 cells, models were analyzed re-
garding the required input for spike generation. This was
done by defining a synaptic conductance that is activated
due to a single presynaptic spike to a target point along
the dendritic tree of the model. In this case, a point
process is used to describe the synapse as a two-state

kinetic scheme to produce synaptic current according to
the following:

i � G(v � e)

G � weight 	 factor 	 �exp��
t

tau2�
� exp��

t
tau1��,

where i is the synaptic current (in nA), G is the synaptic
conductance (in �S), v is the membrane potential (in mV),
e is the reversal potential (set to 0 mV), weight is synaptic
weight (in �S), factor is a NEURON process used to

Figure 4. Semi-automated strategy and model databases. A1–A3, Top models in S.1, S.2, and SD. The current injection protocol is
�100, �20, �50, and �500 pA. B1–B3, Parameter spaces for S.1, S.2, and SD (from left to right), as visualized using CBDR. Each
pixel represents a single model and the distance metric of that model. Conductance axes are organized such that overall
low-conductance models are in the bottom left quadrants and overall high-conductance models are in the top right quadrants. Black
pixels represent models that are eliminated in step 2 and are assigned a distance value of 100 as a result. For S.1, S.2, and SD,
respectively, 182 of 432, 59 of 81, and 42 of 81 models did not get rejected (i.e., the remaining colored pixels). C, Example
experimental and model database (i.e., for S.1, S.2, and SD) voltage trace measurement histograms for spike half-width and first spike
time during 50 pA stimulation. The additional flowchart above the figures shows example rationales for the changes that were made
among the S.1, S.2, and SD distributions, including reasoning for why the S.2 models best captured IS3 experimental features.
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Figure 5. Example adjustments made in between parameter refinement cycles for SDprox.1 and SDprox.2 model databases. A, For

New Research 10 of 26

July/August 2016, 3(4) e0087-16.2016 eNeuro.org



normalize the peak synaptic conductance to 1 (i.e., it
ensures that the peak of G in response to a single pre-
synaptic spike is equal to weight), t is time (ms), tau1 is the
rise time (set to 0.2 ms), and tau2 is the decay time (set to
2 ms). Although rise time and decay time can vary across
different cell types, the values used were chosen based
on the measurements in other interneuron types in hip-
pocampus (Tóth, 2010). A full examination of synaptic
parameters and their effects on spike generation was
beyond the scope of this study.

The synaptic model was incrementally moved to differ-
ent locations along the dendrite. At each location, the
minimum weight value necessary to evoke an action po-
tential at the soma was numerically determined by in-
creasing the weight in increments until the somatic
membrane potential surpassed �20 mV in response to a
single presynaptic spike. After a somatic spike was re-
corded, the synapse was then moved to a further den-
dritic location, and the process was repeated until the
entire dendritic arbor was analyzed. Importantly, increas-
ing the weight of a single synapse would eventually lead
to a saturation point where (v – e) 	 0 because v would
become so depolarized that it was essentially equal to the
synaptic reversal potential (e 	 0 mV) at the dendritic site
of the synapse. At this saturation point, no additional
current could be generated, regardless of whether weight
was further increased (i.e., because i 	 G�(v – e) 	 G�0 	
0 pA). To track this, we recorded the change in the
membrane potential at the site of the synapse in the first
1 ms following the synaptic event.

Results
The morphological and membrane properties of IS3

cells have been reported (Chamberland et al., 2010; Tyan
et al., 2014); however, the diversity and spatial distribution
of VGCs in these cells remain unknown. To simulate how
specific types of VGCs located at distinct subcellular
domains can affect the IS3 cell input–output properties,
we developed a semi-automated strategy (Fig. 2), which
generated models mimicking the voltage dynamics seen
in IS3 cells. This required the following: (1) experimentally
obtained electrophysiological signature features to cap-
ture; (2) a compartmentalized model morphology with
appropriate passive properties; and (3) initial choices for
VGCs.

Experiment: electrophysiological features of IS3 cells
To use our strategy to estimate IS3 cell VGC composi-

tion, we first determined the electrophysiological features
that should be captured. For this, we examined voltage
traces obtained in response to different current steps, a

CIP, in the presence of synaptic blockers to explore IS3
intrinsic cell membrane properties. We note that previous
work has shown that CIPs are a simple protocol that
sufficiently exposes the dynamics of a cell (Druckmann
et al., 2011). We observed the following.

First, during hyperpolarizing steps, IS3 cells exhibited a
small membrane potential sag (Fig. 1B, red traces). With
depolarizing steps, IS3 cells first exhibited a passive re-
sponse (Fig. 1B, green trace) and then began spiking (Fig.
1B, blue trace, cell 2). The data obtained here is consis-
tent with a previously recorded rheobase in these cells of
42.8 
 8 pA (Tyan et al., 2014). Also, these cells exhibited
irregular firing patterns, with occasional demonstrations
of regular adaptive firing (Fig. 1B, blue traces). At higher
depolarization steps, progressive spike amplitude adap-
tation was observed (Fig. 1B, blue trace, cell 2), with
depolarization-dependent spike block at current steps
exceeding 250 pA (Fig. 1B, cell 2, orange trace).

With this set of experimental data in mind, we made
decisions on which “signature features” to capture in our
models. Although there is variability in the electrophysio-
logical data, we needed to make assumptions on how
best to constrain the models without being overly restric-
tive or adding excessive detail that would unnecessarily
add computational strain. Thus, we chose the following
four signature features that occurred for specific CIP
ranges: lack of sag during hyperpolarization; depolariza-
tion without spiking; depolarization with normal spiking;
and depolarization block (Table 2, second column). Ex-
amples of all these signature features are shown in Figure
1B. As subthreshold membrane potential fluctuations in
the theta range similar to those described in other types of
hippocampal interneurons (Chapman and Lacaille, 1999;
Morin et al., 2010) were observed in IS3 cells, the VGC
types that could be involved were considered when mak-
ing the initial choices of VGCs. Subthreshold fluctuations
and irregular firing were included in the models by the
generic addition of noise but were not part of the semi-
automated strategy.

For each of the chosen features, we identified charac-
teristic measurements (Table 2, third column). The exper-
imental data are summarized in Figure 3, where each
panel is a histogram of a particular measurement from all
the experimental traces showing signature features. We
selected experimental traces, and the particular CIP val-
ues and measurements for them are shown in Table 2
(first and third columns; Fig. 3, histograms, dashed lines).
Trace selection was performed manually by going through
the experimental data and identifying key electrophysio-
logical regimes. While one might consider automating this

continued
SDprox.1, five cycles of steps 1 to 6 were required (Cycle 1 	 47 remaining of 243 models; Cycle 2 	 64 remaining of 243 models;
Cycle 3 	 22 remaining of 243 models; Cycle 4 	 52 remaining of 243 models; Cycle 5 	 70 remaining of 243 models). B, for
SDprox.2, three cycles of steps 1 to 6 were required (Cycle 1 	 24 remaining of 243 models; Cycle 2 	 107 remaining of 243 models;
Cycle 3 	 146 remaining of 243 models). The CBDR plots show the quality of the parameter space of the model database during each
cycle. Note that blue-boxed areas indicate parameter spaces of interest that were focused on. Red-boxed areas indicate parameter
spaces that were purposely avoided.
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aspect, because of biological variability and not knowing
the extent of IS3 cell dynamics that might be functionally
important, it would be challenging to develop appropriate
automated algorithms. Overall, we felt that this was a
balanced strategy that would allow us to capture salient
IS3 cell features. At the same time, it was necessary to
choose experimental traces to be able to automate steps
in the process (Fig. 2).

Experiment: action potential evoked dendritic
calcium signals in IS3 cells

Experiments with dendritic patch-clamp recordings and
two-photon Ca2� imaging of dendritic Ca2� elevations
evoked by backpropagating action potentials (bAPs) have
revealed that interneuron types that have a high density
of VGCs in their dendrites (in particular, of sodium chan-
nels) exhibit non-decrementing bAP-evoked Ca2� signals
(Martina et al., 2000; Topolnik et al., 2009; Hu et al., 2010;
Camiré and Topolnik, 2014). As direct dendritic record-
ings from IS3 cells are technically challenging, we per-
formed dendritic two-photon Ca2� imaging of bAP-
evoked Ca2� transients (bAP-CaTs) in these cells (Fig.
1C–E; Table 3). bAP-CaTs were evoked by the somatic
injection of three consecutive current pulses (800 pA, 2
ms), and the resulting CaTs were recorded at different
points along the dendrite. Our data showed that bAP-
CaTs had the same amplitude up until 50 �m from the
soma (soma �F/F, 0.49 
 0.08; 50 �m �F/F, 0.53 
 0.06;
n 	 9, p � 0.05, signed rank test) and declined gradually
at 150 �m from the soma (�F/F, 0.22 
 0.08; n 	 7, p �
0.05 compared with somatic CaT, signed rank test). Al-
though the data from individual cells were variable, all
cells followed the same trend, exhibiting a significant
decline in bAP-CaT amplitude between 50 and 150 �m
from the soma (50 �m �F/F, 0.53 
 0.06; 150 �m �F/F,
0.22 
 0.08; n 	 7, p � 0.05, signed rank test). These data
are consistent with previous observations in different in-
terneuron subtypes (Martina et al., 2000; Golding et al.,
2001; Topolnik et al., 2009; Hu et al., 2010; Camiré and
Topolnik, 2014) and indicate that specific types of VGCs
must be present in IS3 dendrites, and shape the bAP
propagation and Ca2� signal generation.

Model: starting choices for VGC types and
distributions

We considered several different channel types with
different distributions. At first, the following four types of
channel currents were considered: transient sodium cur-
rent (INa,t), slow delayed rectifier potassium current (IKdrs),
fast delayed rectifier potassium current (IKdrf), and A-type
potassium current (IKa), since they are known to be pres-
ent in hippocampal interneurons (Saraga et al., 2003;
Lawrence et al., 2006; Hu et al., 2010) and represent a
reasonable, minimal set of channel types that should be
able to replicate the observed firing patterns in IS3 cells.
The channel models used were obtained from a previous
OLM cell model developed by Lawrence et al. (2006)
without any alterations. The model equations are given in
Table 4 along with ModelDB (Hines et al., 2004) and
ICGenealogy (http://icg.neurotheory.ox.ac.uk/) reference
numbers.

Intrinsic, subthreshold activities in the theta rhythm and
irregular firing were captured in previous interneuron
models using IKa, persistent sodium current (INa,p), and
somatically injected white noise current (Morin et al.,
2010; Sritharan and Skinner, 2012). Since IS3 cells exhib-
ited similar electrophysiological features (Fig. 1B, cell 1,
blue trace), somatic INa,p was also included. The INa,p

model was obtained from Uebachs et al. (2010), and the
steady-state activation equation parameter values were
altered to match the parameters used by Morin et al.
(2010) and Sritharan and Skinner (2012). Note that the
steady-state mathematical structures for the INa,p model
are identical in all three of these articles (Morin et al.,
2010; Uebachs et al., 2010; Sritharan and Skinner, 2012).
Collectively, these channels were the first set of channels
used (i.e., S.1; Table 5).

We now have (1) experimentally obtained electrophys-
iological signature features to capture, (2) have a com-
partmentalized model morphology with appropriate
passive properties (see Materials and Methods), and (3)
made initial choices for VGCs and can proceed with the
semi-automated strategy (Fig. 2).

Model: determining types, densities, and
distributions of VGCs using the semi-automated
strategy

We investigated a total of 12 different scenarios (not all
are shown). This was done in multiples of three: VGCs in
the soma only; distributed uniformly in the soma and
dendrites; and distributed uniformly in the soma and den-
drites with A-type potassium channels restricted to the
soma. The first three scenarios contained our initial set of
channels, while the second and third triads of scenarios
varied the VGC types (see below). The fourth triad of
scenarios possessed L-type and T-type calcium channels
(see Discussion). As most of these scenarios were not
able to encompass the determined electrophysiological
features, they are not described any further.

We describe and present three of these scenarios in
detail (Table 5), as follows: the initial set of channels in the
soma only (S.1); the set of channels with faster potassium
kinetics in the soma only (S.2); and the set of channels
with faster potassium kinetics in the soma and dendrites
(SD). Focusing our results on these three scenarios allows
us to show the clear progression from our initial assump-
tions to our improved models, and also allows us to
demonstrate the impact of dendritic channels. Note that
distribution labels containing an “S” means somatic chan-
nels, “D” means dendritic channels, and “.x” denotes
different versions of similar distributions (e.g., different
channel types). We also investigated channels in specific
dendritic subregions. These models possessed the label
“SDprox”, meaning that they had channels in the soma
and proximal dendrites.

For S.1 (Fig. 4 A1,B1), in visualizing the parameter
space using the CBDR plots, we found that a fairly large
parameter space yields models that are capable of elicit-
ing the key features of IS3 cells (i.e., colored pixels rep-
resent models that were not eliminated in step 2).
However, looking more closely at the histograms of mea-
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surements from the database of model populations, we
noticed that they could fall completely outside those of
the experimental histogram measurements. For example,
the spike threshold was too low, the half-width was too
large (Fig. 4C, left histogram), and the spike afterhyper-
polarization was too large. In addition to this, the depo-
larization height in the membrane potential during
depolarizing current injections was also too small (i.e., not
just in the �50 pA step but also in the �20 pA and �500
pA steps). To quantify this “depolarization height” feature,
we included a measure that calculates the difference

between the average membrane potential before the cur-
rent injection and the average membrane potential during
the current injection (Table 2, third column).

To illustrate the advantage of this semi-automated
strategy over a purely hand-tuned strategy, we show the
conductance ranges at the start and end (steps 0 and 7,
respectively) of the cyclic approach for the different con-
ductances shown in Table 6. Note that they vary in their
range, and in their maximum and minimum values. Deter-
mining this by hand tuning only would be tedious, time
consuming, and potentially without success, as changing

Table 4: Voltage-gated channel equations

Channel Current equation Steady-state activation Steady-state inactivation
Transient sodium
(Lawrence et al., 2006)
ModelDB Number: 102288
ICGenealogy Number: 32

INaT �
gNaTm3h�V � ENa�

dm
dt

� 
m�1 � m� � �mm


m �
�0.1�V�38�

exp���V�38�
10

��1

�m � 4 exp���V�65�
18

�

dh
dt

� 
h�1 � h� � �hh


h � 0.07 exp���V�63�
20

�
�h �

1

1�exp���V�33�
10

�
Persistent sodium
(Uebachs et al., 2010)
ModelDB Number: 125152
ICGenealogy Number: 623

INaP �
gNaPm�V � ENa�

dm
dt

�
m��m

�

� � 5 ms

m� �
1

1�exp���V�51�
5

�

-

A-Type potassium
(Lawrence et al., 2006)
ModelDB Number: 102288
ICGenealogy Number: 18

IKa �

gKamh�V � EK�

dm
dt

�
m��m

�

� � 0.5 ms

m� � � 1

1�exp���V�41.4�
26.6

��4

dh
dt

�
h��h

�

� � 0.17�V � 105�
h� �

1

1�exp� �V�78.5�
6

�
Slow delayed rectifier potassium
(Lawrence et al., 2006)
ModelDB Number: 102288
ICGenealogy Number: 24

IKdrs �
gKdrsmh�V � EK�

dm
dt

�
m��m

�

� �
66.7 exp	V�25

13.3 

1�exp	V�25

6.7 

m� � � 1

1�exp���V�41.9�
23.1

��4

dh
dt

�
h��h

�

� � 1000 ms

h� �
0.93

1�exp� �V�52.2�
15.2

� � 0.07

Fast delayed rectifier potassium
(Lawrence et al., 2006)
ModelDB Number: 102288
ICGenealogy Number: 22

IKdrf �
gKdrfmh�V � EK�

dm
dt

�
m��m

�

� �
27.8 exp	V�33

14.1 

1�exp	V�33

10 

m� � � 1

1�exp���V�36.2�
16.1

��4

dh
dt

�
h��h

�

� � 1000 ms

h� �
0.92

1�exp	V�40.6
7.8 


� 0.08

Faster delayed rectifier potassium
(Saraga et al., 2003)
ModelDB Number: 28316
ICGenealogy Number: 1747

IKdrf �
gKdrfn4�V � EK�

dn
dt

� 
n�1 � n� � �nn


n �
�0.018�V�25�

exp���V�25�
25

��1

�n �
0.0036�V�35�

exp� �V�35�
12

��1

-

Note that the Na� reversal potential (ENa) and the K� reversal potential (EK) are set to values of 50 and �77 mV, respectively, in all simulations. Note also
that ModelDB reference numbers and ICGenealogy reference numbers are indicated in the first column. Comparison of channel kinetic traces are available
from ICGenealogy.
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any particular conductance and still capturing salient fea-
tures may require shifting other conductances into other
ranges.

In the absence of any particular knowledge of VGCs in
IS3 cells or of particular IS3 cell dynamics of functional
importance, we constrained our models with a few cho-
sen signature features and a quality metric (see Materials
and Methods). This meant that a number of different
current injection steps from experiment were lumped to-
gether for a given feature (e.g., for the depolarization
block feature, current steps of 450–700 pA were used,
giving ranging histograms; Fig. 3Q,R). In essence, we
used the experimental histogram measurements (Fig. 3)
as a guide. We felt that it made more sense to simply
compare each measurement histogram independently
when making choices on channel types, distributions, and
conductance ranges, as our goal is to obtain starting

reference models that would suggest the types, densi-
ties, and distributions of VGCs. In this sense, we con-
sidered biological variability in a manual fashion (i.e.,
steps 6 and 7).

Subsequent investigations (step 7)
In noting that particular measurements could not be

captured with the initial choice of VGCs, we considered
changes in the set of VGCs being used (Fig. 4C, flow-
chart). In particular, we had observed through hand tuning
that by using delayed rectifier potassium channels with
faster kinetics, the spike half-width and afterhyperpolar-
ization were decreased, leading to an improvement in the
ability of the models to resemble the experimental signa-
ture features. This, in turn, allowed for VGC conductance
densities that increase the depolarization height in the
membrane potential during depolarizing currents. In terms

Table 5: Summary of channel type combinations and spatial distribution profiles across the morphology of the model

Distribution labels Soma channel types Dendrite channel types Axon channel types
S.1 Persistent sodium

Transient sodium
A-type potassium
Fast delayed rectifier potassium
Slow delayed rectifier potassium

None None

S.2 Persistent sodium
Transient sodium
A-type potassium
Faster delayed rectifier potassium

None None

SD Persistent sodium
Transient sodium
A-type potassium
Faster delayed rectifier potassium

Transient sodium
A-type potassium
Faster delayed rectifier potassium

None

Note that in all cases, each channel has a uniform distribution, whether it is restricted to the soma or distributed across the soma and dendrites.

Table 6: Summary of the starting and final conductance ranges found using the semi-automated strategy for S.1, S.2, and SD

Distribution label GNa,t (S/cm2) GNa,p (S/cm2) GKa (S/cm2) GKdrf (S/cm2) GKdrs (S/cm2)
S.1 start 0.08, 0.12, 0.16, 0.20 0.0002, 0.0003, 0.0004 0.05, 0.10, 0.15 0.04, 0.08, 0.12 0.04, 0.08, 0.12
S.1 final 0.16, 0.18, 0.20, 0.22 0.0001, 0.0002, 0.0003 0.05, 0.10, 0.15 0.03, 0.07, 0.11 0.03, 0.06, 0.09
S.2 start 0.2, 0.225, 0.25 0.0001, 0.00015, 0.0002 0.15, 0.20, 0.25 0.8, 0.9, 1.0

(faster)
0

S.2 final 0.2, 0.225, 0.25 0.00005, 0.00010, 0.00015 0.15, 0.20, 0.25 0.95, 1.0, 1.05
(faster)

0

SD start 0.04, 0.05, 0.06 0.0002, 0.0004, 0.0006 0.06, 0.08, 0.1 0.05, 0.10, 0.15
(faster)

0

SD final 0.04, 0.05, 0.06 0.0002, 0.0004, 0.0004 0.06, 0.08, 0.1 0.1, 0.13, 0.16
(faster)

0

SDprox.1 start 0.05, 0.075, 0.1
(50, 70, 90 �m)

0.00005, 0.00010, 0.00015 0.03, 0.05, 0.07
(50, 70, 90 �m)

0.2, 0.3, 0.4
(faster)
(50, 70, 90 �m)

0

SDprox.1 final 0.07, 0.0725, 0.075
(50, 70, 90 �m)

0.00005, 0.000075, 0.0001 0.03, 0.05, 0.07
(50, 70, 90 �m)

0.25, 0.275, 0.3
(faster)
(50, 70, 90 �m)

0

SDprox.2 start 0.055, 0.1025, 0.15
(50, 70, 90 �m)

0.00005, 0.00010, 0.00015 0.03, 0.05, 0.07 0.2, 0.3, 0.4
(faster)
(50, 70, 90 �m)

0

SDprox.2 final 0.055, 0.060, 0.065
(50, 70, 90 �m)

0.00005, 0.00010, 0.00015 0.03, 0.05, 0.07 0.27, 0.295, 0.32
(faster)
(50, 70, 90 �m)

0

Note that for the SDprox.1 and SDprox.2 distributions, we also investigated channels that were uniform in soma and dendrites up until 50, 70, and 90 �m
from the soma. The choice of the number of conductance values to use was determined by balancing parameter space resolution against computational
speed.
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of using faster delayed rectifier potassium kinetics, one
option is to remove the slow delayed rectifier channels
from the model, and the other is to use faster time con-
stants in the fast delayed rectifier channel model.

With this in mind, we applied the semi-automated strat-
egy, but without a slow delayed rectifier potassium chan-
nel and with a more generic fast delayed rectifier channel
containing faster delayed rectifier potassium channel ki-
netics (channel model was taken from Saraga et al.,
2003). The equations are given in Table 4. We show the
scenario with only somatic channels (i.e., S.2) and with
channels uniformly distributed across the soma and den-
drites (i.e., SD; Table 5; Fig. 4A2,A3,B2,B3). For both
channel distributions, measurement distributions gener-
ated from the models in each database showed more
overlap with the experimental measurement distributions
when compared with S.1 (Fig. 4C). For these channel
distributions, we obtained an increase in the depolariza-
tion height of the membrane potential during depolarizing
currents. However, it was not as large as that seen in the
experimental recordings. Specifically, during the �50 pA
step in the experimental trace, we see a depolarization
height of 29.42 mV (Fig. 1B, cell 2) and an experimental
trace distribution ranging from 15 to 34 mV (Fig. 3G).
While the S.1 top model fell outside this range, with a
depolarization height of 10.83 mV (Fig. 4A1), both S.2 and
SD top models fell closer to the experimental range with
depolarization heights of 21.37 and 14.55 mV, respec-
tively (Fig. 4A2,A3). Other measurements such as the
spike half-widths and the spike afterhyperpolarizations
were also improved. Thus, we were able to distinguish
that the changes made in S.2 and SD from S.1 led to
measured improvements in the models.

In terms of distinguishing between S.2 and SD, we
looked at several additional factors. For example, we
looked at the first spike time distributions in each data-
base (Fig. 4C, right). Experimental recordings indicate that
during regular spiking regimes, the first spike time of the
current injection is usually early on (i.e., between 0 and 40
ms). Although S.2 ranges from spikes starting as early as
40 ms to �120 ms, SD mainly ranges from 50 to 350 ms.
This indicates that spike onset is often too late in all the
models, but that S.2 performs better. Another factor that
distinguished S.2 from SD is the presence of spike am-
plitude decreases during the regular spiking regime (i.e.,
at �50 pA). Whereas the models generated in SD have
spike amplitudes that increase during regular spiking, S.2
has the opposite: spike amplitudes that start off large and
then decrease over the course of the current injection.
This is observed in the top model for S.2 in Figure 4A2,
compared with the experimental recording (Fig. 1B, cell 2,
blue trace). As mentioned previously, decreasing ampli-
tudes is a common feature observed in the experimental
data, and it is therefore an important feature to replicate in
our models.

The determined conductance value ranges are listed in
Table 6 (see final ranges). We note the following: in SD,
distributing the channels uniformly across the dendrites
requires an overall decrease in conductance values (i.e.,
with the exception of persistent sodium, which is already

quite small). For the most part, the conductance value
ranges are similar among S.1, S.2, and SD, with the
exception of the potassium channels, which generally
have higher conductance values in S.2 and SD, likely due
to the removal of the slow delayed rectifier channel.

Delayed rectifier potassium channel subunit analysis
To investigate the predictions generated by the models,

we sought to examine the delayed rectifier potassium
channel subunit composition in IS3 cells. Specifically, we
wanted to know whether fast or slow delayed rectifier
potassium channels existed in IS3 cells.

For slow delayed rectifier potassium channel subunit
composition, it is generally known that Kv2.1 or Kv2.2
combine with Kv5.1, Kv6.4, or Kv9.1 to Kv9.3 (Lien et al.,
2002; Coetzee et al., 1999). Fast delayed rectifier potas-
sium channels, on the other hand, are generally known to
be composed of Kv3.1 and/or Kv3.2 subunits, of which
Kv3.1 composition yields faster time constants (Hernández-
Pineda et al., 1999; Lien et al., 2002). To get an idea of
expression of these subunits in the stratum radiatum (SR)
of the hippocampus (i.e., the layer where IS3 cell bodies
and the large majority of its dendrites are located), we
examined the in situ hybridization data from mouse brain
slices using the Allen Mouse Brain Atlas (Lein et al., 2007;
for full documentation, see http://help.brain-map.org/dis-
play/mousebrain) as a point of reference. For the slow
delayed rectifier subunits, it appeared as though there is
very little expression, if any, in the SR or stratum
lacunosum-moleculare (SLM). For fast delayed rectifier
subunits, it appeared as though Kv3.1 subunit expression
was much more prominent in the SR than Kv3.2 subunits.

Using immunohistochemical analysis of the subunit lo-
calization in soma and dendrites of IS3 cells, we were able
to examine whether Kv2.1 and Kv3.1 were expressed. We
found that Kv3.1 is present in both the soma and proximal
dendrites of putative IS3 cells in stratum pyramidale (SP)
and SR (Fig. 6A,B). However, we found no evidence for
Kv2.1 expression in IS3 cells residing in SR (Fig. 6D), and
its sparse expression in IS3 cell bodies located within SP
that, based on the punctate pattern around the cell body
(Fig. 6C), could be attributed to axonal boutons contact-
ing IS3 cells (Fig. 6C,D). These data indicate that Kv3.1,
but not Kv2.1, is expressed in IS3 cells. Thus, the model
predictions that delayed rectifier potassium channels with
faster kinetics are present and slow delayed rectifier po-
tassium currents are absent in IS3 cells were confirmed.

Model adjustments to consider spike propagation
So far, it seems as though S.2 models present a rea-

sonable scenario for IS3 cell channel types and distribu-
tions. On the other hand, if we consider S.2 as the most
reasonable models, this would indicate that channels in
IS3 cells are restricted to the soma and that dendritic
channel distributions are not a suitable aspect to capture
normal IS3 cell electrophysiological activity. However,
given that our immunohistochemical analyses indicate
that potassium channels are present in the dendrites, this
is not appropriate. Further, our models so far only con-
sidered uniform channel distributions in the whole den-
dritic tree. Thus, we turn to our Ca2� imaging data and
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consider the spatial profile of the spike amplitudes, as
derived from the bAP-CaTs profile, in two of our models:
the highest-ranking model from S.2 and the highest-
ranking model from SD. In particular, we used a method-
ology similar to that used experimentally by injecting
somatic current (800 pA, 2 ms) to induce bAPs. We then
qualitatively compared the bAP amplitude decay with
distance from soma to the calcium signal amplitude decay
seen in experimental recordings. As can be observed in
Figure 7A, although S.2 bAP amplitudes decay, bAPs are
still seen at large distances from the soma (i.e., small �40
mV amplitude spikes are still observed at 200 �m from the
soma).

At the 150 �m location, these amplitudes are 40% of
the amplitude at soma, which is comparable to the aver-
age calcium signal decay of 50% at 150 �m (Fig. 1E).
However, there is a lack of calcium signal decay in the first
50 �m of dendrite, which is not comparable to the S.2
models. SD on the other hand does not show any spike
amplitude decay (Fig. 7B), regardless of the distance from
soma, which is expected because of the high density of
VGCs distributed uniformly across the dendrites. Alto-
gether, these results suggest the presence of VGCs in at
least the first 50 �m of dendrites.

Channels only in soma and proximal dendrites: SD-
prox.1 and SDprox.2

To better capture the experimental data of calcium
signal decay, we adjusted our models to have dendritic
channels only in the proximal dendrites (i.e., up to 50–100
�m from the soma; see Materials and Methods) and used
the semi-automated strategy to estimate the required
VGC conductance densities to be able to capture the
electrophysiological signature features. In addition to
looking at variations in maximal conductance values, we
considered channels at different distances from soma
(i.e., 50, 70, or 90 �m; Fig. 7C2,D2). We also considered
model variants where A-type potassium channels were
confined to the soma (SDprox.2) or uniform in the soma
and proximal dendrites (SDprox.1). Models in the data-
bases for SDprox.1 (Fig. 7C2) and SDprox.2 (Fig. 7D2) can

have channels at 50, 70, or 90 �m (Fig. 7, denoted as
“VGC Distance” in the CBDR plots) on top of having
different VGC conductance densities.

In Figure 7, C1 and D1, we see the simulated voltage
traces from top models from the SDprox.1 database and
the SDprox.2 database. See Table 6 for conductance
ranges, and Table 7 for top model conductance values
and VGC distances along dendrites. From the traces for
both of these models, we see that they appear to be very
similar in quality to the S.2 models, which shows that a
scenario with VGCs in the proximal dendrites (preferably
at 50 and 70 �m) is capable of capturing the electrophys-
iological features. Notably, from the measurement histo-
grams we see that these databases, similar to the S.2
database, fall within many of the experimental measure-
ment distributions. Also, using the same recording proce-
dure (i.e., an 800 pA, 2 ms duration somatic current
injection; Fig. 7C3,D3), we found that bAP amplitude de-
cay is attenuated in the first 50 �m of dendrites in these
two scenarios, unlike the continuous spike amplitude de-
cay seen in the S.2 model. With these developed models
in hand, we next determined the location and amount of
synaptic input necessary for spiking to occur.

Exploration of required input for spike generation in
IS3 cell models

It was previously shown that unitary synaptic conduc-
tance at IS3–OLM cell synapses is small, but at the same
time, the synchronous recruitment of many IS3 cells
through optogenetic stimulation could control the OLM
cell firing at theta frequencies (Tyan et al., 2014). To
understand how incoming inputs can integrate to trigger
spiking in IS3 cells, we used our developed multi-
compartment models of IS3 cells. As described above,
these were S.2 models with VGCs only in the soma, SD
models with VGCs uniformly distributed in the dendrites,
and SDprox.1 and SDprox.2 models that had channels in
the proximal dendrites. Only the SDprox.1 and SDprox.2
models were appropriate for capturing the salient features
of IS3 cells and spike attenuation along the dendrites as

Figure 6. Kv3.1 and Kv2.1 expression in putative IS3 cells. A, B, Immunohistochemistry data showing GFP (green; left) and Kv3.1
expression (red; middle) in the stratum radiatum (A) and pyramidale (B) of a VIP-GFP mouse. Note the presence of Kv3.1 membrane
labeling in the soma and proximal dendrites of VIP- expressing cells. C, D, Immunohistochemistry data showing GFP (green; left) and
Kv2.1 expression (red; middle) in the stratum pyramidale (C) and radiatum (D) of a VIP-GFP mouse. Scale bar, 10 �m.
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Figure 7. VGC distributions in proximal dendrites. A, Action potential amplitude deterioration along a dendrite section (tree 1) in the
S.2 top model following a somatic 800 pA current injection for 2 ms (GNa,t soma 	 0.25 S/cm2; GNa,p soma 	 0.0001 S/cm2; GKa soma
	 0.15 S/cm2; GKdrf soma 	 1 S/cm2). B, Action potential amplitude deterioration along a dendrite section (tree 1) in the SD top model
following a somatic 800 pA current injection for 2 ms (GNa,t soma/dendrites 	 0.06 S/cm2; GNa,p soma 	 0.0002 S/cm2; GKa
soma/dendrites 	 0.1 S/cm2; GKdrf soma/dendrites 	 0.1 S/cm2). C1, SDprox.1 top model with channels that are uniform from the
soma until the first 70 �m of the dendrites using the Boltzmann function. Conductance values are as follows: GNa,t soma/dendrites
	 0.07 S/cm2; GNa,p soma 	 0.000075 S/cm2; GKdrf soma/dendrites 	 0.25 S/cm2; GKa soma/dendrites 	 0.07 S/cm2. Note that the

New Research 17 of 26

July/August 2016, 3(4) e0087-16.2016 eNeuro.org



well as the immunohistochemical analyses, indicating the
presence of fast delayed rectifier potassium channels in
the proximal dendrites. To explore the impact of different
spatial locations on the input attenuation along the den-
dritic tree of our models, we first performed an electro-
tonic analysis.

Electrotonic analysis of passive model
We used the Electrotonic Analysis tools in NEURON to

compute the electrotonic distance throughout the entire
dendritic arbor of the passive model (see Materials and
Methods). Figure 8A shows the morphology with labeled
trees, while the number of branch points, surface area,
most distal length, and summed length from all branches
are given in Table 8. Tree 1, for example, has less branch-
ing and longer sections, and has a larger surface area
than the other dendritic trees, 2A and 2B.

In the axon initial segment and trees 1, 2A, and 2B, we
found that electrotonic distance increases with distance
from soma (Fig. 8B,C), which indicates signal attenuation
throughout the model. We also observed differences be-

tween trees in the magnitude of electrotonic distance. For
example, an input into the dendrite of tree 1 versus tree
2A at 300 �m is attenuated by an electrotonic distance of
0.9 versus 1.3 (Fig. 8B). Similarly, a somatic input atten-
uates by an electrotonic distance of 0.2 versus 0.4 when
measured at 300 �m along tree 1 versus tree 2A (Fig. 8C).

This electrotonic distance appears to be smaller in
dendritic trees with less branching and larger surface
areas (Table 8, tree 1). For example, while tree 2A showed
more attenuation (i.e., larger electrotonic distances) than
tree 1, we also noted that tree 1 had less branching (seven
branching points) and a larger surface area (2463.79 �m2;
determined by section diameters and lengths) than tree
2A (eight branching points and 2385.98 �m2; Table 8). For
similar reasons, both tree 1 and tree 2A showed less
attenuation than tree 2B (nine branching points and
1982.60 �m2; Fig. 8, Table 8). Although a greater level of
attenuation was observed in the remaining axon segment,
this is likely because of the adjusted passive parameters
that were used to compensate for the removal of the

continued
current injection protocol is �100, �20, � 50, and �500 pA. C2, Parameter spaces for SDprox.1, as visualized using CBDR. Note
that 70 of 243 models did not get rejected. C3, Action potential amplitude deterioration along a dendrite section (tree 1) in the above
SDprox.1 top model following a somatic 800 pA current injection for 2 ms. D1, SDprox.2 top model with channels that are uniform
from the soma until the first 70 �m of the dendrites using the Boltzmann function. Conductance values are as follows: GNa,t
soma/dendrites 	 0.055 S/cm2; GNa,p soma 	 0.00015 S/cm2; GKdrf soma/dendrites 	 0.295 S/cm2; GKa soma 	 0.07 S/cm2. Note
that the current injection protocol is �100, �20, � 50, and �500 pA. D2, Parameter spaces for SDprox.2, as visualized using CBDR.
Note that 146 of 243 models did not get rejected. D3, Action potential amplitude deterioration along a dendrite section in the above
SDprox.2 top model following a somatic 800 pA current injection for 2 ms.

Table 7: Summary of starting hand-tuned conductance values and top model conductance values from SDprox.1 and
SDprox.2

Model Distribution GNa,t (S/cm2) GNa,p (S/cm2) GKa (S/cm2) GKdrf
(faster kinetics)
(S/cm2)

SDprox.1 hand tuned Uniform across soma and first
50 �m of dendrites
(GNa,p: soma only)

0.075 0.0001 0.05 0.3

SDprox.1 top model Uniform across soma and first
70 �m of dendrites
(GNa,p: soma only)

0.07 0.000075 0.07 0.25

SDprox.1 second best model Uniform across soma and first
50 �m of dendrites
(GNa,p: soma only)

0.075 0.000075 0.07 0.3

SDprox.1 third best model Uniform across soma and first
70 �m of dendrites
(GNa,p: soma only)

0.07 0.00005 0.07 0.25

SDprox.2 hand tuned Uniform across soma and first
50 �m of dendrites
(GNa,p and GKa: soma only)

0.07 0.0001 0.05 0.3

SDprox.2 top model Uniform across soma and first
70 �m of dendrites
(GNa,p and GKa: soma only)

0.055 0.00015 0.03 0.295

SDprox.2 second best model Uniform across soma and first
70 �m of dendrites
(GNa,p and GKa: soma only)

0.06 0.00015 0.05 0.295

SDprox.2 third best model Uniform across soma and first
90 �m of dendrites
(GNa,p and GKa: soma only)

0.06 0.00015 0.07 0.32
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axon. Collectively, these results suggest that synapses
located on dendritic trees with higher branching and
smaller surface areas (e.g., trees 2A and 2B relative to tree
1) are less likely to elicit spikes at large distances from the
soma because of a greater level of attenuation (Fig. 8).

Synaptic inputs
We simulated single presynaptic spikes that give rise to

synaptic inputs at different locations along the dendritic
arbors (see Materials and Methods) of the S.2 top
model, the SD top model, the SDprox.1 top model, and
the SDprox.2 top model. These simulations allowed
predictions of the minimum synaptic weights (threshold
weight) necessary to evoke spikes at the somata of IS3
cells (Fig. 9).

For the S.2, SDprox.1, and SDprox.2 models, there
were distinct dendritic points where threshold weight rose
sharply (Fig. 9; i.e., the point marked by the bottom red
dashed line at 0.5 �S). These points correspond to the
level of synaptic current at which the membrane potential
approached the reversal potential (i.e., 0 mV). In other
words, they correspond to when the increase in mem-
brane potential following an excitatory synaptic event was
�70 mV (Fig. 9A1–A3). We identified this “saturation” by
plotting the maximal change in membrane potential (i.e.,
maximum potential � minimum potential) at the synapse
location within the first 1 ms of the presynaptic spike (Fig.
9A1–A3, S.2 top model). When the change in membrane
potential had a magnitude equal to the absolute value of
the resting membrane potential (�70 mV), the synapse
was not generating any additional current, regardless of
the magnitude of the weight. This occurred at synaptic
weights beyond �0.5 �S, as indicated by the red dashed
line.

Furthermore, we found that for each main dendritic tree
(i.e., trees 1, 2A, and 2B), the point at which the threshold
weight increased sharply (red dashed line) occurs at a
different distance from the soma, as shown in the plot of
Figure 9B for the S.2 model. In these plots, each vertical
blue line marks a main dendritic tree (Fig. 8A, subset
morphologies; Table 8, morphological analysis). Synaptic
inputs to tree 1, with its smaller number of branching
points and longer sections than other trees, generated
somatic spikes up until 350–400 �m. Synaptic inputs to
tree 2A could elicit somatic spikes up until 200–250 �m.
Tree 2B had the largest amount of branching and the
smallest surface area, and elicited spikes up until 150–
200 �m. These observations make sense following our
electrotonic analyses in which trees 2A and 2B had more
attenuation relative to tree 1.

In Figure 9C1–C3, we show differences among S.2,
SDprox.1, and SDprox.2, noting that SDprox.1 and

Figure 8. Electrotonic analysis of the M2 morphology. A, A guide
of the M2 morphology designating all of the morphological sub-
sections, as well as showing both the spatial scale and diameter.
B, Electrotonic distance along the dendritic arbor for voltage
flowing into the soma. C, Electrotonic distance along the den-
dritic arbor for voltage flowing away from the soma. Note that the
electrotonic distance is equal to the log value of attenuation,

Figure 8. continued
where attenuation is measured as voltage upstream/voltage
downstream. More specifically, voltage upstream is an applied 1
mV signal, and voltage downstream is the downstream response
to the 1 mV signal. In this sense, electrotonic distances �1 would
imply a 10-fold attenuation in the signal.
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SDprox.2 do not have passive dendrites like S.2. In SDprox.1,
some of the dendritic trees show a slight decrease in the
distance from soma at which the threshold weight in-
creases past 0.5 �S, suggesting that the dendritic chan-
nel distribution and densities (i.e., INa,t, IKdrf, and IKa) do not
appreciably decrease the required input for spike gener-
ation when compared with a passive dendritic scenario
(i.e., S.2). However, in SDprox.2 (Fig. 9C1–C3), the loca-
tion at which synaptic input could generate spikes was
shifted forward by �10 �m in all of the branches, indicat-
ing that, by not including A-type potassium channels in
the dendrites, spike generation is facilitated.

Finally, in the SD top model, we found that the required
input (threshold weight) for spike generation was minimal
(i.e., ��0.5 �S) throughout the dendritic arbor and even
decreased with distance from the soma (Fig. 9D, left
y-axis). This is likely because synaptic saturation is never
reached in the SD model (Fig. 9D, right y-axis). This
suggests that uniform VGCs across the dendritic arbor
could amplify distal inputs over proximal ones. However,
since the threshold weight is fairly small across synaptic
locations, it seems unlikely that any significant preference
for distal inputs over proximal inputs would be observed.

Discussion
We have presented an efficient, semi-automated strat-

egy to estimate the active VGC properties of identified
single neurons that uses electrophysiological data and
dendritic calcium imaging to constrain various possibili-
ties. Using this approach, we generated databases of
models that mimic the various features seen in IS3 cell
experimental recordings. From these models, we ob-
tained estimates of the VGC types, densities, and distri-
butions that may be found in IS3 cells. Specifically, our
models predict that fast potassium channel kinetics play a
large role in generating appropriate electrophysiological
activity, and their presence was confirmed with immuno-
histochemical analyses. Our models also predict that
VGCs in the proximal dendrites best facilitate spike gen-
eration when A-type potassium channels are restricted to
the soma. We note that, although the approach still in-
volves a fair amount of hand tuning, the automated cy-
cling brings forth a structured aspect that ensures that the
included VGCs have conductance values that are bal-
anced relative to each other so as to produce the ob-
served electrophysiological features. In summary, this
approach is a much more efficient approach (relative to
hand tuning) that takes advantage of automated model

databases and visualization tools, successfully predicting
the presence of particular VGCs in IS3 cells.

Notably, in all cases where starting values were re-
corded, the starting hand-tuned parameters and ranges
always differed from the final top model conductance
values and ranges (Tables 6, 7). The particular VGC con-
ductance differences could be small or large, but the
improvement in model quality between parameter refine-
ment cycles is apparent when looking at the CBDR plots
between cycles (Fig. 5). Specifically, these plots highlight
how the different channel-type choices and conductance
values have clear impacts on model database quality. As
such, the predicted relative conductance values are
meaningful and are not simply a particular hand-tuned
choice.

Proximal dendritic distributions of VGCs on IS3 cells
When analyzing the minimal synaptic weights neces-

sary to elicit a spike along the dendritic arbor of our
models, we found that these weights are minimized when
the models possess uniform distributions of channels
along the dendrites. Interestingly, for the models with
VGCs in the proximal dendrites, the synaptic weights
necessary to elicit a somatic spike are minimized when
A-type potassium channels are restricted to the soma.
This makes sense since the presence of additional out-
ward potassium currents in the dendrite would effectively
require larger, excitatory inputs to generate a spike. Fur-
thermore, previous experimental (Magee et al., 1998; Ma-
gee, 2000; Cai et al., 2004; Yang et al., 2015) and
modeling (Tigerholm et al., 2013) work shows that A-type
potassium channels contribute to sublinear summation of
dendritic spikes, thus dampening dendritic excitability
during dendritic integration in pyramidal cells.

In terms of how well these different model types repli-
cate IS3 cell features, we found that uniform distributions
of channels along the dendrites (i.e., SD models) do not
acceptably reproduce the electrophysiological features of
IS3 cells, whereas passive dendritic cases (i.e., S.2 mod-
els) do. However, S.2 models have inappropriate spike
amplitudes and propagation when considering dendritic
Ca2� imaging data from IS3 cells. For these reasons, we
suggest that the models with VGCs in proximal dendrites
(i.e., SDprox) offer the most likely scenario for IS3 cell
active properties, particularly when VGCs extend up to 70
�m from the soma, since this is seen in the top models
from the SDprox cases. This type of dendritic ion channel
distribution would fall somewhere between the ion chan-

Table 8. Morphological analysis of the IS3 cell multi-compartment model

Tree Number of branching points Surface area� (�m2) Maximum distal length (�m) Summed length from all branches (�m)
1 7 2463.79 508.41 749.40
2A 8 2385.98 399.00 789.62
2B 9 1982.60 410.84 704.49
2C 1 372.21 121.80 114.51
3 1 447.42 79.68 85.28
Axon 2 859.35 208.04 317.45

�Note that to compute the surface area, the effective area was computed for each compartment via a trapezoidal integration across the compartment length
using the NEURON area(x) function.
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Figure 9. Threshold weight with distance from soma in top models. A1–A3, Left y-axes, Synaptic weight threshold (in �S) necessary
to evoke a somatic spike in response to a single presynaptic spike applied incrementally at different points along the dendritic arbor
for the S.2 top model. Right y-axes, S.2 top model local changes in membrane potential (i.e., maximum potential � minimum potential
in the first 1 ms following the presynaptic spike) at the site of the synapse, where synaptic current saturation is reached once the local
membrane potential reaches the reversal potential (i.e., an increase of �70 mV). Note that tree 1 is plotted in A1, tree 2A is plotted
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nel distributions found in basket cells and OLM cells.
Particularly, in previous basket cell modeling work, low
bAP amplitudes in dendrites have been associated with a
high potassium-to-sodium channel ratio (Hu et al., 2010).
Conversely, in previous OLM cell models, the ratio of
dendritic sodium channels to potassium channels was not
low, leading to high bAP amplitudes across most of the
dendrites (Martina et al., 2000; Saraga et al., 2003). Sim-
ilar results for both basket and OLM cells were obtained in
previous dendritic Ca2� imaging studies investigating
bAP-CaTs amplitudes (Topolnik et al., 2009; Camiré and
Topolnik, 2014). Since the bAP-CaTs observed for IS3
cells (Fig. 1E) fall somewhere in between what is seen in
basket and OLM cells, it might follow that IS3 dendritic ion
channel densities fall somewhere in between as well, as is
indicated by our models.

Additionally, it is known that in pyramidal cells, A-type
potassium channel conductance values are much larger
in distal apical dendrites than in proximal dendrites and
soma (Magee et al., 1998; Golding et al., 2001). Although
we did not investigate fully nonuniform dendritic ion chan-
nel distributions in our models, we explored two possible
scenarios for A-type potassium channels: A-type potas-
sium channel in soma and proximal dendrites (SDprox.1)
versus that restricted to soma (SDprox.2). In these mod-
els, we explain a reduction in bAP amplitude by only
having ion channels uniformly spread across a portion of
the dendrites. In reality, this could be due to an increase
in A-type potassium with distance from soma similar to
what is seen in pyramidal cells (Golding et al., 2001). On
the other hand, it could be similar to basket cells in that,
past a certain distance from soma, the ratio of potassium
to sodium channels becomes larger, resulting in a decay
of bAP amplitude (Hu et al., 2010). Of course, the question
of whether or not A-type potassium channels are present
in IS3 dendrites remains to be determined.

Proximal dendritic VGC distributions on IS3 cells could
serve several functions. For example, having large densi-
ties of VGCs in the proximal dendrites of IS3 cells may
facilitate CA3 input gating, spike backpropagation, and
induction of Hebbian forms of long-term potentiation at
SC synapses (Golding et al., 2002; Topolnik, 2012). Ac-
cordingly, IS3 cells, through increased recruitment in re-
sponse to CA3 input, may be responsible for OLM cell
silencing during sharp wave-associated ripples (SWRs;
Katona et al., 2014). In other words, VGCs in the proximal

dendrites of IS3 cells might facilitate the transient SWR
recruitment of IS3 cells. In terms of input onto the passive
distal dendrites (i.e., in SLM) of IS3 cells in these models,
we predict that either stronger input (e.g., simultaneous
spatially distributed presynaptic spikes or high-frequency
presynaptic input) or adjusted synaptic parameters (e.g.,
rise time or decay time) would be necessary to recruit IS3
cells to fire a somatic spike, since we found that input
from a single presynaptic spike was inefficient in doing so.

This may be similar to CA1 pyramidal cells, which ex-
hibit denser innervation through the perforant path relative
to SC inputs (Kajiwara et al., 2008). In addition, in CA1
pyramidal cells, perforant path inputs evoked AMPA-
mediated EPSCs with longer rise and decay times than
SC inputs (Otmakhova et al., 2002). Although the ampli-
tudes of AMPA-mediated EPSCs from both inputs are not
statistically different, the longer perforant path-evoked
time course suggests a higher likelihood of synaptic sum-
mation. This also raises the possibility that the activation
of distal inputs might trigger local cooperative mecha-
nisms that would enhance the influence of SLM synapses
on somatic spiking. Perforant path inputs on distal den-
drites of CA1 pyramidal cells can initiate local Ca2� spikes
through NMDAR- and voltage-gated calcium channel-
mediated Ca2� influx (Golding et al., 2002). It is conceiv-
able that a functionally similar mechanism could exist in
IS3 cells, albeit one that would likely involve a different
combination of Ca2� sources, given the heterogeneity of
local Ca2� mechanisms in CA1 interneurons (Camiré and
Topolnik, 2012). Furthermore, the input from the entorhi-
nal cortex generates theta rhythmic sinks coupled with
theta rhythmic sources in the CA1 SLM and SLM/SR
border (Kamondi et al., 1998). Since IS3 cells exhibit
intrinsic theta oscillations and are capable of synchroniz-
ing OLM cells at theta frequencies (Tyan et al., 2014), they
are well positioned to contribute to the generation of
these SLM/SR rhythmic patterns.

Other model database approaches: similarities and
differences

In comparison with fully automated approaches using
other brute-force techniques (Prinz et al., 2003; Günay
et al., 2008; Sekulić et al., 2014), evolutionary algorithm
multi-objective optimization techniques (Druckmann et al.,
2007, 2013; Hay et al., 2011) or control theoretical ap-
proaches (Brookings et al., 2014), the semi-automated

continued
in A2, and tree 2B is plotted in A3. The plots show that the location along the dendrites where there is an exponential increase in
threshold weight (i.e., dashed red line at around 0.5 �S) for each main dendritic tree approximately co-locates with the location along
the dendrites where synaptic current saturation occurs. B, S.2 top model synaptic threshold weights (in �S) in all dendritic trees. Plot
shows that there are differences in the location along the dendrites where there is an exponential increase (i.e., dashed red line) in
the threshold weight, depending on the dendritic tree of interest. C1–C3, Relative to passive dendrites (S.2 top model), active
dendrites with A-type potassium channels in the first 70 �m of dendrites (SDprox.1 top model) show a decrease in the distance from
the soma at which the exponential increase in threshold weight is observed. On the other hand, active dendrites in the first 70 �m
of dendrites with A-type potassium channels restricted to the soma (SDprox.2 top model) shows an increase in the distance from the
soma at which the exponential increase in threshold weight is observed. This is shown in all main trees (C1–C3). D, Note that the SD
top model does not reach input saturation, and the amount of input to elicit a somatic spike does not increase exponentially in any
of the dendritic trees.
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strategy has a somewhat different goal. Rather than a
focus only on conductance values of the different VGCs in
the model populations, it aims to also suggest what VGCs
need to be present to match given electrophysiological
features in cell types whose intrinsic properties lack any
characterization. As such, we felt that retaining elements
of hand tuning as well as lumping experimental data
around chosen features (Fig. 3) were reasonable at this
stage. Moving forward, our subsequently developed mod-
els with experimental confirmation of VGC types could
then be used as reference models in fully automated
approaches with more sophisticated algorithmic tech-
niques.

Brookings et al. (2014) offer a control theoretical ap-
proach that focuses on temporal alignment with experi-
mental data and is not feature based, unlike the approach
used here. Hay et al. (2011) possessed experimental
backpropagating action potential-evoked calcium spike
recordings from proximal and distal dendrites in neocor-
tical layer 5 pyramidal cells to constrain their model ex-
plorations. While this is feasible to obtain for pyramidal
cells, dendritic recordings in many interneuron types are
much more challenging, due to the smaller diameters of
interneuron dendrites and the heterogeneity of interneu-
ron types. For this reason, we relied on dendritic Ca2�

imaging data, which can be indicative of action potential
propagation based on previous works (CA1 pyramidal
cells: Spruston et al., 1995; Golding et al., 2001; CA1 OLM
cells: Martina et al., 2000; Topolnik et al., 2009; CA1
basket cells: Hu et al., 2010; Camiré and Topolnik, 2014).

As well, the approach used by Hay et al. (2011) relies on
a base knowledge of layer 5 pyramidal cell channel types
and conductance ranges, which has not yet been ob-
tained for IS3 cells. Similarly, to generate a large database
of OLM cell models necessary to explore conductance
densities and channel distributions, Sekulić et al. (2014)
based their models on experimental data for CA1 OLM
cell channels and conductance ranges obtained from pre-
vious work before using a high-performance computing
cluster. In this sense, our approach is useful for focusing
on intrinsic properties that are unknown and are of poten-
tial theoretical and functional importance.

Although it is unclear whether or not the IS3 features
chosen for the models to capture are sufficient, in previ-
ous work from Druckmann et al. (2011), it was found that
simple current steps were appropriate stimuli to reveal the
dynamics of the cell. Here we chose representative IS3
features from the experimental data that we wanted to
capture, and particular current step sizes were chosen to
encompass each of the four chosen features (Table 2).
Our CIP choices were based on the experimental data
and features in hand, and with these choices we aimed to
obtain representative models. As we were not aiming for
optimal models per se, we did not focus on examining
different CIPs to see what might be ideal, but rather to
make choices that were encompassing of the data. Also,
our approach did not focus on automating the capturing
of the variability in the experimental data (Druckmann
et al., 2007; Brookings et al., 2014), but rather used
non-automated, flexible hand tuning to ensure that model

feature measurements fell within the distributions found
experimentally.

Limitations
The major morphological limitation is whether or not

axonal branches are important in this scenario (M1 vs M2
morphology). From one perspective, including this feature
is computationally expensive and requires additional as-
sumptions regarding axonal biophysical properties. From
another perspective, excluding it can limit the uses of the
model in future projects. Also it seems clear that a large
proportion of IS3 surface area is occupied by axonal
arborization (i.e., 65% in this case), which means that
there is a fairly large loss in surface area once axonal
branches are removed. Importantly though, once the pas-
sive parameters are optimized in both morphologies, the
inclusion of somatic channels has similar effects (data not
shown) on the action potential shape and timing measure-
ments in both the M1 and M2 morphologies. Therefore,
we can assume that adjusting the passive properties in
the remaining axon segments is enough to counteract the
effects of surface area loss without largely altering the
spiking properties of the cell.

Since our models are minimalistic in regard to only
having components that are needed to reasonably cap-
ture experimental output, several channels that are likely
to be present in IS3 cells were not included. This is namely
L-type calcium (ICaL) and hyperpolarization-activated cy-
clic nucleotide-gated (HCN; Ih) channels. For one, Ih
seems to be present due to observations of channel-
specific effects on the experimental voltage recordings
(i.e., hyperpolarization sag). Second, our preliminary Ca2�

imaging data show that ICaL makes a small contribution to
bAP-CaTs in proximal dendrites. Additionally, a previous
study (Vinet and Sík, 2006) has also indicated that
calretinin-positive cells in the CA1 area of the hippocam-
pus express L-type calcium subunits in small proportion,
as well as T-type, N-type, R-type, and P-type calcium
channels in larger proportions. Although we examined
simulations with some of these channels using our ap-
proach as well as with only hand tuning, we did not
observe any marked improvements in the measurements
of the model, in comparison with the experimental data. In
other words, model quality is usually maximized when
conductance values for these channels are very small,
regardless of the channel distribution or assortment of
channel types. It is to be noted that these channel models
were based on a previous OLM cell model (Lawrence
et al., 2006). The involvement of these channels should,
however, be investigated in larger database simulations
(Sekulić et al., 2014) since they may likely play subtler
roles in governing IS3 electrophysiology and dendritic
Ca2� dynamics. For example, although the inclusion of a
small HCN channel conductance in the model would
drastically improve the hyperpolarization regime mea-
surements, too high of a conductance would detrimentally
affect all of the depolarization regime measurements.
Finding an appropriate conductance parameter space for
HCN channels might be possible using higher-resolution
database searches with inclusion of calcium VGC types.
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With more detailed parameter searches, it may also be
possible to ameliorate the measurements in which the
SDprox.1 and SDprox.2 databases had little overlap with
the experimental data (e.g., spike rate, interspike interval,
spike threshold).

Since our models include only minimal types of VGCs
required, it might be premature to make direct compari-
sons with conductance values reported for other cell
types. Nevertheless, when considering the estimates of
channel conductance using a fast dynamic-clamp tech-
nique in CA1 oriens/alveus interneurons (Lien and Jonas,
2003), it was found that the addition of perisomatic Kv3
conductance [maximum conductance (Gmax) 	 140 nS]
with an increased deactivation rate could generate irreg-
ular firing patterns with dampened action potential ampli-
tudes, similar to what is seen in IS3 cells. In our approach,
however, we found that optimal conductance ranges for
S.2 fast delayed rectifier potassium channels were be-
tween 0.25 and 1 S/cm2. Assuming a spherical soma with
a radius of 10 �m and a minimal conductance of 0.25
S/cm2, we obtain the following conductance estimate:

Gmax � (conductance) 	 (Somatic Surace Area)
� (0.25 S/cm2) 	 (4
r2)

� (0.25 	 106�S/cm2) 	 (4
(0.001 cm)2)
� 
 �S � 3142 nS.

Although this is only an approximation of Gmax (i.e., at
least 22 times larger than that in the study by Lien and
Jonas, 2003), it points to a likely consequence of having a
very minimal set of active properties (i.e., two types of
inward currents and two types of outward currents in this
case). We expect that with the addition of other channel
types, the fast delayed rectifier potassium conductance
values of the model will undergo a “balanced decrease” to
be able to continue capturing IS3 cell features.

It is also worth mentioning that many assumptions re-
garding bAP amplitudes were derived from the bAP-CaT
amplitudes, while the observation of bAP-CaTs implies
the activation of calcium channels along with sodium and
potassium channels, and, thus, may depend on the spa-
tial distribution of Ca2� channels. However, for the pur-
poses of this analysis, we have assumed that bAP-CaTs
reflect the bAP spatial profile in at least the proximal
dendrites. Notably, previous studies have shown that
dendritic Ca2� imaging can be highly predictive of AP
propagation in dendrites in other hippocampal cell types
(CA1 pyramidal cells: Spruston et al., 1995; Golding et al.,
2001; CA1 OLM Cells: Martina et al., 2000; Topolnik et al.,
2009; CA1 basket cells: Hu et al., 2010; Camiré and
Topolnik, 2014).

Finally, in our IS3 cell model, we incorporated a rela-
tively simple model representation of stochastic gating
(i.e., using Gaussian white noise), compared with more
realistic models of stochastic gating (Fox, 1997; Dorval,
2006; Goldwyn et al., 2011). Despite this, since we know
from previous work that Gaussian white noise, in combi-
nation with specific VGC types, is sufficient to elicit both
irregular firing (Stiefel et al., 2013) as well as subthreshold
spectral properties (Morin et al., 2010; Yoshida et al.,

2011; Sritharan and Skinner, 2012), this minimal represen-
tation seems reasonable. Also, in the absence of partic-
ular biological details of stochastic gating in IS3 cells, a
more detailed representation is not warranted.

Concluding remarks and future studies
As mentioned, it is possible to use our developed mod-

els as base reference models for larger-scale model da-
tabase approaches to overcome some of the limitations
when searching for appropriate parameter values (Sekulić
et al., 2014) in the absence of detailed and larger sets of
experimental recordings.

The developed models can also be used to consider
functional contributions of IS3 cells by providing theoret-
ical predictions on their recruitment and microcircuit in-
teractions, keeping in mind the above limitations.

Although IS3 cells have been shown to exhibit both
irregular and regular adaptive firing, the conditions re-
quired for either of these are unknown. It will therefore be
necessary for experimentalists to investigate the func-
tional ratios of excitatory and inhibitory inputs that control
IS3 cell firing.

Furthermore, by modeling different layer-specific syn-
aptic inputs to the developed IS3 model, we can predict
what types of inputs can drive firing patterns similar to
those observed in IS3 cells during electrophysiological
recordings. Ultimately, we aim to use these multi-
compartment models to help understand the functional
contribution of these cells to network oscillations such as
theta rhythms.
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