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a b s t r a c t

In migraine trials pain relief responses from a headache at specific time points and sustained pain relief
response over a period of time are important efficacy measures. When there are missing records of
individual time point pain scores and/or headache recurrences during a migraine trial, the common
approach used in practice to estimate the sustained response is statistically inconsistent even if the data
are missing completely at random. Methods dealing with nonignorable longitudinal missing data usually
assume certain models for the missing mechanismwhich can not be checked as they involve unobserved
data. Taking advantage of the specific definition of the ‘sustained pain relief’ response, we propose two
estimating methods based on intuitive imputation, which do not require model assumptions on the
missing probability or specification of the correlation structure among the longitudinal observations. The
consistency of the proposed methods is discussed in theory and their empirical performances are
assessed through intensive simulation studies. The simulation results show that the proposed methods
perform well in terms of reducing bias and mean square error except in several extreme cases which are
unlikely to happen in real trials. The application of the proposed methods is illustrated in a real data
analysis.
© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

This paper was motivated by a dose-finding clinical trial [9], in
which different doses of an investigational drug were studied to
treat patients with moderate or severe migraine headaches. Pa-
tients were required to report their headache severities at baseline
and a few specific time points, typically 0.5, 1, 1.5, 2, 3, 4, and 24 h
post initial dose. The headache severity was measured on a 4-point
scale: 0 ¼ none, 1 ¼ mild, 2 ¼ moderate, 3 ¼ severe. Headache
recurrence, defined as moderate or severe headache at any time
during the 2e24 h after an initial pain relief (PR, defined as none or
mild headache) at 2 h postdose, was also reported. It needs to be
noted that the recurrence covers the continuous time period so it is
possible for a patient to report PR at all specific time points while
still having a recurrence. Patients were allowed to take an optional
2nd dose and/or rescue medication at 2 h postdose or later. One of
hina Normal University, 500
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the secondary endpoint in the study is the 2e24 h sustained PR
(SPR), defined as PR at 2 h, no need for the optional 2nd dose or
rescue medication and no moderate or severe headache recurrence
during the 2e24 h postdose. 2e24 h SPR is generally considered as
a more clinically meaningful measurement of the treatment than
the 2 h PR. In this paper, we are mainly interested in the estimation
of the proportion of patients having SPR for each treatment group
and the difference between two groups. If there is no missing data,
the 2e24 SPR variable is easily derived and the analysis is straight
forward. But if any time point data or the recurrence measure is
missing, which is common in real trials, the estimation and analysis
become nontrivial.

Using the terminology of Little and Rubin [17]; data are missing
completely at random (MCAR) if the missing probability does not
depend on both observed and unobserved responses, and data are
missing at random (MAR) if the missing probability only depends
on the observed responses. These two missing mechanisms are
called ignorable in the sense that the likelihood inference may
ignore the missing mechanism. A nonignorable missing mecha-
nism (NI) depends on unobserved responses. In our case, the
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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missing probability of the recurrence is considered to be related
with the values of headache severities at time points which may be
missed. So the missing mechanism is typically NI, which is a big
challenge to the analysis.

A common approach when there is not a significant amount of
missing data is to simply ignore the patients with missed re-
sponses, and focus on patients with completely observed data (i.e.,
complete-case, CC analysis). This simple approach is valid under
MCAR. Generalized estimation equation (GEE) proposed by Liang
and Zeger [16] is statistically consistent for MCAR longitudinal data.
For MAR data, maximum likelihood based approaches [7,13,18];
among others), weighted generalized estimation equation (WGEE)
approaches [3,4,20], a complicated imputation method [19], and an
alternative multiple imputation approach [15] have been proposed.
In general, these methods are biased under nonignorable missing
data and some of them also require proper specification of the
missing probability model. Much work has also been done to
address the nonignorable missing data problems. Available
methods include maximum likelihood [2,6,23,27], weighted esti-
mation equations [21,22] and mixed effects models
[1,5,8,11,24e26,28,29]. Recent reviews of methods handling non-
ignorable missing data in longitudinal data can be found in Hogan,
Roy, and Korkontzlou [10] and Ibrahim and Molenberghs [12]. The
common challenge with these approaches for nonignorable
missing data is that they usually depend on certain models for the
missing probability, e.g., logistic models, which can not be checked
because unobserved data are involved. Their analysis may also be
sensitive to the model assumptions on the missing probability.

The migraine data has a special feature in the sense that the
patient will have a definitively negative 2e24 h SPR if one of the
observed headache severities at 2, 3, 4, and 24 h postdose is
moderate or severe. By taking advantage of this feature plus some
reasonable assumptions on the missing mechanism, we propose
two imputation based methods to deal with nonignorable missing
data without model assumptions on the missing probability and
the correlation structure among the longitudinal observations.
These methods are easy to implement and very efficient as shown
in the simulation results.

The rest of this paper is organized as follows. Section 2 in-
troduces the notation and assumptions on the missing mechanism.
Two imputation based estimation methods are proposed in Section
3. Results of a simulation study and a real data analysis are repre-
sented in Sections 4 and 5 respectively. Several concluding remarks
are provided in Section 6. Some proofs are shown in an Appendix.

2. Notation and missing mechanism

For simplicity we start with a single treatment group. Let Yit be
the PR indicator of the ith patient at time point t, where i¼ 1, $ $ $,n
and t ¼ 1,$ $ $,T, i.e., Yit ¼ 1 if the ith patient has PR at time point t;
Yit ¼ 0, otherwise. Since the definition of 2e24 h SPR does not
involve data prior to the 2 h postdose, for simplicity, in this paper
we will ignore data before 2 h postdose and let Yi1 be the PR in-
dicator at 2 h postdose, Yi2 be the PR indicator at 3 h postdose, etc.
Let {Yit, t ¼ T þ 1,…$, T þ L} denote the additional binary responses
other than PR and recurrence, e.g., ‘no optional 2nd dose’ indicator
and ‘no rescue medication’ indicator. Let Xi be the ‘no recurrence’
indicator of the ith patient, i.e., Xi ¼ 1 if the ith patient reports no
headache recurrence; Xi ¼ 0 if the ith patient reports recurrence.
Xi ¼ 1 if and only if the patient does not have moderate or severe
headache at any time (including the specific time points t ¼ 1, …$,
T) during the 2e24 h post initial dose. Note that by definition Xi

must be 0 if
QT

t¼1Yit ¼ 0, i.e., the patient definitely has a recurrence
if he/she doesn't have PR at any specific time point. Let
Yi ¼ Xi

QTþL
t¼Tþ1Yit be the SPR indicator. A patient has 2e24 h SPR if
and only if Yi ¼ 1. Our main goal is to estimate p ¼ P (Yi ¼ 1) and
calculate its confidence interval. The point estimation and variance
estimation methods can be directly extended to two treatment
groups for comparison purpose. Table 1 shows a hypothetical data
set with T ¼ 4, L ¼ 2 and two treatment groups for illustration.

Let dit be the non-missing indicator for Yit, i.e., dit ¼ 1 if Yit is not
missing; dit ¼ 0, otherwise. In the real trial, patients are asked to
check a box for whether the 2nd dose or rescue medication was
taken. If the boxes are not checked then the answers are recorded
as ‘no 2nd dose’ and ‘no rescue medication’. So we can assume that
dit always equals 1 for t ¼ T þ 1, …$, T þ L, i.e., {Yit, t ¼ T þ 1, …$,
Tþ L} are always observed. Let di be the non-missing indicator of Xi.
It should be noted that di still could be 0 even if all the dit ¼ 1 (e.g.,
the patients 6A, 2B and 10B in Table 1) and vice versa (e.g., the
patients 1A and 5B in Table 1). Since {Yit, t ¼ T þ 1, …$, T þ L} are
always observed and Yi ¼ Xi

QTþL
t¼Tþ1Yit , di is also the non-missing

indicator of Yi. Denote Ri ¼ {t: dit ¼ 1, t � T þ L}. A special feature
of the data is that when

Q
t2Ri

Yit ¼ 0, Yi must be 0 even if it is not
directly observed (i.e., Xi is not reported and di ¼ 0). In this case, we
still consider Yi as missing in the data set (e.g., the patients 6A, 14A
and 10B in Table 1) but will impute it as 0 later. To address this
special feature, we define an alternative non-missing indicator ~di
for Yi as: if di ¼ 1,then ~di ¼ 1 (e.g., patient 1A in Table 1); if di ¼ 0
and

Q
t2Ri

Yit ¼ 0, then Yi must be 0 and we define ~di ¼ 1 (e.g., pa-
tients 6A, 14A and 10B); if di ¼ 0 and

Q
t2Ri

Yit ¼ 1, then we still
don't know Yi should be 0 or 1 and we define ~di ¼ 0 (e.g., patients
4A, 10A and 2B).

We adopt the following two assumptions on the missing
mechanism:

(a1) the missing probability of Yit is independent of the response
values and the miss-ing probability of Yi, i.e., {dit, t ¼ 1, … , T} are
independent of {Yit, Xi, Yi, di }, although {dit, t ¼ 1, … , T} may be
correlated with each other, e.g., in a monotonemissing mechanism.
This assumes that whether the headache scores are missing at in-
dividual time points is not affected by the actual headache scores,
recurrence response, 2e24 h SPR or whether recurrence is missing
or not.

(a2) the missing probability of Yi (or Xi) depends on {Yit, Xi, Yi, dit,
t ¼ 1, … , T þ L} only through the values of Yit, i ¼ 1, … , T þ L, i.e., P
(di ¼ 1jYit, Xi, Yi, dit, t¼ 1,… , Tþ L)¼ P(di ¼ 1jYit,t¼ 1,… , Tþ L). This
assumes that only individual headache scores and whether 2nd
dose or rescue medication is taken have direct affects on the
recurrence missing. Since Yit may not be observed, the missing
mechanism of Yi is nonignorable. To discuss the applicability of
different methods in different situations, we consider the follow-
ing three mechanisms under (a2):

M1. For all possible values of Yit, the missing probabilities of Yi
are the same, i.e., Yi is MCAR.

M2:Pðdi ¼ 1
���QTþL

t¼1Yit ¼ 1Þ ¼ Pðdi ¼ 1
���QTþL

t¼1Yit ¼ 0Þ but Yi is not
MCAR.

M3:Pðdi ¼ 1
���YTþL

t¼1
Yit ¼ 1ÞsPðdi ¼ 1

���YTþL

t¼1
Yit ¼ 0Þ

Missing mechanisms M1 and M2 cannot be checked by the data
since these assumptions involve unobserved data. So M3 is the
most reliable assumption when we analyze the real data.

In practice, complete case analysis is commonly used. The CC
method includes only those patients with observed SPR. The esti-
mate of p is given by the observed proportion of SPR:

bpcc ¼Pn
i¼1diYiPn
i¼1di

:

There are several different ways to estimate the variance of bpcc
and construct the 100 (1� a)% confidence interval for p. Here we



Table 1
A hypothetical data set with T ¼ 4 and L ¼ 2 for illustration.

Treatment group A Treatment group B

Time points Time points

Patient Y1 Y2 Y3 Y4 Y5 Y6 X Y Patient Y1 Y2 Y3 Y4 Y5 Y6 X Y
1A 1 . . 1 1 0 1 0 1B 1 1 1 1 1 1 1 1
2A 1 1 1 1 0 0 0 0 2B 1 1 1 1 1 1 . .
3A 1 1 1 1 0 0 1 0 3B 1 1 1 1 1 1 1 1
4A 1 . . . 1 1 . . 4B 1 1 1 1 1 1 1 1
5A 1 1 1 1 1 1 1 1 5B 1 . . . 1 0 1 0
6A 0 1 1 1 0 0 . . 6B 0 0 0 1 0 0 0 0
7A 0 1 1 1 1 1 0 0 7B 0 . . . 1 1 0 0
8A 0 0 0 . 0 0 0 0 8B 0 0 0 1 0 0 0 0
9A 0 0 0 1 0 0 0 0 9B 0 0 0 1 0 0 0 0
10A 1 . . . 1 1 . . 10B 0 1 1 1 0 0 . .
11A 0 0 0 1 0 0 0 0 11B 1 . 1 1 1 1 1 1
12A 1 1 1 1 1 1 1 1 12B 0 0 1 1 1 1 0 0
13A 0 0 0 1 0 0 0 0
14A 0 0 . 1 0 0 . .

Note: Y1, …, Y4: PR indicator at time point t, Y5: ‘no 2nd dose’ indicator, Y6: ‘no rescue medication’ indicator, X: ‘no recurrence’ indicator, Y: SPR,
0
.
0
: missing value.
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use the Wald type as shown below. The confidence interval of p is
calculate to be

bpcc±za=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibpccð1� bpccÞPn

i¼1di

s
; (1)

where za/2 is the 100(1 � a/2)% percentile of the standard normal
distribution. CC method is valid in MCAR, i.e., under M1. Moreover,
CC method actually is consistent under M2. But it is not consistent
under M3. See Appendix A.1 for a detailed discussion.

In migraine trials, an intuitiveway to extend the CCmethod is to
impute the Yi by 0 if di ¼ 0 and ~di ¼ 1, and estimate p by sample
mean:

bp~CC ¼
Pn

i¼1
~di
~YiPn

i¼1
~di

;

where~Yi ¼ Yi when di ¼ 1; ~Yi ¼ 0 when di ¼ 0 and ~di ¼ 1;
~Yi ¼ missing; if otherwise. The confidence interval is given with
analogous expression of Equation (1). We denote this method as CeC.
This is a commonly used approach in practice. But unfortunately,
this estimator may have large bias unless the proportion of
nonresponse is small. This is because only value of 0 can be
imputed, so this estimator usually underestimates even under
MCAR.
3. Proposed estimation methods based on imputation

3.1. Proposed imputation method 1 (IM1)

An intuitive approach to impute the missing Yi is to use the
proportion of SPR in the patients that have non-missing SPR re-
sponses and similar {Yt} pattern with {Yit, t 2 Ri}. We denote this
method as IM1, which is described as follows.

Let ~Yi be the imputed value of Yi. ~Yi ¼ Yi when di ¼ 1. ~Yi ¼ 0
when di ¼ 0 and ~di ¼ 1. This is similar to method CeC. But instead of
ignoring the remaining patients with ~di ¼ 0, we impute them by

~Yi ¼
Pn

j¼1I
�
djYj ¼ 1;

Q
t2Ri

djtYjt ¼ 1
�Pn

j¼1I
�
dj ¼ 1;

Q
t2Ri

djtYjt ¼ 1
� : (2)
Finally, we estimate p by
Pn

i¼1
~Yi=n. This method has quite

intuitive explanations. Table 2 further explains how the imputa-
tions are done using an illustrative example with some hypothet-
ical data. In this example, we have a single treatment group with 7
patients. Similar to a real trial, we let T ¼ 4 and L ¼ 2. The 1st and
2nd patient have missing SPR.

Step 1 For the 1st patient, since he/she doesn't have PR at time
point 2 (Y12 ¼ 0), we know for sure he/she doesn't have SPR
(i.e., ~d1 ¼ 1). Therefore we impute Y1 by 0.

Step 2 For the 2nd patient, since all the non-missing {Y2t, t ¼ 1,…$,
6} are 1 (i.e., ~d2 ¼ 0), he/she may or may not have SPR.
Notice that R2 ¼ {1, 2, 4, 5, 6}. Take all the patients with non-
missing SPR and have exactly the same {Yt} values as {Y2t, t
2 R2} and no matter {Yt, t2/R2} are missing or not, i.e.,
patients 3 to 7. Calculate the proportion of SPR of these
patients, which is 2/5 in this case. Thereforewe impute Y2 by
2/5. Finally bp ¼Pn

i¼1
~Yi=n ¼ ð2=5þ 1þ 1Þ=7 ¼ 12=35:

We can show that (2) is a consistent estimator of
PðY ¼ 1

��d ¼ 1;
Q

t2RYt ¼ 1Þ. The basic idea of this method is to use
PðY ¼ 1

��d ¼ 1;
Q

t2RYt ¼ 1Þ to estimate PðY ¼ 1
��d ¼ 0;

Q
t2Rdt

Yt ¼ 1; dt;t;R ¼ 0Þ, which equals to PðY ¼ 1
��d ¼ 0;

Q
t2RYt ¼ 1Þ

when the assumption (a1) on the missing mechanism holds.
Theoretically, this imputation estimator is not consistent under

M2 and M3. How ever, as discussed in AppendixA.2, pragmatically
positive and negative biases of imputed responses with different
patterns of Ri often offset much against each other. Hence the
estimator performs reasonably well except in several extreme cases
as shown in the simulation study.
3.2. Proposed imputation method 2 (IM2)

The proposed imputation method 1 is not consistent theoreti-
cally. In this subsection, we propose a consistent estimation
method. The key point is to find a consistent estimator for
PðY ¼ 1

��d ¼ 0;
Q

t2RdtYt ¼ 1; dt;t;R ¼ 0Þ, which equals PðY ¼ 1
�� d ¼

0;
Q

t2RYt ¼ 1Þ und-er assumption (a1). The proposed imputation
method 1 actually estimates PðY ¼ 1

��d ¼ 0;
Q

t2RYt ¼ 1Þ by
PðY ¼ 1

��d ¼ 1;
Q

t2RYt ¼ 1Þ ¼ PðY ¼ 1
��d ¼ 1;

Q
t2RdtYt ¼ 1Þ which

is usually in-consistent. We need to figure out an adjusting factor to
make it consistent. By Bayes' formula, we have



Table 2
Illustration of proposed imputation method 1.

Patient Time points Step 1 Step 2

Yi1 Yi2 Yi3 Yi4 Yi5 Yi6 Xi Yi Impute Yi with dei ¼ 1. Impute Yi with dei ¼ 0 by observed responses with similar {Yt, t2Ri} pattern.

1 1 0 1 1 1 1 . .
2 1 1 . 1 1 1 . . Impute Ye1 ¼ 0 R2 ¼ {1, 2, 4, 5, 6}
3 1 1 . 1 1 1 0 0 since de1 ¼ 1
4 1 1 . 1 1 1 1 1 Take patients 3 to 7
5 1 1 0 1 1 1 0 0 Impute Y2 ¼ 2

5
6 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 0 0 bp ¼



2
5 þ 1þ 1

�
=7 ¼ 12

35

Note: Yi1, … , Yi4: PR indicator at time point t, Yi5: ‘no 2nd dose’ indicator, Yi6: ‘no rescue medication’ indicator, Xi: ‘no recurrence’ indicator, Yi: SPR,
0
.
0
: missing value.
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Y ¼ 1jd ¼ 0;

Q
t2R

Yt ¼ 1

!

¼
P
�
d ¼ 0

��Y ¼ 1;
Y

t2R
Yt ¼ 1

�
P
�
Y ¼ 1;

Y
t2R

Yt ¼ 1
�

P
�
d ¼ 0

��Y
t2R

Yt ¼ 1
�
P
�Y

t2R
Yt ¼ 1

�

¼

P
�
d ¼ 0

��Y ¼ 1;
Y

t2R
Yt ¼ 1

�
P
�
d ¼ 1

��Y ¼ 1;
Y

t2R
Yt ¼ 1Þ P

�
d ¼ 1; Y ¼ 1;

Y
t2R

Yt ¼ 1
�

P
�
d ¼ 0

��Y
t2R

Yt ¼ 1Þ
P
�
d ¼ 1

��Y
t2R

Yt ¼ 1Þ P
�
d ¼ 1;

Y
t2R

Yt ¼ 1
�

¼ P

 
Y ¼ 1

�����d ¼ 1;
Q
t2R

Yt ¼ 1

!
O1

O2
;

(3)

where

O1 ¼ P
�
d ¼ 0

��Y ¼ 1;
Q

t2RYt ¼ 1
	

P
�
d ¼ 1

��Y ¼ 1;
Q

t2RYt ¼ 1
	 and O2

¼ P
�
d ¼ 0

��Q
t2RYt ¼ 1

	
P
�
d ¼ 1

��Q
t2RYt ¼ 1

	 (4)

are conditional odds of missing probability, and O1
O2

is a bias
adjusting factor similar to Kim and Yu [14]. Since

Q
t2RYt andQTþL

t¼1Yt must be 1 when Y ¼ 1,

O1 ¼
P
�
d ¼ 0

���Y ¼ 1;
QTþL

t¼1Yt ¼ 1
�

P
�
d ¼ 1

���Y ¼ 1;
QTþL

t¼1Yt ¼ 1
� ¼

P
�
d ¼ 0

���QTþL
t¼1Yt ¼ 1

�
P
�
d ¼ 1

���QTþL
t¼1Yt ¼ 1

� ;
(5)

where the second equation holds because of assumption (a2).
Equations (3)e(5) and assumption (a1) together give us
P

 
Y ¼ 1

�����d ¼ 0;
Y
t2R

dtYt ¼ 1; dt;t;R ¼ 0

!
¼ P

 
Y ¼ 1

�����d ¼ 1;
Y
t2R

dtYt ¼

¼
P
�
d ¼ 1; Y ¼ 1;

Q
t2RdtYt ¼ 1

	
P
�
d ¼ 0;

QTþL
t¼1dtYt ¼ 1

�
P
�
d ¼ 1;

QTþL
t¼1dtYt ¼ 1

�
P
�
d ¼ 0;

Q
t2RdtYt ¼ 1

	 :
So we can impute Yi with~di ¼ 0 by

~Yi¼
Pn

j¼1I
n
djYj¼1;

Q
t2Ri

djtYjt ¼1
oPn

j¼1I
n
dj¼0;

QTþL
t¼1djtYjt ¼1

�
Pn

j¼1I
n
dj¼1;

QTþL
t¼1djtYjt ¼1

�Pn
j¼1I

n
dj¼0;

Q
t2Ri

djtYjt ¼1
�
(7)

to obtain a consistent estimator of p. This method is consistent
under M1, M2 and M3.

As for the efficiency, if the denominator of (6) is too small, the
variance of the estimatormay be large.We do not need toworry too
much about Pðd ¼ 0;

Q
t2RdtYt ¼ 1Þ since its small value also means

only few Yi needs to be imputed by the formula. So the main
concern is smallPðd ¼ 1;

QTþL
t¼1dtYt ¼ 1Þ. Based on our simulation

experience, as long asPðd ¼ 1;
QTþL

t¼1dtYt ¼ 1Þ is greater than 5%, the
final estimator of p will be quite efficient. It means that we only
need to have more than 5% of the patients to have PR at all time
points, do not take the second dose, do not take the rescue medi-
cine, and have nomissing data at all, which is common in real trials,
to make sure the estimator is efficient.
3.3. Variance estimation and confidence interval

Since the proposed imputation estimators above do not have
explicit variance expression, we apply the bootstrap method to
estimate their variances, which is conducted in the following steps.

(1) From each data set, draw a simple random sample of size n
with replacement from the set of patients (respondents or
nonrespondents). For each patient in the bootstrap sample,
the bootstrap data consist of the Yt and Y values. If the Yt or Y
is missing, the bootstrap datum is also treated as missing.

(2) Apply the same imputation methods as we described in the
previous two subsections to the bootstrap sample generated
in step (1), and get the estimator bp*.

(3) Repeat the previous steps in dependently for B times and
obtainbp*1

;…; bp*B
: Esti-mate the variance ofbp by the sample

variance of bp*1
;…; bp*B

:

1

!
P
�
d ¼ 0

���QTþL
t¼1dtYt ¼ 1

�
P
�
d ¼ 1

���QTþL
t¼1dtYt ¼ 1

�,P
�
d ¼ 0

��Q
t2RdtYt ¼ 1

	
P
�
d ¼ 1

��Q
t2RdtYt ¼ 1

	
(6)



Table 3
The PR rates and SPR rate in the simulation.

Time points No 2nd dose No rescue medication SPR

0 0.5 1 1.5 2 3 4 24

0 0.23 0.42 0.54 0.61 0.64 0.66 0.66 0.59 0.57 0.348

F. Fang et al. / Contemporary Clinical Trials Communications 4 (2016) 90e9894
The 100(1 � a)% confidence interval is given by

point estimate±za=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bootstrap variance estimator

p
;

where za=2 is the 100(1�a/2)% percentile of the standard normal
distribution.
4. A simulation study

We conducted a simulation study to compare the empirical
performances of the CC, CeC and the proposed methods in a wide
range of scenarios. We focused on a single treatment group sce-
nario in this Section. In Section 5.2 we will show some simulation
results for two treatment groups. We simulated data sets with
similar pattern to the data in the motivating trial. Let Xt, t ¼ 1,… , 8
denote the headache severity at baseline and 0.5, 1, 1.5, 2, 3, 4, 24 h
postdose, respectively. We generate Xt as follows: X1 ¼ 2 with
probability 2/3, X1¼3 with probability 1/3. Xtþ1 is generated from a
multinomial distribution conditional on the value of Xt. The con-
ditional probabilities of P(Xtþ1jXt) are similar to what we observed
from the motivating trial. Then we define Y1 ¼ I{X5 < 2}, Y2 ¼ I
{X6<2}, Y3 ¼ I{X7<2}, and Y4 ¼ I{X8<2}. ‘No recurrence’ indicator
X ¼ 0 if

Q4
t¼1Yt ¼ 0; X ¼ 1 with probability 0.95 if

Q4
t¼1Yt ¼ 1 and

X5 ¼ 0; X¼ 1 with probability 0.91 if
Q4

t¼1Yt ¼ 1 and X5 ¼1. ‘No 2nd
dose’ indicator Y5 and ‘no rescue medication’ indicator Y6 are
generated from binomial distributions conditional on X5. Values of
P (no 2nd dosejX5) and P (no rescue medicationjX5) are also similar
to the motivating trial. Then SPR indicator Y ¼ XY5Y6. We consider
the scenario with the following PR rate profile: (see Table 3).

The non-missing probabilities are determined by the following
parameters. rt ¼ P (dt ¼ 1), t ¼ 1, …, 6, r ¼ Pðd ¼ 1

���Q6
t¼1Yt ¼ 1Þ ,

s ¼ Pðd ¼ 1
���Q6

t¼1Yt ¼ 0Þ. Notice that r5 ¼ r6 ¼ 1 and s is determined
by s1 ¼ P (d ¼ 1jY1Y2Y3 ¼ 1, Y4 ¼ 0), s2 ¼ P (d ¼ 1jY1Y2Y3 ¼ 0, Y4 ¼ 1),
s3 ¼ P (d ¼ 1jY1Y2Y3 ¼ 0, Y4 ¼ 0) and s4 ¼ P (d ¼ 1jY1Y2Y3Y4 ¼ 1,
Y5Y6 ¼ 0). We con-duct simulations under all the three missing
mechanisms M1, M2, and M3.

M1: r ¼ s ¼ s1 ¼ s2 ¼ s3 ¼ s4.
Table 4
The non-missing parameters in each missing mechanism and different cases.

Case r1 r2 r3 r4 r s s1

M1 1 0.9 0.9 0.9 0.9 0.98 0.98 0.98
2 0.9 0.9 0.9 0.9 0.9 0.9 0.9
3 0.9 0.9 0.9 0.9 0.8 0.8 0.8
4 0.9 0.9 0.9 0.9 0.3 0.3 0.3

M2 1 0.9 0.9 0.9 0.9 0.26 0.26 1
2 0.9 0.9 0.9 0.9 0.74 0.74 0
3 0.9 0.9 0.9 0.9 0.53 0.53 1
4 0.9 0.9 0.9 0.9 0.47 0.47 0
5 1 1 1 0.3 0.53 0.53 1
6 1 1 1 0.3 0.74 0.74 0

M3 1 0.9 0.9 0.9 0.9 0.9 0.8 0.8
2 0.9 0.9 0.9 0.9 0.9 0.5 0.5
3 0.9 0.9 0.9 0.9 0.8 0.9 0.9
4 0.9 0.9 0.9 0.9 0.5 0.9 0.9
5 1 1 1 0.3 0.3 0.9 0.9
6 1 1 1 0.3 0.25 0.9 0.9
M2: r ¼ s, but s1, s2, s3 and s4 are not all the same.
M3: r ss.
For each missing mechanism, we consider several cases with

different non-missing parameters which are given in Table 4. In the
simulation study, we set the missing probabilities much higher
than which in the reality in order to distinguish the performances
of different methods.

For each missing mechanism and each case, we run the simu-
lation 1000 times. The sample size n ¼ 400. The bootstrap round B
is 200. The relative bias, mean square error (MSE), and the coverage
probability (CP) of the 95% confidence interval are reported in
Table 5.

The simulation results in Table 5 can be summarized as follows:

(1) The CC method performs well under M1 and M2 in terms of
relative bias and MSE. But it has large bias under M3. The CeC
method only works well when the missing probability is
small (e.g., Case 1 of M1). Otherwise it underestimates
noticeably as expected.

(2) The proposed imputation method 1 performs well in most of
the cases except Case 5/6 of M2 and M3. In these 4 cases, we
set r1 ¼ r2 ¼ r3 ¼ 1 and r4 ¼ 0.3, thus the only possible Ri is {1,
2, 3, 5, 6} or {1, 2, 3, 4, 5, 6}. As discussed in Appendix A.2,
when the pattern of Ri is not diversified, the proposed
method 1 may have large bias, which is verified by the
simulation results.

(3) The proposed imputationmethod 2 performs best in terms of
the robustness. The only concern of this method is when
Pðd ¼ 1;

QTþL
t¼1dtYt ¼ 1Þ is extremely small. For example, in

Case 6 of M3, Pðd ¼ 1;
QTþL

t¼1dtYt ¼ 1Þ ¼ 0:028. The relative
bias and MSE are relatively large compared to other cases.
But it is still better than all the other methods. Since in reality
the probabilityPðd ¼ 1;

QTþL
t¼1dtYt ¼ 1Þ usually is not that

small, the proposed imputation method 2 is an ideal method
to deal with missing data problem in migraine trials and in
other similar situations.
s2 s3 s4 P (d ¼ 1) P(de¼ 1) Pðd ¼ 1;
Q
dtYt ¼ 1Þ

0.98 0.98 0.98 0.98 0.99 0.24
0.9 0.9 0.9 0.9 0.96 0.22
0.8 0.8 0.8 0.8 0.92 0.19
0.3 0.3 0.3 0.3 0.74 0.07

1 0 0 0.26 0.72 0.06
0 1 1 0.74 0.90 0.18
0 1 0 0.53 0.82 0.13
1 0 1 0.47 0.80 0.11
0 1 0 0.53 0.82 0.06
0 1 1 0.74 0.89 0.08

0.8 0.8 0.8 0.84 0.96 0.22
0.5 0.5 0.5 0.65 0.96 0.22
0.9 0.9 0.9 0.86 0.92 0.19
0.9 0.9 0.9 0.74 0.81 0.12
0.9 0.9 0.9 0.67 0.73 0.034
0.9 0.9 0.9 0.65 0.72 0.028



Table 5
The simulation results for one treatment group.

Case Relative bias% MSE*1000 CP%

CC CeC IM1 IM2 CC CeC IM1 IM2 CC CeC IM1 IM2

M1 1 �0.0 �1.3 0.0 �0.2 0.570 0.585 0.557 0.561 95.5 94.5 94.6 94.5
2 �0.8 �7.4 �1.0 �1.4 0.581 1.179 0.538 0.546 94.5 83.0 94.5 95.3
3 �1.1 �14.6 �0.8 �1.1 0.738 3.178 0.566 0.577 93.5 41.0 94.5 95.0
4 0.3 �59.3 0.3 0.1 1.970 43.050 0.781 0.812 95.5 0.0 93.0 93.5

M2 1 0.9 �64.3 �1.5 �0.3 2.507 50.358 0.806 0.786 93.5 0.0 94.5 94.0
2 �0.1 �18.2 0.4 �0.5 0.748 4.561 0.554 0.558 95.5 25.5 94.8 96.4
3 0.3 �35.9 �0.5 �0.6 1.114 16.106 0.674 0.681 95.5 0.0 95.0 95.0
4 �0.7 �41.4 0.5 �0.1 1.144 21.995 0.574 0.594 96.0 0.0 95.0 94.5

5 0.5 �35.7 �2.3 0.6 1.082 15.928 0.601 1.446 96.0 0.0 96.5 95.5
6 �0.1 �17.3 3.1 0.0 0.778 4.233 0.726 0.967 94.5 33.0 90.3 94.0

M3 1 7.5 �6.5 0.3 �0.0 1.473 1.175 0.662 0.660 77.5 79.0 93.5 93.5
2 39.7 �6.1 0.7 0.1 19.874 0.931 0.503 0.497 0.0 88.0 96.0 96.5
3 �7.8 �14.0 �0.4 �0.6 1.309 2.895 0.547 0.551 81.5 44.5 95.1 96.0
4 �34.1 �39.3 �0.6 �0.4 14.696 19.206 0.653 0.655 1.0 0.0 96.0 95.4

5 �55.9 �59.5 �5.8 0.4 38.336 43.333 1.242 3.453 0.0 0.0 87.5 95.5
6 �61.7 �65.0 �6.9 3.6 46.524 51.176 1.434 5.420 0.0 0.0 86.2 95.1
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(4) As for the efficiency, the two proposed imputation methods
have comparable MSEs, and they both outperform the CC and
CeC methods.

(5) The bootstrap variance estimators work well for both
imputation methods. The coverage probabilities of the con-
fidence intervals are all around 95% except in the cases when
the proposed imputation method 1 has relatively large bias
in the extreme cases.
5. A real data analysis

5.1. Data analysis results

In this section we illustrate the application of our proposed
methods in a real migraine trial data. The trial is a phase 3 confir-
matory study to test the efficacy and safety of a calcitonin-gene
related peptide (CGRP) antagonist. There are 3 active doses plus a
placebo control arm in the study. For simplicity and demonstration
purpose, we only choose the one active dose and placebo here. The
sample sizes of the two groups are 333 and 348 respectively. The
completer case (CC) proportions, i.e., P (d ¼ 1), are 82.9% and 75.6%
respectively. Using CeC method the non-missing rates of SPR,
i.e.,Pð~d ¼ 1Þ; are 96.1% and 98.6% in the two groups.

The analysis results based on CC, CeC and the two proposed
imputation methods (IM1 and IM2) are reported in Table 6. As ex-
pected and also demonstrated in simulation (case 1 from Table 9 in
Section 5.2), the CC approach overestimates the individual
Table 6
Analysis results of the real migraine trial data using different methods.

Statistics Method of analysis

CC ~CC

p^A 0.3406 0.2938
se(p^A) 0.0285 0.0255
95% CI (0.2846,0.3965) (0.2438,0.343
p^B 0.2053 0.1574
se(p^B) 0.0249 0.0197
95% CI (0.1565,0.2541) (0.1189,0.196
p^A�p̂ B 0.1353 0.1363
se(p^A�p^B) 0.0379 0.0322
95% CI (0.0610,0.2095) (0.07326,0.19
treatment effect and the CeC method underestimates. Both IM1 and
IM2 make adjustment to those estimates in the correct directions.
For the treatment effect (pA � pB) estimate, both CC and CeC ap-
proaches underestimate the treatment difference while IM1 and
IM2 also appear to have made adjustment in the correct direction.
Note that because the CeC missing data proportion is low, the
adjustment is thus also minor. But potentially the adjustment may
be more significant when the missing data rate is high (as seen in
the case 2 from Table 9).
5.2. Simulation based on the real data

We conducted an additional simulation based on the real data to
evaluate the empirical performances of our proposed methods for
two treatment groups. For each treatment group (sample size of
333 and 348 respectively), we generate Xt, Yt, X and Y in a similar
way to the simulation study in Section 4. The conditional proba-
bilities needed for data generation are calculated from the real data
with all available samples. The PR rate profile for the two treatment
groups is given in Table 7. Due to the effects of missing data when
calculating the conditional probabilities for data generation, the
calculated PR rates and SPR rates in the simulation are different
from what have been observed in the real trial.

We consider two cases for the non-missing probabilities. In the
first case, the missing probability parameters rt, r and st are calcu-
lated from the real trial based on all available samples. In the sec-
ond case, we adjust the parameters to make the missing
probabilities a little bit larger in order to distinguish the
IM1 IM2

0.3175 0.3061
0.0263 0.0262

6) (0.2658,0.3691) (0.2546,0.3575)
0.1667 0.1597
0.0205 0.0202

0) (0.1265,0.2069) (0.1202,0.1992)
0.1508 0.1464
0.0334 0.0331

94) (0.0853,0.2162) (0.0815,0.2112)



Table 7
The PR rates and SPR rates in the simulation.

Time points No 2nd dose No rescue med. SPR

0 0.5 1 1.5 2 3 4 24

Trt A 0 0.11 0.24 0.42 0.49 0.62 0.73 0.85 0.75 0.39 0.221
Trt B 0 0.11 0.22 0.24 0.28 0.44 0.48 0.87 0.64 0.23 0.124

Table 8
The non-missing parameters in each case and each treatment group.

Case Trt r1 r2 r3 r4 r s s1 s2 s3 s4 P (d ¼ 1) P(de¼ 1) Pðd ¼ 1;
Q
dtYt ¼ 1Þ

1 A 0.96 0.85 0.84 0.92 0.94 0.83 1 0.77 0.78 0.96 0.86 0.98 0.15
B 0.97 0.86 0.85 0.9 0.97 0.73 1 0.68 0.74 1 0.76 0.99 0.09

2 A 0.96 0.85 0.84 0.92 0.8 0.53 1 0.5 0.5 0.5 0.60 0.95 0.13
B 0.97 0.86 0.85 0.9 0.8 0.51 1 0.5 0.5 0.5 0.55 0.97 0.07
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performances of different methods. The parameters in the two
cases are listed in Table 8.

For each case, we run the simulation 1000 times. The bootstrap
round B is 200. The relative bias (RB), standard deviation (SD),
mean square error (MSE), standard error (the estimated standard
deviation, SE), and the coverage probability (CP) of the 95% confi-
dence interval are reported in Table 9.

The simulation results are summarized as follows. First, the CC
method has large bias as expected since the two cases considered
here are both M3. The CeC method underestimates especially when
the missing probability is relatively large in Case 2. Second, our
proposed methods IM1 and IM2 work quite well in terms of negli-
gible relative biases and comparable or smaller mean square errors
compared with CC and CeC. Third, the bootstrap method produces
nearly unbiased estimator for standard deviation. The coverage
probabilities of the confidence intervals based on our proposed
methods and bootstrap variance estimators are close to 95%. These
results are also consistent with the observations from the M3 cases
in the previous more general simulation study.

6. Concluding remarks

We proposed two imputation based estimation methods to deal
with the nonignorable missing data in migraine trials with longi-
tudinal binary responses by leveraging the special data feature of
Table 9
The simulation results for two treatment groups.

Method Case 1

RB% SD MSE*1000 SE CP

Treatment A
CC 9.3 0.0247 1.039 0.0254 88
~CC �5.1 0.0220 0.612 0.0225 91

IM1 �0.5 0.0226 0.512 0.0229 95
IM2 �1.0 0.0226 0.515 0.0228 95
Treatment B
CC 27.1 0.0222 1.630 0.0224 70
~CC �2.6 0.0174 0.312 0.0175 92

IM1 0.5 0.0177 0.315 0.0178 95
IM2 �0.5 0.0178 0.315 0.0177 94
Treatment A - Treatment B
CC �13.5 0.0328 1.248 0.0338 94
~CC �8.3 0.0280 0.847 0.0285 94

IM1 �1.7 0.0290 0.843 0.0289 94
IM2 �1.7 0.0289 0.837 0.0289 94

Note: RB: relative bias, SD: standard deviation, MSE: mean square error, SE: standard er
the sustained response. We illustrated the application of our pro-
posed methods by analyzing data from a real migraine clinical trial,
and compared their performances to the complete-case method
(CC) and the current method used in real trials (CeC) in compre-
hensive simulation studies. The CeCmethod has large bias unless the
missing probability is small. The CC method is consistent only in
some special missing mechanisms. The proposed methods gener-
ally perform very well even in nonignorable missingness except in
several extreme cases which are unlikely to happen in real trials.
Also they are more efficient than the CCmethod in terms of smaller
SMEs. The proposed methods do not need any specific model as-
sumptions on the missing probabilities (e.g., logistic models) or the
correlation structure among the longitudinal observations. They are
direct estimation methods in the sense that the nuisance longitu-
dinal missing data do not need to be estimated first.

The proposed imputation methods can be easily extended when
stratification is needed. For example, we could split the patients
into several strata by their headache severities at baseline and
conduct the imputation within each stratum. The overall estima-
tion will be a weighted average.

The bootstrap was applied to obtain the variance estimation and
to conduct confidence interval. It worked quite well in the simu-
lation study. However, we also realize that it may have some dif-
ficulty when n*Pðd ¼ 1;

QTþL
t¼1dtYt ¼ 1Þ is very small. In this

situation, whenwe draw a bootstrap sample from the original data,
Case 2

% RB% SD MSE*1000 SE CP%

.6 33.8 0.0316 6.576 0.0322 37.0

.0 �15.0 0.0214 1.567 0.0220 65.0

.2 0.6 0.0227 0.518 0.0234 96.0

.0 �0.1 0.0227 0.517 0.0235 96.1

.8 44.6 0.0261 3.752 0.0277 49.2

.9 �18.2 0.0152 0.744 0.0164 70.2

.0 0.0 0.0167 0.279 0.0180 95.8

.5 �1.2 0.0169 0.287 0.0180 95.4

.4 19.9 0.0404 2.005 0.0425 93.8

.4 �11.0 0.0262 0.799 0.0274 94.2

.6 1.2 0.0285 0.812 0.0295 95.8

.4 1.3 0.0286 0.817 0.0296 96.0

ror (estimated standard deviation), CP: coverage probability.



F. Fang et al. / Contemporary Clinical Trials Communications 4 (2016) 90e98 97
it may happen that
Pn

i*¼1Ifdi* ¼ 1;
QTþL

t¼1di*tYi*t ¼ 1g ¼ 0. Then our
proposed methods are not applicable in the bootstrap sample. So
the variance estimation in small sample needs to be further
addressed. If we allow the modeling on the missing probability and
take the correlation structure among the binary responses into
account, the comparison among our methods and some other
methods such as GEE, maximum likelihood and weighted GEE is an
interesting research topic, although we conjecture that our pro-
posed methods should be the most robust approaches since they
are free of many model assumptions. How to address all these is-
sues will remain as our future research topics.
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R A(imputed) B(true) PðR; d~d ¼ 1Þ
{1} r

s1ð1�p2Þþrp2
1�r

1�s1ð1�p2Þþrp2
r1(1 � r2)p1[1 � s1(1 � p2) � rp2]

{2} r
s2ð1�p1Þþrp1

1�r
1�s2ð1�p1Þþrp1

r2(1 � r1)p2[1 � s2(1 � p1) � rp1]
Appendix A

A.1. Discussion of the consistency of CC method

The p ĈC is a consistent estimator of P(Y ¼ 1jd ¼ 1). When
assumption (a2) holds, we have

PðY ¼ 1jd ¼ 1Þ ¼
P
�
X ¼ 1;

YTþL

t¼1
Yt ¼ 1; d ¼ 1

�
Pðd ¼ 1Þ

¼
P
�
X ¼ 1; d ¼ 1

���YTþL

t¼1
Yt ¼ 1

�
P
�YTþL

t¼1
Yt ¼ 1

�
Pðd ¼ 1Þ

¼
P
�
d ¼ 1

���YTþL

t¼1
Yt ¼ 1

�
P
�
X ¼ 1

���YTþL

t¼1
Yt ¼ 1

�
P
�YTþL

t¼1
Yt ¼ 1

�
Pðd ¼ 1Þ

¼
P
�
d ¼ 1

���YTþL

t¼1
Yt ¼ 1

�
Pðd ¼ 1Þ PðY ¼ 1Þ:

Hence p̂ CC is consistent for P(Y ¼ 1) if and only
ifPðY ¼ 1

��d ¼ 1;
Q

t2RYt ¼ 1Þ ¼ Pðd ¼ 1Þ, which is equivalent to M2.
A.2. Discussion of the consistency of proposed imputation method 1

The basic idea of proposed method 1 is using
PðY ¼ 1

��d ¼ 1;
Q

t2RYt ¼ 1Þ to estimate PðY ¼ 1
��d ¼ 0;Q

t2RdtYt ¼ 1; dt;t;R ¼ 0Þ, which equals to PðY ¼ 1
��d ¼ 0;

Q
t2RYt ¼

1Þ when the assumption (a1) on the missing mechanism holds,
where R could be any fixed subs-et of {1, …$, T þ L}. When the
assumption (a2) also holds, these two probabilities are equal if and
only if A ¼ B, where
A ¼
P
�
d ¼ 1

���QTþL
t¼1Yt ¼ 1

�
P
�
d ¼ 1

��Q
t2RYt ¼ 1

	 and B ¼
P
�
d ¼ 0

���QTþL
t¼1Yt ¼ 1

�
P
�
d ¼ 0

��Q
t2RYt ¼ 1

	 :
Under M1, A ¼ B ¼ 1, so proposed method 1 is consistent. But

when M1 doesn't hold, A and B are not necessarily equal. Here is a
simple example:

For simplicity, take T¼ 2, L¼ 0. Then R could be {1, 2}, {1}, {2}, or
{f}. We assume Y1 and Y2 are independent. Denote pt ¼ P (Yt ¼ 1),
rt ¼ P (dt ¼ 1), r ¼ P (d ¼ 1jY1Y2 ¼ 1), s ¼ P (d ¼ 1jY1Y2 ¼ 0), s1 ¼ P
(d¼ 1jY1¼1, Y2¼ 0), s2¼ P (d¼ 1 jY1¼0, Y2¼1), s3¼ P (d¼ 1jY1¼0,
Y2 ¼ 0). Then s, s1, s2, s3 should satisfy

s ¼ s1p1ð1� p2Þ þ s2p2ð1� p1Þ þ s3ð1� p1Þð1� p2Þ
1� p1p2

When R ¼ {1, 2}, A ¼ B ¼ 1, then there is no problem with the
imputation method. When R ¼ {f}, A ¼ B if and only if M2 holds.
The A and B values in the other two cases are listed in the following
table. The last column lists the probability of the corresponding R
will occur when we conduct the imputation.
As we can see from the table, the imputed value and the true
value are not always the same. To be more specific, let p1 ¼ 0.8,
p2 ¼ 0.5, r ¼ s ¼ 0.3, s1 ¼ 0.4, s2 ¼ 0, s3 ¼ 0.2. Then when
R¼ {1},A¼ 0.857,B¼ 1.076, so the imputed value is smaller than the
true value. When R¼ {2}, A¼ 1.25, B¼ 0.92, so the imputed value is
larger than the true value. If we take r1 ¼ 1, r2 ¼ 0, then only
possible R ¼ {1}. Then the imputed value will always be smaller
than the true value. The imputation method underestimates. On
the other hand, if we take r1 ¼ 0, r2 ¼ 1 then the imputed value will
always be larger than the true value. The imputation method
overestimates. Notice that in this example, M2 holds. So it illus-
trates that even in M2, this imputation method may have bias.

But we should notice that the imputation overestimates missing
values for some R, and underestimates for some other R. The biases
may be cancelled each other if the pattern of R is diversified. So
overall speaking, the bias of this imputation method may not be a
problem. Actually this is verified in the simulation study in Section 4.
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