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Sepsis is regarded as arising from an unusual systemic response to infection but the physiopathology of sepsis remains elusive.
At present, sepsis is still a fatal condition with delayed diagnosis and a poor outcome. Many biomarkers have been reported in
clinical application for patients with sepsis, and claimed to improve the diagnosis and treatment. Because of the difficulty in the
interpreting of clinical features of sepsis, some biomarkers do not show high sensitivity and specificity. MicroRNAs (miRNAs)
are small noncoding RNAs which pair the sites in mRNAs to regulate gene expression in eukaryotes. They play a key role in
inflammatory response, and have been validated to be potential sepsis biomarker recently. In the present work, we apply a miRNA
regulatory network basedmethod to identify novelmicroRNAbiomarkers associatedwith the early diagnosis of sepsis. By analyzing
the miRNA expression profiles and the miRNA regulatory network, we obtained novel miRNAs associated with sepsis. Pathways
analysis, disease ontology analysis, and protein-protein interaction network (PIN) analysis, as well as ROC curve, were exploited
to testify the reliability of the predicted miRNAs. We finally identified 8 novel miRNAs which have the potential to be sepsis
biomarkers.

1. Introduction

Sepsis is among the common causes of death in the intensive
care units’ patients [1]. A well-defined reason for sepsis is
the clinical syndrome resulting from the presence of both
systemic inflammatory response and bacterial infection [2].
Sepsis may represent a pattern of response by the immune
system to injury, with changes in the activity of thousands
of endogenousmediators of inflammation, coagulation, com-
plement, and metabolism [3].The death toll caused by severe
sepsis is of the same range as those from acute myocardial
infarction [4]. The need for a timely diagnosis and accurate
stratification of the severity of sepsis is no less essential,
reducing mortality from sepsis [5].

Over the past decade, sepsis has been considered as a
hidden public health disaster [6]. A large number of biomark-
ers have been proposed as candidates for sepsis diagnosis,

prognosis, and therapeutic guidance. The biomarkers aim at
recognizing sepsis early, so that supportive measures may be
implemented as soon as possible [7, 8]. The most commonly
used biomarkers of sepsis in routine clinical diagnostics are
procalcitonin (PCT) and C-reactive protein(CRP) [9]. How-
ever, it is difficult to diagnose sepsis with high sensitivity and
specificity at present due to the limitations of these biomark-
ers. MicroRNAs (miRNAs) are small noncoding RNAs that
pair to sites in mRNAs to regulate gene expression in eukary-
otes and play important roles in a variety of cellular functions
as well as in several diseases [10–13]. Like other protein-based
regulators, miRNAs have been reported as related factors to
disease [14, 15]. The abnormal expression of miRNAs leads to
malignant phenotypes and implicates changes in a wide array
of cellular and developmental processes of disease initiation,
progression, and transcriptional regulation network, such as
cell proliferation, cell differentiation, apoptosis, invasion, and
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Figure 1: The schematic workflow in our study for identifying miRNAs as potential sepsis biomarkers.

metastasis [10, 16, 17]. MicroRNAs are isolatable from a set
of sepsis patient peripheral blood, measured by performing
genome-wide profiling by microarray in leukocytes, and
have been proposed to be potential sepsis biomarkers [18].
Receiver operating characteristic curves showed that miR-
15a has an area under the curve of 0.858 in distinguishing
sepsis patients from normal controls [19]. Serum miR-16,
miR-193b∗, and miR-483-5p are associated with death from
sepsis and are identified as prognostic predictors of sepsis
patients [20].

Until now, there are many works reported to iden-
tify putative microRNA biomarkers [21–27]. Most of them
detected the putative microRNA biomarkers by the analysis
of differentially expressed microRNA and then verified these
candidates by real-time PCR and bioinformatics analysis;
they paidmuch attention to themultiple-multiple interaction
between microRNAs and mRNAs. Few of them analyzed the
substructure of microRNA-mRNA network with considering
the independent regulation power of specific microRNAs.
In this study, we applied an integrative analysis of miRNA
regulatory networks and microarray expression profiles to
identify microRNAs as sepsis biomarker. The procedure of
sepsis-related miRNAs identification and analysis is illus-
trated in Figure 1. We previously analyzed the microRNA
regulatory network [28, 29] and defined a novel out degree

(NOD) to indicate the independent regulation power for
an individual miRNA in the miRNA-mRNA interaction
network, that is, the number of genes targeted exclusively by a
specific microRNA. It means that miRNAs with larger NOD
values are statistically more likely to be candidate disease
biomarkers. We exploited different methods to verify the
reliability of our candidate miRNA for sepsis diagnosis, and
the final result reveals that these miRNAs have the potential
to serve as new biomarkers for sepsis.

2. Materials and Methods

2.1. DataCollection. Weconducted exhaustive search inMed-
line database with the key words “sepsis or severe sepsis
or septic shock,” “miRNA or microRNA,” and “biomarker
or marker or indicator.” Publication date (before October
31, 2013) and human studies were used as filters. We then
extracted from each paper the relevant information of
biomarkers, for example, microRNA name, accession num-
ber in miRBase [30], biomarker type, detection technology,
study design, expression in sepsis patients, and PMID.

2.2. MiRNA Microarray Profiles Analysis. The miRNA
expression profiles were retrieved from EBI ArrayExpress
(http://www.ebi.ac.uk/arrayexpress/). The accession number

http://www.ebi.ac.uk/arrayexpress/
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is E-TABM-713 [31], produced by Vasilescu et al. The
dataset contains 8 normal samples and 8 sepsis samples. We
downloaded the normalized miRNA expression data directly
and these profiles consist of the expression information of
556miRNAs.

2.3. Statistical Methods. To identify miRNAs of interest, we
adopted student t-test for the statistical analysis. Considering
the fact that sample size is not big, we used a threshold of
0.05 for the P value and selected only those probe sets which
showed a fold change ≥2 [26]. The miRNAs with differential
expression were further ranked by their NOD values, and
then Wilcoxon signed-rank test was applied to assign each
miRNA a statistic significance value P value, indicating
whether the NOD value of an individual miRNA was signif-
icantly greater than the median level of all these candidate
miRNAs. We take P value < 0.05 as the threshold to select
significant miRNAs. The ability to distinguish sepsis group
and control groupwas characterized by the receiver operating
characteristic (ROC) curve. We applied ROC analysis on the
selected miRNA array data to evaluate the reliability of a
biological maker or a classifier. R package epicalc [32] was
used to plot the ROCcurve and calculate the area under curve
(AUC).

2.4. Union miRNA-mRNA Interactions Database. We cre-
ated union miRNA-mRNA interactions for human, which
combine experimentally validated targeting data and com-
putational prediction data. The experimentally validated
data were extracted from miRecords [33], TarBase [34],
miR2Disease [35], and miRTarBase [36], while the compu-
tational prediction data consisted of miRNA-mRNA target
pairs residing in no fewer than 2 datasets fromHOCTAR [37],
ExprTargetDB [38], and starBase [39]. In total, there were
32739 regulation pairs between 641miRNAs and 7706 target
genes.

2.5. Functional Enrichment Analysis. Herein, we mapped the
genes uniquely regulated by candidate miRNAs to GeneGo
database for analysis of enriched signaling pathway and
disease ontology [40–42]. GeneGo database was from Meta-
Core. In GeneGo, hypergeometric tests were used to evaluate
the statistical significance of the enriched pathways and
disease. The gene ontology analysis was performed using
DAVID Bioinformatics Resources 6.7 [43] and QuickGO
[44].

3. Results and Discussion

3.1. Analysis of Known Sepsis miRNABiomarker. Textmining
in NCBI PubMed was used to identify miRNAs as sepsis
biomarker. By setting the specific key words, we collated
10miRNAs that were already proven to be helpful for diagno-
sis or prognosis of sepsis. To analyze common characteristics
of 10 known biomarkers, the number of genes targeted
exclusively by a specific microRNA in union miRNA-mRNA
interactions database was conducted and we termed it as
a novel out degree (NOD) to indicate the independent
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Figure 2: The distribution of NOD value was compared between
known miRNA biomarkers and all miRNAs in database. Though
we constructedmiRNA-mRNA interactions network, the number of
genes targeted exclusively by a specific microRNA can be computed.
So each miRNA has a NOD value. Kolmogorov-Smirnov test (K-
S test) was used to test whether two underlying one-dimensional
probability distributions differ. The above boxplot really highlights
the difference between two samples. The P value is 0.005 and
illustrates that knownmiRNAbiomarkers havemore genes uniquely
regulated by it.

regulation power for an individualmiRNA [28, 29].Wilcoxon
signed-rank test was applied to measure statistical signifi-
cance of an individual miRNA targets count. We found that
8 of 10 (80%) known miRNA biomarkers were significantly
greater than median level of all miRNAs in database; it
means that miRNAs with larger NOD values are more likely
to be potential sepsis biomarker. Additionally, our previous
analysis of identification of cancer miRNA biomarker also
suggested that miRNAs with greater independent regulation
power tend more likely to be potential cancer miRNA
biomarker [28, 29]. Based on this result, we can identify novel
miRNAbiomarker in sepsis disease.The distribution of NOD
value was compared between knownmiRNA biomarkers and
all miRNAs in database, illustrated in Figure 2. Table 1 gives
detailed information of known miRNAs biomarker which
was extracted from the literature.

3.2. Prediction of Candidate Sepsis miRNA Biomarkers. With
the result above, we exploited miRNA expression profiles
to predict disease biomarker. As described in Methods,
we identified 10 significantly and differentially expressed
miRNAs to be candidate sepsis miRNA biomarkers from our
selected miRNA expression dataset. Among these miRNAs,
miR-16 [19] andmiR-146a [45] have been previously reported
to be sepsis biomarkers. There are some well-known miRNA
biomarkers that are not presented in our list; the reason
may be the heterogeneity of experimental samples and the
stringent threshold we used when selecting differentially
expressed miRNAs.

The diagnostic potential of candidate miRNAs was evalu-
ated by ROC curve analysis and the discriminatory accuracy
was presented by AUC values. We found that the minimum
of AUC is 0.81, the maximum is 0.97, and the average of 5
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Table 1: The details of sepsis miRNA biomarkers extracted from the literature.

MicroRNA
name (Hsa-)

Accession
number
(MIMAT)

Biomarker type Detection
technology Study design Expression in

sepsis patients PMID Reference

miR-15a 0000068 Diagnosis qRT-PCR Serum Up 22868808 [19]
miR-16 0000069 Diagnosis qRT-PCR Serum Up 22868808 [19]
miR-122 0000421 Diagnosis qRT-PCR Serum Down 23026916 [18]
miR-146a 0000449 Diagnosis qRT-PCR Serum Down 20188071 [45]
miR-223 0000280 Diagnosis qRT-PCR Serum Down 20188071 [45]

miR-483-5p 0004761 Prognosis qRT-PCR Serum Downregulated
in survivors 22719975 [20]

miR-499-5p 0002870 Diagnosis qRT-PCR Serum Down 23026916 [18]

miR-574-5p 0004795 Prognosis qRT-PCR Serum Upregulated in
survivors 22344312 [46]

miR-150 0000451 Diagnosis qRT-PCR Serum Down 19823581 [31]

miR-193b∗ 0004767 Prognosis qRT-PCR Serum Downregulated
in survivors 22719975 [20]

Table 2: Candidate miRNAs with outlier activity in sepsis.

MicroRNA
name (Hsa-)

Accession
number
(MIMAT)

𝑃 value (sepsis
patients versus

controls)

Fold change
(log 2) NOD value

𝑃 value (NOD
statistical

significant value)

AUC value
(95% CI)

let-7b 0000063 0.020 85.93 53 2.4𝐸 − 07 0.81
miR-16 0000069 0.030 55.79 35 3.12𝐸 − 07 0.84
miR-15b 0000417 0.001 192.07 33 3.82𝐸 − 07 0.95
miR-146a 0000449 0.002 −6.89 20 1.84𝐸 − 05 0.90
miR-210 0000267 0.023 1.64 15 0.0006 0.97
miR-340 0004692 0.021 −1.18 11 0.0021 0.88
miR-145 0000437 0.021 13.03 11 0.0021 0.83
miR-484 0002174 0.002 3.74 11 0.0021 0.92
miR-324-3p 0000762 0.021 2.45 10 0.0041 0.84
miR-486-5p 0002177 0.019 102.49 8 0.0151 0.97

miRNAs’ AUC is above 0.90. Because the property of ROC is
measured as area under the curve (AUC), the ROC curve
comparing sepsis patients and healthy controls provides
a graphical demonstration of the superiority of candidate
miRNA as sepsis marker. Finally, we plot the false positive
rate (1−specificity) versus true positive rate (sensitivity) of
a test (see Figure 3) for individual miRNA’s ROC analysis.
The detailed information on candidate miRNAs is given in
Table 2.

3.3. Enrichment Analysis for Target Genes of the Candidate
miRNAs. Previous researches have revealed that microRNAs
emerged as key gene regulators in diverse biological pathways
[47] and aberrant miRNA expression can contribute to
human diseases [48]. It means that if a miRNA is abnormally
expressed in sepsis patients, the target gene regulated by
it should also change in sepsis patients. Accordingly, in
order to explore the property of miRNA biomarker, we
mapped the uniquely regulated genes of candidate miRNAs
to GeneGo database (MetaCore) for pathway and disease
ontology analysis [49, 50].

For pathway analysis, we retrieved 29 significantly
enriched pathways (P value < 0.05) from GeneGo database.
These pathways mapped converge on “immune response,”
“cell cycle,” “apoptosis,” and “development,” which are well
known to play a part in sepsis development. There are 11
pathways related to immune response; it is clear that the
endotoxins of reducing sepsis interact with host cells via spe-
cific receptors on the cell surface and trigger a dysregulated
immune response [51]. We also found 2 pathways for apop-
tosis, an important factor impacting programmed cell death
and amajor contributor to the pathophysiology of sepsis [52].
Among development pathways, 3 pathways about angiopoi-
etin or cell proliferation, angiopoietin plays divergent roles
in mediating inflammation and vascular quiescence [53], and
cell proliferation is concomitantly observed in human severe
infections [54]. The cell cycle pathways mainly contained
chromosome condensation, chromosome separation, and
DNA replication.The other pathways included cell adhesion,
cytoskeleton remodeling, DNA damage, and metabolism.
According to pathway analysis, the result well confirmed that
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Figure 3: Receiver operating characteristic (ROC) curves of the 10 candidate miRNAs for their performance of diagnosis of sepsis.
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GeneGo database. In total, 207 genes are uniquely regulated and targeted by the 10 candidate miRNA biomarkers. The statistical significance
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Figure 5: Disease ontology analysis for uniquely regulated and targeted genes of the 10 candidate sepsis miRNA biomarkers. The uniquely
regulated and targeted genes of the candidate sepsismiRNA biomarkers from ourmethodwere retrieved and annotated with disease ontology
analysis. In total, 207 genes are uniquely regulated and targeted by the 10 candidate miRNA biomarkers. The statistical significance level (P
value) was negative 10-based log transformed. The top 10 significantly enriched diseases were shown.
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Table 3: Summary of constructed 10 miRNA regulated PINs. N0: gene was included in PINA database; N1: the extended subnetwork of N0
gene directly connected to N0 gene; N2: the total genes of miRNA regulated subnetwork.

MicroRNA name (Hsa-) Accession number (MIMAT) NOD count N0 count N1 count N2 count
let-7b 0000063 53 42 424 466
miR-15b 0000417 33 26 201 227
miR-16 0000069 35 28 384 412
miR-145 0000437 11 8 256 264
miR-146a 0000449 20 13 202 215
miR-210 0000267 15 10 39 49
miR-324-3p 0000762 10 10 121 131
miR-340 0004692 11 9 124 133
miR-484 0002174 11 11 246 257
miR-486-5p 0002177 8 6 26 32
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Figure 6: The miRNA-210 regulated protein-protein interaction network (PPIN). In this network, red node denotes the miRNA, yellow
nodes denote miRNA directly targeted genes, and green nodes denote genes connected with target genes. The red lines represent a negative
regulatory relationship initiated by miRNAs. The black lines represent interactions between protein and protein.

the abnormal expression of candidate miRNAs can cause
specific signaling pathway to be active in sepsis progress,
and their target genes are closely related to sepsis. Therefore,
our predicted candidate miRNAs are reliable for sepsis. The
top 10 significant GeneGo pathways enriched with the target
genes of the predicted candidate sepsis miRNAs are shown in
Figure 4.

Disease ontology is created based on the classification in
medical subject headings (MeSH). Each disease in disease

ontology has its corresponding biomarker gene or set of
genes. After mapping the uniquely regulated and targeted
genes of candidate miRNA biomarkers, we noted that the
most significant disease is septic shock. Septic shock is severe
sepsis plus a state of acute circulatory failure characterized
by persistent arterial hypotension unexplained by other
causes despite adequate volume resuscitation [55]. Based on
the principle of disease ontology in GeneGo, the enriched
genes are disease-related biomarkers. However, these genes
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Table 4: GO analysis results of miR-15b regulated PIN. The common GO terms for miR-15b were listed.

MIMAT0000417 (Hsa-miR-15b)
GO term Genes 𝑃 value

GO:0006916∼antiapoptosis BFAR, HSP90B1, GSK3B, BCL2, HIPK3, TGFBR1, NPM1, UBC,
SERPINB2, FAIM3, BCL2L1, HSPA5 2.96𝐸 − 04

GO:0009891∼positive regulation
of biosynthetic process

DVL3, HRAS, THRB, GRIP1, PCBD1, RXRB, RXRA, TGFBR1,
PPARG, DDX5, CALR, POT1, SREBF2, ATXN1, MAPK1, MEIS2,
PSMC5, NCOA2, HNF4A, ATXN7, NPM1, UBC, YAP1

8.10𝐸 − 04

GO:0010557∼positive regulation
of macromolecule biosynthetic process

DVL3, HRAS, THRB, GRIP1, PCBD1, RXRB, RXRA, TGFBR1,
PPARG, DDX5, CALR, POT1, SREBF2, ATXN1, MAPK1, MEIS2,
PSMC5, NCOA2, HNF4A, ATXN7, UBC, YAP1

8.92𝐸 − 04

GO:0010604∼positive regulation
of macromolecule metabolic process

HRAS, THRB, GRIP1, PPARG, PSMD1, PSMD2, PSMD3, H2AFX,
PSMD4, YAP1, PSMD6, PSMD7, PRKCA, PCBD1, RXRB, RXRA,
PSMA2, UBE2N, MAPK1, NCOA2, HNF4A, PSMA6, PSMA3, UBC,
MDM2, CALR, POT1, PIN1, PSMB5, MEIS2, BCL2, UBE2D1, DVL3,
TGFBR1, DDX5, FURIN, SREBF2, ATXN1, PSMC6, PSMD14,
PSMD13, PSMC5, PSMD12, PSMC4, PSMC3, PSMD11, PSMD10,
ATXN7, PSMC2, PSMC1

1.54𝐸 − 16

GO:0010605∼negative regulation
of macromolecule metabolic process

THRB, TSG101, PPARG, BCL2L1, TERF2IP, CALR, POT1, PSMB5,
MEIS2, NPM1, PSMD1, PSMD2, PSMD3, PSMD4, UBE2D1, PSMD6,
PSMD7, PRKCA, RXRA, ZNF24, UBE2I, FURIN, CDK5, SIRT3,
PSMA2, ATXN1, PSMD14, PSMC6, PSMD13, NCOA2, PSMC5,
PSMA6, HNF4A, PSMD12, PSMC4, PSMC3, PSMD11, PSMD10,
PSMC2, PSMA3, PSMC1, UBC, BUB1B, MDM2, FABP4, SMURF2

3.72𝐸 − 16

GO:0010628∼positive regulation
of gene expression

DVL3, THRB, GRIP1, RXRB, PCBD1, RXRA, TGFBR1, PPARG,
DDX5, SREBF2, ATXN1, MAPK1, MEIS2, PSMC5, NCOA2, HNF4A,
ATXN7, UBC, YAP1

0.0031

GO:0010941∼regulation of cell death

HRAS, BCAR1, BCL2L1, CALR, ITSN1, DYNLL1, BCL2, SOS1,
CASP8, RAC1, NPM1, POU4F1, HSPA5, PRKCA, VAV3, TP53BP2,
TGFBR1, TMBIM6, RXRA, ACTN1, ACTN2, FURIN, VAV1, CDK5,
CASP10, MAPK1, BFAR, HSP90B1, PSMC5, GSK3B, HIPK3, UBC,
SERPINB2, ERN1, FAIM3, MAPK8, CACNA1A

4.80𝐸 − 09

GO:0031328∼positive regulation
of cellular biosynthetic process

DVL3, HRAS, THRB, GRIP1, PCBD1, RXRB, RXRA, TGFBR1,
PPARG, DDX5, CALR, POT1, SREBF2, ATXN1, MAPK1, MEIS2,
PSMC5, NCOA2, HNF4A, ATXN7, NPM1, UBC, YAP1

6.69𝐸 − 04

GO:0042981∼regulation of apoptosis

HRAS, BCAR1, BCL2L1, CALR, ITSN1, DYNLL1, BCL2, SOS1,
CASP8, RAC1, NPM1, POU4F1, HSPA5, PRKCA, VAV3, TP53BP2,
TGFBR1, TMBIM6, RXRA, ACTN1, ACTN2, FURIN, VAV1, CDK5,
CASP10, MAPK1, BFAR, HSP90B1, GSK3B, HIPK3, UBC, SERPINB2,
ERN1, FAIM3, MAPK8, CACNA1A

1.18𝐸 − 08

GO:0043066∼negative regulation
of apoptosis

HRAS, TMBIM6, TGFBR1, BCL2L1, ITSN1, FURIN, BFAR, HSP90B1,
GSK3B, HIPK3, BCL2, NPM1, UBC, SERPINB2, FAIM3, MAPK8,
HSPA5, CACNA1A

2.61𝐸 − 05

GO:0043067∼regulation
of programmed cell death

HRAS, BCAR1, BCL2L1, CALR, ITSN1, DYNLL1, BCL2, SOS1,
CASP8, RAC1, NPM1, POU4F1, HSPA5, PRKCA, VAV3, TP53BP2,
TGFBR1, TMBIM6, RXRA, ACTN1, ACTN2, FURIN, VAV1, CDK5,
CASP10, MAPK1, BFAR, HSP90B1, PSMC5, GSK3B, HIPK3, UBC,
SERPINB2, ERN1, FAIM3, MAPK8, CACNA1A

4.35𝐸 − 09

GO:0043069∼negative regulation
of programmed cell death

HRAS, TMBIM6, TGFBR1, BCL2L1, ITSN1, FURIN, BFAR, HSP90B1,
PSMC5, GSK3B, HIPK3, BCL2, NPM1, UBC, SERPINB2, FAIM3,
MAPK8, HSPA5, CACNA1A

8.38𝐸 − 06

GO:0045941∼positive regulation
of transcription

DVL3, THRB, GRIP1, RXRB, PCBD1, RXRA, TGFBR1, PPARG,
DDX5, SREBF2, ATXN1, MAPK1, MEIS2, PSMC5, NCOA2, HNF4A,
ATXN7, UBC, YAP1

0.0022

GO:0060548∼negative regulation
of cell death

HRAS, TMBIM6, TGFBR1, BCL2L1, ITSN1, FURIN, BFAR, HSP90B1,
PSMC5, GSK3B, HIPK3, BCL2, NPM1, UBC, SERPINB2, FAIM3,
MAPK8, HSPA5, CACNA1A

8.76𝐸 − 06
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Figure 7: The ancestor chart for common GO terms obtained from the GO analysis of the 10 candidate miRNAs. The grey circle represents
GO term related to cell death process. The black rectangle represents GO term related to macromolecule biosynthetic process. All marked
GO terms are included in the common GO terms.

are all targeted exclusively by our candidate miRNAs. This
fully proves the accuracy and effectiveness of our candidate
miRNAs to distinguish sepsis from healthy population. The
top 10 significant disease enrichment results are listed in
Figure 5.

3.4. The Functions of the PINs Regulated by the Candidate
miRNAs. MicroRNAs implement their function by regu-
lating their target genes, thereby directly affecting expres-
sion of their target genes at the posttranscriptional level
and the related protein-protein interaction network [56].
A fundamental view is that aberrant miRNA can regulate
disease progression-related biological processes [57]. If a
miRNA could be the useful diagnostic marker for sepsis, the
biology function of PIN regulated by it will highly relate to
sepsis progression. In order to demonstrate the regulation
of miRNA in sepsis crucial biological processes, we applied
gene ontology analysis for miRNA regulated PIN and then
validated the reliability of our candidate miRNAs.

We constructed candidate miRNAs regulatory networks,
containing miRNAs, genes exclusively targeted by them, and

the genes directly connected to the targets. The extended
network nodes were obtained by appending known interac-
tions form the PINA database. Protein interaction network
analysis (PINA) platform integrated protein-protein interac-
tion data from six public curated databases containing 108477
binary interactions [58]. The details of 10 miRNA regulated
PINs are listed in Table 3. Figure 6 shows miR-210 regulated
protein-protein interaction network, which is one of the 10
miRNA regulated PINs constructed in our work. After the
construction of the 10 PINs, GO enrichment analysis was
applied to elucidate their functions. We exploited DAVID
to select highly significantly enriched GO terms in biology
process for each miRNA regulated PIN (P value < 0.05). We
summarized the result of GO analysis and noted that the
number of nodes in individual miRNA regulated PINs was
different; in addition, the number of enriched GO terms for
each miRNA was also different. By extracting the common
GO term of the 10 candidate miRNAs, we found that a total
of 14 GO terms were included in all candidate miRNAs. The
result of the GO analysis formiR-15b regulated PINwas listed
in Table 4 (common GO terms for each miRNA were listed
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only) and result of all miRNA regulated PINs could be found
in Supplementary Table S1 (see the Supplementary Material
available online at http://dx.doi.org/10.1155/2014/594350).

Further studies are needed to confirm the relationship
between 14GO terms and sepsis. The 12 of 14 terms could
be divided into two processes: one is cell death and the
other is macromolecule biosynthetic process. As shown in
Figure 7, QuickGOwas applied to build ancestor chart for the
common terms.The termGO∼0006916 (antiapoptosis) is the
same as GO∼0043066 (negative regulation of apoptosis); two
other terms are related to gene expression and transcription.
The pathomechanism of organ failure and death in patients
with sepsis remain elusive, but programmed cell death (or
apoptosis) is a key feature in sepsis, especially as it involves
the lymphoid system with resulting immunoparalysis [59].
Meanwhile, macromolecule biosynthetic and metabolic pro-
cess is also prominent feature in sepsis; it is related to acti-
vation and release of bacterial endotoxin, which is a macro-
molecule engaged in initiation of cytokine cascade [60].
The results above fully testified our candidate miRNAs by
targeting specific genes to affect important biology process
of sepsis progression and further illuminate the reliability of
miRNA as sepsis biomarker.

4. Conclusions

In this study, we applied an integrative approach to identify
microRNAs as sepsis biomarkers from miRNA expression
profiles. Comparing with the work by Vasilescu et al., we
identified 10 novel and reliable miRNA biomarkers for sep-
sis, supported by our pathways analysis, disease ontology
analysis, and protein-protein interaction network analysis,
as well as ROC curve comparison. These putative miRNA
biomarkers could hopefully promote the precision diagnosis
of sepsis.
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