
RESEARCH Open Access

Alternative splicing associated with cancer
stemness in kidney renal clear cell
carcinoma
Lixing Xiao1†, Guoying Zou1†, Rui Cheng1†, Pingping Wang1, Kexin Ma1, Huimin Cao1, Wenyang Zhou1, Xiyun Jin1,
Zhaochun Xu1, Yan Huang1, Xiaoyu Lin1, Huan Nie1* and Qinghua Jiang1,2*

Abstract

Backgroud: Cancer stemness is associated with metastases in kidney renal clear cell carcinoma (KIRC) and
negatively correlates with immune infiltrates. Recent stemness evaluation methods based on the absolute
expression have been proposed to reveal the relationship between stemness and cancer. However, we found that
existing methods do not perform well in assessing the stemness of KIRC patients, and they overlooked the impact
of alternative splicing. Alternative splicing not only progresses during the differentiation of stem cells, but also
changes during the acquisition of the stemness features of cancer stem cells. There is an urgent need for a new
method to predict KIRC-specific stemness more accurately, so as to provide help in selecting treatment options.

Methods: The corresponding RNA-Seq data were obtained from the The Cancer Genome Atlas (TCGA) data portal.
We also downloaded stem cell RNA sequence data from the Progenitor Cell Biology Consortium (PCBC) Synapse
Portal. Independent validation sets with large sample size and common clinic pathological characteristics were
obtained from the Gene Expression Omnibus (GEO) database. we constructed a KIRC-specific stemness prediction
model using an algorithm called one-class logistic regression based on the expression and alternative splicing data
to predict stemness indices of KIRC patients, and the model was externally validated. We identify stemness-
associated alternative splicing events (SASEs) by analyzing different alternative splicing event between high- and
low- stemness groups. Univariate Cox and multivariable logistic regression analysisw as carried out to detect the
prognosis-related SASEs respectively. The area under curve (AUC) of receiver operating characteristic (ROC) was
performed to evaluate the predictive values of our model.
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Results: Here, we constructed a KIRC-specific stemness prediction model with an AUC of 0.968,and to provide a
user-friendly interface of our model for KIRC stemness analysis, we have developed KIRC Stemness Calculator and
Visualization (KSCV), hosted on the Shiny server, can most easily be accessed via web browser and the url https://
jiang-lab.shinyapps.io/kscv/. When applied to 605 KIRC patients, our stemness indices had a higher correlation with
the gender, smoking history and metastasis of the patients than the previous stemness indices, and revealed
intratumor heterogeneity at the stemness level. We identified 77 novel SASEs by dividing patients into high- and
low- stemness groups with significantly different outcome and they had significant correlations with expression of
17 experimentally validated splicing factors. Both univariate and multivariate survival analysis demonstrated that
SASEs closely correlated with the overall survival of patients.

Conclusions: Basing on the stemness indices, we found that not only immune infiltration but also alternative
splicing events showed significant different at the stemness level. More importantly, we highlight the critical role of
these differential alternative splicing events in poor prognosis, and we believe in the potential for their further
translation into targets for immunotherapy.
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Backgroud
Renal cell carcinoma is one of the deadliest cancers in
the urinary system throughout the world, and its
morbidity and mortality are rising rapidly [1]. Kidney
Renal Clear Cell Carcinoma (KIRC) is the most common
(~ 80%) subtype of renal cancers [2]. About 30% of KIRC
patients have metastases at first diagnosis, and 20–40%
of patients have recurrence after cancer resection [3].
Although the treatment of KIRC has made progress in
the past decade, the mortality rate is still high, especially
for patients with advanced/metastatic patients [4]. Meta-
static tumor cells spread out from the primary tumor,
invade blood vessels, enter the lymphatic and circulatory
system [5]. Traditionally, certain pathological stages and
grades have been used to predict the prognosis of KIRC
patients [6]. However, these methods may be unreliable
due to heterogeneity within the patients. Therefore,
there is an urgent need for a new method to predict
tumor metastasis more accurately, so as to provide help
in selecting treatment options.
The most widely used treatment options for tumor

cure include surgery, radiation-based surgical knives,
chemotherapy, biological treatments, and radiotherapy
[7]. Despite the various methods available, a large num-
ber of patients continue to relapse after adjuvant ther-
apy, and the survival rate associated with stage IV solid
tumors is still very low [8]. Previous studies have shown
that this is related to cancer stem cells in cancer tissues.
Experimental evidence indicates that a subpopulation of
cancer cells, called cancer stem cells, possess “stemness”
properties similar to normal stem cells, including self-
renewal, differentiation, and proliferative potential [9].
Currently, evidence for the existence of cancer stem cells
in a variety of tumors had been growing [10]. Cancer
stem cells have the ability of anchorage-independent
growth, and they can spread through the blood or

lymphatic system to another part of the body, where it
grows into a secondary tumor [11]. Cancer stem cells
are considered as the source from which tumor cells
arise and responsible for metastasis, chemoresistance,
and tumor relapse [12]. This hypothesis implies that suc-
cessful anti-tumor therapy should be based on the elim-
ination or permanent suppression of cancer stem cell. In
conclusion, the stemness index used to assess cancer
stem cell is an important predictor of cancer metastasis
and recurrence time to improve risk assessment and
treatment options.
Recently, stemness evaluation methods based on tran-

scription profiles have been proposed to reveal the rela-
tionship between stemness and cancer [13]. However,
we found that existing tools do not perform well in
assessing the stemness of KIRC patients. These predic-
tors are based on the absolute expression value of genes,
and do not consider the impact of alternative splicing on
cancer. Alternative splicing is an important mechanism
in post-transcriptional regulation, and increasing evi-
dences noted that alternative splicing is tightly associ-
ated with invasion and metastasis of cancer cells [14].
Alternative splicing is a rich source of tumor-specific
neoantigen targets for immunotherapy [15, 16]. It is
worth noting that global changes in alternative splicing
patterns also occur during the in vitro derivation of em-
bryonic stem cells from the inner cell mass of blasto-
cysts, suggesting that alternative splicing is not only
progressing during the differentiation of stem cells, but
also during the acquisition of stemness features in can-
cer stem cells [17].
Here, we constructed a KIRC-specific stemness predic-

tion model using an algorithm called one-class logistic
regression based on the expression data and alternative
splicing data to predict stemness indices of patients.
Based on our stemness indices, we found differences in
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alternative splicing between high- and low- stemness
group in tumors and those stemness-associated splicing
events (SASEs) plays a key role in the formation of
tumor heterogeneity and poor prognosis which indicates
that the stemness indices has potential therapeutic and
diagnostic significance and SASEs could serve as bio-
markers for KIRC. All of our candidate SASEs may be
suitable for further validation and development as thera-
peutic targets. Our results supported further develop-
ment of stemness-associated splicing events targeted
KIRC-specific therapy strategies, representing an import-
ant step forward in therapeutic of KIRC progression.

Methods
Data acquisition
The corresponding RNA-Seq data were obtained from
the TCGA data portal (https://tcga-data.nci.nih.gov/
tcga/). We also downloaded PCBC RNA sequence data
from the PCBC Synapse Portal (https://www.synapse.
org/pcbc), consisting 16 ESC, 77 iPSC, 66 SC-derived
EB, 29 SC-derived MESO, 29 SC-derived ECTO, and 36
SC-derived DE PCBC dataset [13, 18, 19]. Independent
clear cell renal cell carcinoma validation sets (GSE73731
[20] and GSE126964 [21]) and stem cell validation set
(GSE30652 [22]) with large sample size and common
clinic pathological characteristics were obtained from
the Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo/).

Gene expression and alternative splicing differential
analysis
RNA-Seq data were analyzed with SpliceSeq software
[23] to generate the alternative splicing profiles for each
patient as previously described [24–26]. The Percent
Spliced In (PSI) value is defined as a percentage of the
total (both inclusion and exclusion) normalized read
counts for that event. To generate a more reliable set of
alternative splicing events, we implemented a series of
stringent filters (80% of samples with PSI value, average
PSI value ≥0.05). Interactive sets among the seven types
of alternative splicing were illustrated by UpSet plot
created by UpSetR (version 1.3.3) [27]. To identify
KIRC-specific associate alternative splicing events (KASE)
in KIRC, the PSI values of alternative splicing events from
39 pairs of KIRC and matched normal tissue were com-
pared. P-values were adjusted by Benjamini & Hochberg
(BH) correction (|log2FC| ≥ 1, FDR < 0.05, and ΔPSI> 0.1).
Differentially expressed genes were identified and visualized
by the limma with a threshold of (|logFC| ≥ 1, FDR < 0.05).

Gene function analysis
Gene Ontology (GO) analyses were conducted for
the parent genes of identified KASEs (FDR < 0.05).
Function enrichment analysis was performed using

the “clusterProfiler” package (version 3.10.1) [28]. Gene set
enrichment analysis (GSEA) was performed to verify the
differences in biological functions and pathways between
tumor and normal tissues identified by clusterProfiler.

Generation of mRNA stemness indices
To calculate mRNA stemness indices (mRNAsi), we ap-
plied OCLR to the pluripotent stem cell samples (which
included both ESC and iPSC) to build a predictive
model. The score of every stem cell sample was lower
than all the non-stem cell samples, yielding an overall
AUC of 1.0. We then used the external testing set com-
posed of pluripotent stem cells and somatic cells (229
samples from GSE30652), and the external validation set
(66 patients from GSE126964 and 265 patients from
GSE73731) for the additional validation of the stemness
signature. R packages glmnet and reshape were used as
the implementation of this method.

Identification of stemness-associated splicing events
The degree of stemness for each tumor sample was
scored, samples were ranked in ascending order of the
mRNAsi. The group of the top 10% samples were similar
to stem cells (TSC), and group of the bottom 10% sam-
ples were unlike stem cells (USC). To identify stemness-
associated alternative splicing events (SASEs) in KIRC,
we compared the PSI values between TSC group and
USC group. P-values were adjusted by Benjamini &
Hochberg (BH) correction (|log2FC| ≥ 1, FDR < 0.05, and
ΔPSI> 0.2).

Construction of splicing correlation network
Spearman correlation analysis was performed to explore
the association between SASEs and splicing factor ex-
pression features. We mapped spliced genes to coding
proteins and built the interaction network using Search
Tool for Retrieval of Interacting Genes/Proteins (STRI
NG, version 11.0) [29], which was further visualized by
Cytoscape (version 3.7) [30].

Survival analysis
According to the median cutoff of each SASE, KIRC pa-
tients were separated into two groups. Univariate Cox
regression analysis was performed to calculate 95% con-
fidence interval (95% CI) and hazard ratios (HRs) of
SASEs in overall survival. Candidate prognostic SASEs
were then subjected to multivariate Cox regression ana-
lysis. Kaplan-Meier analysis with log-rank testing was
applied to compare survival in different groups. P-values
were adjusted by Benjamini & Hochberg correction.

Code availability, statistical analyses and visualization
All statistical analyses were performed in R (version
3.6.3), and P-value < 0.05 was considered statistically
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significant. Student’s t-test and ANOVA test were uti-
lized to compare continuous variables. Survival package
for survival analysis. In current work, we employed the
CIBERSORT method to evaluate the relative proportions
of immune cell profiling [31]. We used ggplot2(3.3.2)
and corrplot (0.84) packages for visualization. Spear-
man’s rank correlation analysis was used for non-normal
distribution data. Pearson correlation was used for con-
tinuous variables that meet normal distribution.

Results
Alternative spliced genes were related to stem cell
regulatory pathways in KIRC
Undifferentiated primary tumors are more likely to
cause cancer cells to spread to distant organs, leading to
disease progression, poor prognosis, and existing therapy
resistance [32]. Tathiane M. Malta et al. has provided
important information about KIRC stemness [13]. To
generate a reliable stemness evaluation index of
oncogenic dedifferentiation in KIRC, we ranked the pa-
tients in descending order of mRNA stemness indices
(mRNAsi) values obtained from Tathiane M. Malta. et.al
[13] and stratified patients into high-stemness group
(top 10% samples) and low-stemness group (bottom 10%
samples). As showed in Fig. S1a, the stemness scores did
not match the clinical presentation of patients, as the
proportion of high-stemness group in stage II was high-
est rather than stage IV. KIRC is gender-specific and
tends to occur in males [33]. However, the proportions
of the high-stemness group and the low-stemness group
were almost the same in gender (Fig. S1b). Moreover,
smoking was a common carcinogen [34], but contrary to
short smoking history, the high-stemness group ac-
counts for a lower proportion of long smoking history
(Fig. S1c). These predictors are based on the absolute
expression value of genes, and do not consider the im-
pact of alternative splicing on cancer. Accordingly, we
found that RNA-expression-based stemness indices do
not perform well in assessing the stemness of KIRC
patients.
Alterations in alternative splicing also occur during

the in vitro derivation of embryonic stem cells from the
inner cell mass of blastocysts [17], suggesting that RNA
splicing mechanism have been associated with the acqui-
sition of stemness features. As the relationship between
spliced genes and stemness in KIRC have not been cur-
rently considered, we first decided to a systematic alter-
native splicing analysis. A total of 605 KIRC patients
were identified and the baseline characteristics of these
patients are summarized. We preliminarily detected 46,
415 alternative splicing events from 10,601 genes. These
alternative splicing events were classified into seven spli-
cing modes: alternate acceptor site (AA), alternate donor
site (AD), alternate promoter (AP), alternate terminator

(AT), exon skipping (ES), mutually exclusive exons (ME)
and retained intron (RI), as illustrated in Fig. S2a.
Among these splicing modes, ES occurred most fre-
quently (39.0%) and ME were the least (0.51%). The al-
ternative splicing events were screened with a series of
filters (80% of samples with PSI value, average PSI value
≥0.05), a total of 34,987 alternative splicing events from
10,205 genes were obtained. After filtering, ES was still
the most common mode (41.3%) followed by AP (18.4%)
and AT (17.3%) (Fig. S2a). Considering that a single gene
may have multiple splicing modes, we created Upset
plots to show interactive sets of seven types of alterna-
tive splicing events (Fig. S2b). Our results showed a form
of genetic regulation of alternative splicing in tumor
biology as a single gene coding for different splicing
modes may result in dysregulation of multiple proteins.
To identify the KIRC-specific alternative splicing events
(KASEs), we compared the PSI values between 39 paired
tumor and adjacent normal tissues.
A total of 604 KASEs from 502 genes were identified

(Supplementary Table 1). Among 78 samples, only two
samples were misclassified with an accuracy of 97.4% by
hierarchical clustering (Fig. S2c-d). In addition, utilizing
t-SNE dimensionality reduction cluster analysis on 605
KIRC samples, KASEs provided the ability to accurately
distinguish tumor from normal samples (Fig. 1a). Events
related to a single gene, such as WNK1,FBLN5 and
RACGAP1, exhibited opposite patterns between tumor
and normal samples, indicating that an uneven distribu-
tion in the splicing patterns plays different roles in can-
cer development (Fig. 1b). To further investigate the
relationship between alternative splicing dysregulation
and gene different expression, we compared the gene ex-
pression difference between paired tumor and normal
samples (Supplementary Table 2). No more than 2%
spliced genes overlapped to that different expression
genes which indicated that these dysregulated alternative
splicing events are shifts in the balance of alternative
splicing, not aberrant splicing which would produce
transcripts that are out of frame and undergo NMD
(Fig. 1c). Consistent with the effect of alternative splicing
independent of gene expression changes in disease pro-
gression [35], our results indicated that alternative spli-
cing promoted tumor development independently of
gene expression changes in KIRC. As alternative splicing
may affect significant domain families in cancers [36],
we conducted biological function enrichment analysis of
genes related to KASEs.
The results revealed that genes were closely related to

the important process regulating the phenotype and
function of stem cells, such as cell−substrate adhesion,
cell-substrate adherens junction assembly and focal ad-
hesion assembly (Fig. 1d). Pathologically, the loss of cell-
cell adhesion molecules in cancer stem cells is thought
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to contribute to an epithelial to mesenchymal transition
and an invasive, migratory phenotype [37, 38]. In
addition, we employed the curated gene sets maintained
by the Molecular Signatures Database (MSigDB) [39].
Spliced genes have been found in experimentally con-
firmed gene sets relating to cancer progression and
stemness, including the LIM_MAMMARY_STEM_
CELL_DN gene set, in which the conserved genes in the
mammary stem cell population have been considered as
epithelial-mesenchymal transition signature [40], genes
and highlights pathways that are likely to govern cell-
fate decisions and differentiation (Fig. 1e). Together,
spliced genes in KIRC were related to important path-
ways of regulating stem cells.

mRNA stemness indices based on spliced genes in KIRC
recognized undifferentiated tumors
To evaluate the degree of KIRC-specific dedifferentiation
considering spliced genes, we constructed a stemness
prediction model using the OCLR algorithm trained on
stem cell including transformed stem cells and induced
pluripotent stem cells categories, and non-stem cells in-
cluding embryoid bodies, ectoderm, mesothelioma and
endoderm (Fig. 2a and Supplementary Table 3). Com-
parative mRNA stemness indices (mRNAsi) of stem cell
and non-stem cell indicated that the undifferentiated
samples tended to obtain lower mRNAsi within the
model. Additionally, the model was externally validated
in 227 stem cell samples (GSE30625) [22] and other two

Fig. 1 Splicing events in KIRC associated with cancer stemness. a tSNE plot of 605 KIRC samples obtained from TCGA and clustered by PSI value
of KASE. Cells are colored-coded according to identified tissue types. b The PSI value of representative KASEs showing the opposite preference
between KIRC and adjacent normal tissues. Student’s t-test was used. *: P < 0.05. c The intersection of spliced genes and different expression
genes. d Biological processes analysis of KASEs. The significance was indicated by the adjusted p-value (adjusted p-value< 0.05) and showed on
the height (the curved y-axis) of the red and blue dots indicates. e Gene set enrichment analysis of the spliced gene signatures in the Molecular
Signatures Database (MSigDB) curated gene sets
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KIRC datasets (66 samples in GSE126964, 265 samples
in GSE73731 [20, 21]. Consistent with our previous
results that undifferentiated samples scored lower
mRNAsi, we distinguished stem cell from somatic cell in
a strong capability with an AUC of 0.968 by mRNAsi
values (Fig. 2b), and analyses of KIRC samples revealed a

tumor samples and advanced clinical stage samples were
scored lower mRNAsi (Fig. 2c). We found a negative
correlation between tumor progression and stemness in-
dices for the KIRC samples. To provide a user-friendly
interface of our model for KIRC stemness analysis,
we have developed KIRC Stemness Calculator and

Fig. 2 Development and validation of the mRNA stemness indices (mRNAsi). a mRNAsi in PCBC stem cell signatures. Stem cell signatures
including mRNAsi from endoderm (DE), embryoid bodies (EB), ectoderm (ECTO), mesothelioma (MESO) and stem cell (SC). b Stemness indices of
the validation set derived using GSE30652 stemness signature. c Validation of mRNAsi in non-TCGA kidney cancer (KIRC) samples to define
stemness status. Stratification of mRNAsi according to tissue types of GSE126964 samples (left) and different stage of GSE73731 samples (right). d
Stratification of mRNAsi according to tissue types in TCGA KIRC samples. e-g mRNAsi from different tumor progressing (T\N\M stage) of KIRC
were compared and showed in ecdf plot. Significance of difference among RCC subtypes were evaluated by Kruskal–Wallis test, P value < 0.01. h
TCGA KIRC tumor types are ranked by mRNAsi; samples are divided into the top 10% samples that are similar to stem cells (TSC), and the middle
10–90% samples (MID), and the bottom 10% that are not similar to stem cells sample (USC). i The stemness indices for TSC and USC were
correlated with known cancer biology clinical information, such as gender, smoking history and TNM stage
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Visualization (KSCV), hosted on the Shiny server, can
most easily be accessed via web browser and the url
https://jiang-lab.shinyapps.io/kscv/.
Our model was then applied to the entire TCGA KIRC

dataset and the tumor samples were showed in relatively
lower mRNAsi scores, indicating that undifferentiated
KIRC tumors were inclined to be in a similar mRNAsi
trend to that of stem cells (Fig. 2d and Supplementary
Table 4). To clarify the relationship between mRNAsi
and tumor metastasis, mRNAsi from different tumor
progressing (T\N\M stage) of KIRC were compared and
showed in ecdf plot. Compared with early neoplasm,
such as T4/N0/M0 stage, samples in metastatic tumors
had relatively lower mRNAsi, which consistent with our
previous result that lower mRNAsi correlated with
higher stemness (Fig. 2e-g).
To include direct comparisons of model from Malta

et al.(model1) and our model (model2) for discrimin-
ating between KIRC versus healthy, we analyzed the
distribution of mRNAsi from the two models between
normal and tumor tissues. We found that model2
separated normal and tumor tissues better, while the
mRNAsi of model1 showed a large degree of overlap
between them. In addition, the mRNAsi of tumor
group in model 1 was lower than that of the normal
group, which was inconsistent with the higher correl-
ation of mRNAsi with malignant cells in previous
study [13]. In model2, stem cell samples attained
lower si values than samples from differentiated cells,
which indicates that model2 correctly identified the
stem cell characteristics of the tumor samples with
lower mRNAsi (Fig. S3a). Comparing with the
mRNAsi of model 1 which has no significant trend,
the mRNAsi of model2 gradually decreased with the
progress of cancer, and showed better consistency in
evaluating the health of KIRC (Fig. S3b). We
performed correlation analysis on mRNAsi, stage and
overall survival (OS) from model1 and model2. We
found that there was no significant correlation be-
tween mRNAsi from model1 and model2, but mRNAsi
from model2 was related to the stage and OS of KIRC
(Fig. S3c). According to the median value of mRNAsi,
we divided the samples into high and low groups. We
found that mRNAsi from model1 was not associated
with prognosis and model2 was more capable of pre-
dicting prognosis than model1(Fig. S3d).
Basing on the ascending sorting of mRNAsi score,

the KIRC tumor samples were subtyped into two
groups: group of the top 10% samples in were similar
to stem cells (TSC), and group of the bottom 10%
samples were unlike stem cells (USC) (Fig. 2h). Com-
pared with the USC group, the proportion of TSC in
male is higher (Fig. 2i). It is well know that smoking
is positively associated with cancer development [34].

Therefore, we analysis the proportion of TSC and
USC in different smoking history. We found that the
proportion of TSC increased with smoking history
(Fig. 2i). In addition, the proportion of TSC from
advanced cancer were growing as TSC accounted for
86.36% in stage IV, while contrasted with that was
less than 25% in stage I (Fig. 2i). Our results suggest
that splicing gene based mRNAsi has reliable clinical
utility in predicting malignant KIRC progression.

Stemness-associated alternative splicing events
contributed to tumor heterogeneity
A growing body of evidence demonstrates that dysregu-
lation of alternative splicing events can function as
biomarkers and therapeutic targets for diverse types of
cancers [41]. The specificity or severity of cancer-
associated splicing events was demonstrated to facilitate
sensitivity to spliceosome-targeting therapy [42]. To
unravel the intricate relationship between alternative
splicing and tumor heterogeneity in KIRC, we identified
the stemness-related alternative splicing event (SASEs)
between TSC group and USC group, and 77 events were
found in significant difference in alternative splicing
(Fig. 3a and Supplementary Table 5). We found far fewer
SASEs than in our previous differential splicing analysis
about KASEs. To determine the splicing events that only
differ between tumors, we compared events and genes
related to KASE and SASE respectively. In Venn dia-
gram, there were 36 events intersected in KASEs and
SASEs, and more than a half of events were unique in
SASE (Fig. 3b). Since these events in SASE were only
different in TSC and USC, our results indicated that
SASEs contributed to tumor heterogeneity and as the
stemness increased, the number of abnormal alternative
splicing events in tumors decreased which may result in
a reduction in the number of antigens produced. Inter-
estingly, there were 41 intersecting genes related to
KASEs and SASEs, which was more than that 36 inter-
sected events (Fig. 3c). This was contrary to the prior
knowledge that gene generated multiple events. Explor-
ing the composition of the intersecting genes, we ob-
served that 206 events were generated by these genes in
KIRC. In addition to 36 overlapping events in KASEs
and SASEs, there were events unique in KASE and SASE
separately, and part of events were not significant differ-
ent in alternative splicing (Fig. 3d). We found that
SASEs showed tumor heterogeneity and revealed the
dynamic changes of alternative splicing in the tumor
development in KIRC.
To extend our findings to the potential mechanisms of

SASEs, we performed correlation analysis between PSI
values and mRNAsi scores (FDR < 0.05, |R| > 0.6). As
shown in Fig. 3e, there were 28 events highly related to
stemness, and among them 18 events have negatively
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related to mRNAsi which indicated that inclusion of
pre-mRNA was inclined to occur in undifferentiated tu-
mors. In keeping with previous research showing spli-
cing factors regulated pre-mRNA splicing [41], we found
that expression of 17 experimentally validated splicing
factors had significant correlations to the PSI values of
SASEs (FDR < 0.05, |R| > 0.6), and a splicing regulatory
network was constructed (Fig. 3f). Most splicing factors

were significantly related to more than one SASE. In
addition, one SASE was regulated by multiple different
splicing factors, which reflected the complex cooperation
and competition between splicing factors. To further
verify the regulation of splicing factors on SASEs, we in-
vestigated the protein-protein interaction network of
splicing factors to provide the interactions in the normal
state at the protein level (Fig. S4a). Notably, the

Fig. 3 Identification of SASE in KIRC. a Heatmap of the SASEs between TSC group and USC group (|log2FC|≥ 1, adjusted P < 0.05 and ΔPSI> 0.1).
b-c Intersection of events and genes between KASEs and SASEs. d Circos plot of the annotation of intersected genes in (c) and their related
splicing events. The outer circle is composed of the polyline that represents the number of splicing events generated by the intersected genes.
The intermediate circle represents the group of splicing events, including events unique to KASEs, events unique to SASEs, events overlapped in
KASEs and SASEs, and events that were not a significant different event. The inner circle represents the intersected genes in (c). The ribbons
represent the 41 genes. e Correlation between mRNAsi and PSI values of SASE. f Correlation network of splicing factors and SASEs in KIRC. The
splicing correlation network was built based on significant correlations between the PSI values of SASEs and the expression of splicing factors. A
node represents an SASEs or a splicing factor, which is distinguished by color of the node. The color of lines represents splicing types
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expression of splicing factor ESRP1, regulating alterna-
tive splicing in epithelial cells [43], was also correlated
with DNA methylation levels (Fig. S4b). Correlation

analysis revealed that higher expression of SASEs was as-
sociated with CD8 T cell infiltration (Fig. S4c). Together,
there was intratumoral heterogeneity in stemness-related

Fig. 4 Potential transcription factors essential for KIRC cancer progression. a Hazard ratios and 95% confidence intervals of hazard ratios of
transcription factors in relation to overall survival. b LASSO Cox regression coefficients of transcription factors in relation to overall survival. c ROC
(receiver operating characteristic) curve analysis. Comparison of ROC curves between different time. d-f Overall survival associated SASEs (p-value
< 0.05). Samples in (d) SLC2A11_ES_61347 set, (e) FAM149A_AP_71399 set, (f) DZIP3_RI_66037 were dichotomized by PSI into a high group and a
low group. The two groups were compared by Kaplan-Meier curves, and the P-value was calculated by log-rank test. g Isoforms and proteins
generated by SLC2A11 affected the functional domains
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alternative splicing, suggesting splicing factors further
regulate abnormal alternative splicing events.

Clinical relevance of stemness-associated splicing events
Targeted therapy is a cancer treatment that uses drugs
to target specific genes and proteins related to the
growth and survival of cancer cells. However, drugs that
are different from and not on its target biological target
may cause off-target activity, which is the most common
contributes to side effects [44]. Therefore, further studies
are needed to ensure a full understanding of their mech-
anisms of action. Alternative splicing widely occurs in
tumor samples and it has been proven to contribute to
the generation of candidate neoantigens [15]. Here, we
found that KIRC has shown a variety of specificities in
alternative splicing. To determine the relationship be-
tween SASEs and prognosis, we ran univariate Cox re-
gression and multivariable logistic regression. Using
univariate Cox proportional hazards regression analysis
(Hazard Ratio (HR) ≠ 1, p < 0.05), we observed that more
than 70% of SASEs related to prognosis (Fig. 4a). Then a
multivariate Cox model was performed to describe the
risk factors associated with 3- to 5-year survival (Global
p-value< 0.05; Fig. 4b). Our result showed that the lower
PSI value of SLC2A11_ES_61347 and FAM149A_AP_
71399 (HR < 1) indicated poor prognosis of patients, and
the higher PSI value of DAIP3_RI_66037 related to poor
prognosis. The areas under the ROC curve were 0.72
(4.5-year ROC) and 0.702 (5-year ROC), and the C-
index was 0.73 (Fig. 4c). Both univariate and multivariate
survival analysis demonstrated that SASEs closely corre-
lated with the overall survival of patients (Fig. 4d-f).
Moreover, RNA-seq data from SLC2A11, a novel sugar
transporter [45], showed that the tendency of TSC to
skip 10.2 exon resulted in the complete domain loss of
extracellular and helix (name = 6), and the partial do-
main deletion of cytoplasmic (Fig. 4g). Cumulatively,
these results suggested that splicing events related to
stemness may serve as a new prognostic marker for
KIRC. All of our candidate SASEs would be suitable
for further validation and development as therapeutic
targets.

Discussion
In this study, we revealed previous stemness indices
based on the absolute expression value of genes do not
perform well in assessing the stemness of KIRC patients.
Here, a KIRC-specific stemness prediction model based
on the expression and alternative splicing data with good
prediction accuracy was constructed to predict stemness
indices of patients. Basing on the stemness indices, we
found differential alternative splicing events in tumors
at stem level. Moreover, these splicing events are in-
volved in poor prognosis and may become potential

immunotherapy targets in tumors. This study suggests
the importance of alternative splicing in cancer
stemness.
The abnormal regulation of alternative splicing is

usually accompanied by the occurrence and develop-
ment of tumors, which would produce multiple
different isoforms and diversify protein expression
[46, 47]. This may impact the process of feature se-
lection. Comparing with previous stemness indices,
this is the first study to develop KIRC-specific stem-
ness indices based on alternative splicing and expres-
sion data. When applied to 605 KIRC patients, our
stemness indices had a higher correlation with the
risk factors of the patients than the previous stem-
ness indices and revealed intratumor heterogeneity
at the stemness level. Previous studies have shown
that tumor metastasis is related to cancer stemness
[48]. Especially, our stemness indices were highly
correlated with the possibility of patient metastasis,
so we can determine the tumor grade and provide
help in choosing treatment options.
Many studies show have shown that there are alter-

native splicing differences between tumor and normal
tissues [42]. However, studies on alternative splicing
between different stemness tumor tissues are still
lacking. Here, we identified 77 significant different
splicing events between high- and low- stemness
groups in tumor samples, and more than 70% of
them related to prognosis and were intricately
regulated by splicing factors network. Recent study
described that alternative splicing contributed to the
generation of candidate neoantigens [49], and a
negative association between cancer stemness and
immune infiltrates has also been proved [50]. Our
results provide new insights into immune infiltrates
at stemness level. We found that as the stemness in-
creased, the number of abnormal alternative splicing
events in tumor decreases, resulting in a decrease in
the number of antigens produced, which was related
to the change of immune infiltration during cancer
progression. Changes in the cancer stemness lead to
differences in alternative splicing, among which the
expression of splicing factor serve as important influ-
ence [51, 52]. Splicing factor expression in tumor
greatly affected the alternative splicing, leading to the
decrease of neoantigens and thus the decrease of
immune infiltration [53]. Therefore, further studies
on the stemness-associated splicing events are needed
to ensure a full understanding of their mechanisms
of action.
Alternative splicing events serve as an important

biomarker in cancers [54], and we found SLC2A11_ES_
61347, FAM149A_AP_71399 and DZIP3_RI_66037 pro-
vided effective and stable prognosis-targeted marker.
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Notably, kidney has a key role in maintaining glucose
homeostasis, and SLC2A11 as a novel, muscle-specific
transport facilitator is a member of the extended GLUT
family of sugar/polyol-transport facilitators, and this may
be an additional source of energy for cancer [55, 56].
GLUT can be also a target-specific therapy as an anti-
cancer therapy [57]. Based on the obtained results, we
postulate that SLC2A11_ES_61347 may be correlated
with tumor differentiation and may play a role in KIRC
development.
In summary, our KIRC-specific stemness prediction

model performs well in predicting the cancer stemness,
and is reliable to predict the metastasis of cancer which
guides therapeutic targeting of the cancer stemness. In
particular, we found stemness-associated splicing events
play a causative role in the formation of tumor hetero-
geneity, it may be beneficial to target specific molecules
or pathways for cancer neoantigens or immunotherapy.

Conclusions
Basing on the stemness indices, we found that not only
immune infiltration but also alternative splicing events
showed significant different at the stemness level. More
importantly, we highlight the critical role of these differ-
ential alternative splicing events in poor prognosis, and
we believe in the potential for their further translation
into targets for immunotherapy.
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