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Abstract: The microwave (MW)-assisted direct esterification of certain P-acids is a green method.
Quantum chemical calculations revealed that the activation enthalpy (∆H#) for the exothermic
monoalkylphosphate→ dialkylphosphate transformation was on the average 156.6 kJ mol−1, while
∆H# for the dialkylphosphate→ trialkylphosphate conversion was somewhat higher, 171.2 kJ mol−1,
and the energetics of the elemental steps of this esterification was less favorable. The direct mo-
noesterification may be performed on MW irradiation in the presence of a suitable ionic liquid
additive. However, the second step, with the less favorable energetics as a whole, could not be
promoted by MWs. Hence, dialkylphosphates had to be converted to triesters by another method
that was alkylation. In this way, it was also possible to synthesize triesters with different alkyl groups.
Eventually a green, P-chloride free MW-promoted two-step method was elaborated for the synthesis
of phosphate triesters.

Keywords: P-ester acid; direct esterification; selectivity; alkylating esterification; energetics; mechanism;
theoretical calculations; green method

1. Introduction

Microwave irradiation is a useful tool in promoting organic chemical reactions [1–7].
On the one hand, the transformations become faster with MW assistance; on the other hand,
the conversions are more selective. Overall, the reactions can be accomplished in a more
efficient way [8]. Another value is when MW irradiation substitutes catalysts [9–11] or
allows the simplification of catalyst systems [12]. The greatest advantage of MWs is when
reactions reluctant to conventional heating take place with irradiation [13].

An interesting discipline is the synthesis of P-esters, such as phosphinates, phos-
phonates and phosphates. The traditional way is to start from P-chlorides (phosphinic
chloride, phosphonic dichloride and phosphorus oxychloride), and to react them with
alcohols or phenols in the presence of a base [14,15]. However, these transformations
require cost-meaning P-chlorides, and are not atomic efficient. We were successful in
developing an MW-assisted, [bmim][PF6]-promoted method for the direct esterification of
a series of phosphinic acids (Scheme 1A) [16]. Phosphonic acids could also be converted to
monoalkylphosphonates in a similar way using [bmim][BF4] (Scheme 1B) [17]. The series is
complete if the monoalkylphosphate→ dialkylphosphate transformation is also considered
(Scheme 1C) [18]. The MW-assisted direct esterification of P-acids is an important method,

Molecules 2022, 27, 4674. https://doi.org/10.3390/molecules27154674 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27154674
https://doi.org/10.3390/molecules27154674
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-9284-5160
https://orcid.org/0000-0001-9589-6652
https://orcid.org/0000-0002-5366-472X
https://doi.org/10.3390/molecules27154674
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27154674?type=check_update&version=1


Molecules 2022, 27, 4674 2 of 9

as, in this way, the use of P-chlorides can be avoided. Hence, costs may be saved, and the
formation of hydrochloric acid may be avoided.
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Scheme 1. MW-assisted esterification of different P-acids.

In this paper, we wished to evaluate the energetics of the V→ VI transformation, and
that of the VI→ (R2O)3P(O) conversion. Moreover, it was our purpose to elaborate the
esterification of dialkylphosphates VI.

2. Results and Discussion
2.1. MW-Assisted Direct Esterification of Monoalkylphosphates

The monoalkylphosphates (1a–d) selected underwent esterification in reaction with
the corresponding alcohol used in 15-fold quantity in the presence of 10% of [bmim][BF4]
as the catalyst at 175/200 ◦C under MW irradiation. Our preliminary results were useful to
find the optimum conditions [18]. The dialkylphosphates (2a–d) were obtained selectively,
in yields of 83–87% after chromatography (Table 1). The main role of the ionic liquid
additive is to act as an MW absorber in the reaction mixture [17]. Our earlier experiences
showed that in the absence of an ionic liquid additive, the efficiency of the esterifications
was significantly lower, when compared to the case when 10% of the catalyst was applied.
The difference may have amounted to 80% [17].

Table 1. Direct esterification of monoalkylphosphates (1) with MW irradiation under different conditions.
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Entry R T (◦C) t (h)
Product Composition (%) *

Yield of 2 (%)
2 3

1 Bu (a) 200 2 96 4 83 [18]

2 Pent
(b) 200 2 95 5 84

3 Pr (c) 200 2.5 96 4 87
4 Et (d) 175 4.5 95 5 83

* On the basis of the relative 31P NMR integrals found in the spectrum of the crude mixture.

The dialkylphosphates (2) could not be converted to the triesters (3) in a similar fashion.
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2.2. Theoretical Calculations on the Energetics and Mechanism of the Monoalkylphosphate→
Dialkylphosphate→ Trialkylphosphate Transformation

We analyzed the energetics of the direct esterification of phosphates (R = Et, Bu) with
the corresponding alcohols (EtOH, BuOH) using DFT computations at the M062X/6–311+G
(d,p) level of theory considering the solvent effect (SMD implicit solvent model) of the
corresponding alcohol and 473 K as the temperature (Scheme 2, Table 2, Figure 1). Based
on our previous model [17,19], we proposed a reaction complex containing three alcohol
molecules and two phosphonic acid units, where one alcohol molecule acts as the reagent
in the esterification. The other diester acid and ROH species in the reaction complex
participated in the proton transfer chain supporting the establishment of the new P–O bond,
and hence the formation of the diester acid, along with the departure of a water molecule.
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Scheme 2. Plausible reaction mechanism for the monoalkylphosphate → dialkylphosphate →
trialkylphosphate transformation.

Table 2. Energetics (∆H (kJ mol−1)) for the monoalkylphosphate→ dialkylphosphate→ trialkylphos-
phate transformations obtained by DFT computations at the M062X/6–311+G (d,p) level of theory
considering the solvent effect of the corresponding alcohol.

R 1/2 4 TS1 5 TS2 6 2/3

Et (mono→ di) 0.0 −151.6 −56.9 −60.9 7.2 −150.4 −10.4
Bu (mono→ di) 0.0 −160.9 −67.9 −71.9 −6.6 −165.3 −16.3

Et (di→ tri) 0.0 −143.3 −45.0 −70.9 30.5 −121.0 −7.6
Bu (di→ tri) 0.0 −144.1 −36.0 −52.7 24.6 −107.8 −13.7

Considering the difference in the energetics between the starting monoalkylphosphates
and the final dialkylphosphates, the reaction may be regarded as slightly exothermic, sup-
ported by an enthalpy value of ∆H =−10.4 kJ mol−1 for the ethyl, and ∆H = −16.3 kJ mol−1

for the butyl substituted case. While the formation of the reaction complex (4) required
a ca. 160 kJ mol−1 Gibbs free energy (∆G) investment for both cases (see Table S2) that
was the consequence of the entropy increase during the complex formation, there was a
significant enthalpy gain (∆H = −151.6 kJ mol−1 for the ethyl and −160.9 kJ mol−1 for the
butyl instance). As shown in TS1 (∆H# = 94.7 kJ mol−1 and 93.0 kJ mol−1, respectively),
the next step of the reaction was the attack of the alcohol on the phosphorus atom of
the P=O moiety leading to intermediate 5. The following step was the elimination of a
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water molecule via TS2 (∆H# = 158.8 kJ mol−1 and 154.3 kJ mol−1, respectively) yield-
ing product complex 6. The difference in the relative enthalpy (∆∆H) of 6 and 4 was
1.2 kJ mol−1 and −4.4 kJ mol−1 for the two cases. At the same time, the gain in ∆G was
larger (−22.6 kJ mol−1 and −11.3 kJ mol−1, respectively). The disruption of complex 6 was
driven by ∆H = −10.4 kJ mol−1 and −16.3 kJ mol−1 (as well as by ∆G = −4.9 kJ mol−1

and −7.8 kJ mol−1) for the ethyl and butyl substituted case, respectively. The whole se-
quence was just slightly exothermic requiring a high activation energy investment mainly
due to the large entropy that needed to be overcome. This supports the need for harsh
experimental conditions ensured by the MW irradiation at 200 ◦C.
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Investigating the transformation of diethyl and dibutylphosphate to triethyl and trib-
utylphosphate, we found that the total process was somewhat less exothermic
(∆H = −7.6 kJ mol−1 and −13.7 kJ mol−1, respectively). The formation of the reaction
complex was also less advantageous (∆H = −143.3 kJ mol−1 and −144.1 kJ mol−1) as com-
pared to the monoalkyl→ dialkyl transformation. Moreover, both following steps required
a higher activation enthalpy (for TS1 ∆H# = 98.2 kJ mol−1 and 108.1 kJ mol−1, respectively,
and for TS2, 173.7 kJ mol−1 and 168.7 kJ mol−1, respectively). Finally, the stabilization
of TS2 to intermediate 6 was less advantageous, and significantly lower enthalpy gains
(∆H = −121.0 kJ mol−1 and −107.8 kJ mol−1) could be observed, suggesting in total an
endothermic 4→ 6 transformation (∆∆H = 22.3 kJ mol−1 and 36.3 kJ mol−1, respectively,
and ∆∆G = 23.0 kJ mol−1 and 34.1 kJ mol−1, respectively).

2.3. MW-Assisted Alkylation of Dialkylphosphates

We saw that the dialkylphosphates (2) resisted undergoing further esterification to the
triesters (3) that is due to the high barrier of the activation enthalpy. Hence, the conversion
of diesters 2 to trialkylphosphates 3 had to be carried out by another method, by alkylating
esterification. This was realized by applying the corresponding alkyl halides (bromobutane,
bromopentane, bromopropane and iodoethane) together with triethylamine as the base
in toluene at 135 ◦C on MW irradiation. Again, our earlier results were useful in finding
the optimum conditions [18]. The results are collected in Table 3. It can be seen that the
trialkylphosphates were obtained in 84–86% yields after the chromatography.

We thought that the alkylating esterification may be also suitable for the preparation
of trialkylphosphates with different alkyl groups. Dibutylphosphate 2a was reacted, as
shown above, with a few haloalkanes. The results are shown in Table 4. One may suspect
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that the difference of the two conversions covers the side-reactions. Indeed, LC–MS pointed
out the presence of HOP(O)(OR)OBu, HOP(O)(OR)2, (RO)2P(O)OBu and (RO)3P(O) by-
products as well, during the reaction of diester 2a with haloalcanes. Their formation is
not completely clear, and interconversions to the effect of the Et3N-HBr salt under MW
irradiation are assumed.

Table 3. Alkylating esterification of dialkylphosphates (2) under MW conditions.
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Entry RX T (◦C) t (h) Conversion
(%)

Conversion to 7
(%)

Yield of 7
(%)

1 EtI 135 3 92 71 65 (7a)
2 PrBr 135 3 94 71 63 (7b)
3 iPrBr 150 3 100 67 58 (7c)
4 PentBr 135 2 98 98 89 (7d)

Dipentylphosphate 2b was also subjected to alkylations. The experimental data are
collected in Table 5. In this case, the proportion of the by-products was somewhat higher.

Table 5. Alkylating esterification of dipentylphosphate (2b) with alcohols under MW conditions.
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The composition of the reaction mixtures was determined by the integration of the 
areas under the corresponding peaks of the starting material and product in the 31P NMR 
spectra. As the 31P NMR signals separated better in DMSO-D6, this solvent was used dur-
ing the analysis of the mixtures. 

3.2. The Direct Esterification of Monoalkylphosphates (1a–d) 
A mixture of 0.79 mmol monoalkylphosphate (1a: 0.12 g; 1b: 0.13 g; 1c: 0.11 g; 1d: 0.10 

g) (prepared as described above), 11.9 mmol of alcohol (ethanol: 0.69 mL; propanol: 0.89 
mL; butanol: 1.08 mL; pentanol: 1.30 mL) and 15 µL (0.079 mmol) of [bmim][BF4] was 
irradiated in the MW reactor at 175–200 °C for 2–4.5 h (Table 1). The crude mixture ob-
tained on evaporation was purified by chromatography using a silica-gel layer of 20 cm, 
and ethyl acetate as the eluent to furnish dialkylphosphates (2a–d) as colorless oils. For 
identification of the dialkylphosphates, see Table 6. 

Table 6. Identification of dialkylphosphates (2a–d). 

Compound δP (CDCl3) δP(lit) (CDCl3) [18] 
HRMS [M+Na]+ 

Found Calculated 
2a 0.032 0.029 233.0912 233.0919 
2b 0.15 0.10 239.1412 * 239.1413 * 
2c 1.94 2.0 205.0606 205.0601 
2d 0.52 0.55 177.0293 177.0290 

* Identified as M+H. 
  

Entry RX T (◦C) t (h) Conversion
(%)

Conversion to 8
(%)

Yield of 8
(%)

1 EtBr 135 4.5 83 67 59 (8a)
2 PrBr 150 3 89 51 48 (8b)
3 iPrBr 150 3 45 27 19 (8c)
4 BuBr 150 3 91 49 44 (8d)
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The trialkylphosphates with different alkyl groups (7 and 8) synthesized by us were
mostly new compounds. A few of them were described but were not fully characterized.
We characterized all “mixed” derivatives by 31P, 13C and 1H NMR data, as well as HRMS.

3. Materials and Methods
3.1. General Information

The 31P, 13C and 1H NMR spectra were taken on a Bruker DRX-500 spectrometer
operating at 202.4, 125.7 and 500 MHz, respectively. LC–MS measurements were performed
with an Agilent 1200 liquid chromatography system coupled with a 6130 quadrupole mass
spectrometer equipped with an ESI ion source (Agilent Technologies, Palo Alto, CA, USA).
The MW-assisted esterifications were carried out in a CEM Discover microwave reactor
equipped with a stirrer and a pressure controller using a 50–100 W irradiation.

The composition of the reaction mixtures was determined by the integration of the
areas under the corresponding peaks of the starting material and product in the 31P NMR
spectra. As the 31P NMR signals separated better in DMSO-D6, this solvent was used
during the analysis of the mixtures.

3.2. The Direct Esterification of Monoalkylphosphates (1a–d)

A mixture of 0.79 mmol monoalkylphosphate (1a: 0.12 g; 1b: 0.13 g; 1c: 0.11 g;
1d: 0.10 g) (prepared as described above), 11.9 mmol of alcohol (ethanol: 0.69 mL; propanol:
0.89 mL; butanol: 1.08 mL; pentanol: 1.30 mL) and 15 µL (0.079 mmol) of [bmim][BF4]
was irradiated in the MW reactor at 175–200 ◦C for 2–4.5 h (Table 1). The crude mixture
obtained on evaporation was purified by chromatography using a silica-gel layer of 20 cm,
and ethyl acetate as the eluent to furnish dialkylphosphates (2a–d) as colorless oils. For
identification of the dialkylphosphates, see Table 6.

Table 6. Identification of dialkylphosphates (2a–d).

Compound δP (CDCl3) δP(lit) (CDCl3) [18]
HRMS [M+Na]+

Found Calculated

2a 0.032 0.029 233.0912 233.0919
2b 0.15 0.10 239.1412 * 239.1413 *
2c 1.94 2.0 205.0606 205.0601
2d 0.52 0.55 177.0293 177.0290

* Identified as M+H.

3.3. The Alkylating Esterification of Dialkylphosphates (2a–2d)

A mixture of 1.4 mmol (2a: 0.30 g, 2b: 0.31 g, 2d: 0.22 g) dialkylphosphate, 1.8 mmol
(EtBr: 0.14 mL, PrBr: 0.17 mL, iPrBr: 0.17 mL, BuBr: 0.20 mL, PentBr: 0.22 mL) of alkyl
bromide and 0.22 mL (1.6 mmol) of triethylamine in 1 mL of toluene was stirred under MW
conditions for 2–5 h at 135–150 ◦C (Tables 3–5). The crude mixtures obtained after filtration
and evaporation were purified by column chromatography using a silica gel layer of 20 cm
and ethyl acetate as the eluent to afford the corresponding trialkylphosphates (3a–d, 7a–d
and 8a–d) as colorless oils. For the identification of the known trialkylphosphates, see
Table 7.

Table 7. The identification of known trialkylphosphates (3a–d).

Compound δP (CDCl3) δP(lit) (CDCl3) [18]
HRMS [M+Na]+

Found Calculated

3a −0.92 −0.89 267.1725 * 267.1717 *
3b −1.02 −0.99 331.2014 331.2013
3c −0.89 −0.88 247.1075 247.1074
3d −1.05 −1.0 205.0606 205.0602

* Identified as M+H.
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3.4. Characterization of New Trialkylphosphates (7a–d and 8a–d)
3.4.1. Dibutyl-ethylphosphate (7a)

31P NMR (202.4 MHz, CDCl3) δ: −0.79, δP [20] (CDCl3): 0.75; 13C NMR (125.7 MHz,
CDCl3) δ: 13.5 (s, 2CH3), 16.1 (d, J = 6.7, CH3), 18.6 (s, 2CH2), 32.2 (d, J = 6.8, 2CH2), 63.5 (d,
J = 5.9, OCH2), 67.3 (d, J = 6.0, 2OCH2); 1H NMR (500 MHz, CDCl3) δ: 0.95 (t, J = 7.4, 6H,
2CH3), 1.33–1.46 (m, 7H, CH3, 2CH2), 1.63–1.72 (m, 4H, 2CH2), 4.02–4.17 (m, 6H, 3OCH2),
δH [21] (CDCl3): 0.91 (t, 6H, J = 6.5), 1.25 (t, 3H, J = 5.8), 1.35–1.88 (m, 8H), 3.80–4.30 (m, 6H).
[M+Na]+

found: 261.1227, [M+Na]+
calculated: 261.1232.

3.4.2. Dibutyl-propylphosphate (7b)
31P NMR (202.4 MHz, CDCl3) δ: −0.75, 13C NMR (125.7 MHz, CDCl3) δ: 9.9 (s, CH3),

13.4 (s, 2 CH3), 18.6 (s, 2CH2), 23.6 (d, J = 6.9, CH2), 32.2 (d, J = 6.8, 2CH2), 67.2 (d, J = 6.3,
2OCH2), 69.0 (d, J = 6.0, OCH2); 1H NMR (500 MHz, CDCl3) δ: 0.94 (dt, J = 13.4, J = 7.4,
9H, 3CH3), 1.36–1.44 (m, 4H, 2CH2), 1.62–1.71 (m, 6H, 3CH2), 3.96–4.04 (m, 6H, 3OCH2).
[M+Na]+

found: 275.1390, [M+Na]+
calculated: 275.1388.

3.4.3. Dibutyl-isopropylphosphate (7c)
31P NMR (202.4 MHz, CDCl3) δ: 0.50, δP [20] (CDCl3): 0.60; 13C NMR (125.7 MHz,

CDCl3) δ: 13.6 (s, 2 CH3), 18.7 (s, 2 CH2), 23.6 (d, J = 5.0, 2CH3), 32.3 (d, J = 7.0, 2CH2),
67.2 (d, J = 6.2, 2OCH2), 72.3 (d, J = 5.8, OCH); 1H NMR (500 MHz, CDCl3) δ: 0.93 (t,
J = 7.4, 6H, 2CH3,), 1.33 (d, J = 6.2, 6H, 2CH3), 1.37–1.46 (m, 4H, 2CH2), 1.63–1.69 (m, 4H,
2CH2), 3.99–4.05 (m, 4H, 2OCH2), 4.60–4.66 (m, 1H, OCH), δH [21] (CDCl3): 0.65–1.88
(m, 23H), 3.63 (d, 2H, J = 5.3), 3.99 (dt, 4H, J = 6.5, J = 7.5). [M+Na]+

found: 275.1386,
[M+Na]+

calculated: 275.1388.

3.4.4. Dibutyl-pentylphosphate (7d)
31P NMR (202.4 MHz, CDCl3) δ: −0.68; 13C NMR (125.7 MHz, CDCl3) δ: 13.5 (s, 2CH3),

13.9 (s, CH3), 18.6 (s, 2 CH2), 22.2 (s, CH2), 27.5 (s, CH2), 29.9 (d, J = 6.8, CH2), 32.3 (d,
J = 6.9, 2 CH2), 67.3 (d, J = 6.2, 2 OCH2), 67.6 (d, J = 6.2, OCH2); 1H NMR (500 MHz, CDCl3)
δ: 0.88–0.94 (m, 9H, 3CH3), 1.31–1.36 (m, 4H, 2CH2), 1.38–1.44 (m, 4H, 2CH2), 1.62–1.69 (m,
6H, 3CH2), 3.99–4.04 (m, 6H, 3OCH2). [M+Na]+

found: 303.1699, [M+Na]+
calculated: 303.1701.

3.4.5. Dipentyl-ethylphosphate (8a)
31P NMR (202.4 MHz, CDCl3) δ: −0.75; 13C NMR (125.7 MHz, CDCl3) δ: 13.9 (s,

2CH3), 16.1 (d, J = 7.0, CH3), 22.2 (s, 2CH2), 27.6 (s, 2CH2), 30.0 (d, J = 7.0, 2CH2), 63.6 (d,
J = 5.9, OCH2), 67.7 (d, J = 6.1, 2OCH2); 1H NMR (500 MHz, CDCl3) δ: 0.91 (t, J = 6.9, 6H,
2CH3), 1.33–1.38 (m, 11H, 4CH2, CH3), 1.66–1.71 (m, 4H, 2CH2), 3.99–4.05 (m, 4H, 2OCH2),
4.08–4.14 (m, 2H, OCH2). [M+Na]+

found: 289.1544, [M+Na]+
calculated: 289.1545.

3.4.6. Dipentyl-propylphosphate (8b)
31P NMR (202.4 MHz, CDCl3) δ: −0.70; 13C NMR (125.7 MHz, CDCl3) δ: 10.0 (s, CH3),

13.9 (s, 2CH3), 22.2 (s, 2CH2), 23.6 (d, J = 6.9, CH2), 27.6 (s, 2CH2), 30.0 (d, J = 6.8, 2CH2),
67.6 (d, J = 6.0, 2OCH2), 69.1 (d, J = 6.0, OCH2); 1H NMR (500 MHz, CDCl3) δ: 0.91 (t, J = 7.1,
6H, 2CH3), 0.97 (t, J = 7.4, 3H, CH3), 1.32–1.38 (m, 8H, 4CH2), 1.66–1.74 (m, 6H, 3CH2),
3.97–4.05 (m, 6H, 3OCH2). [M+Na]+

found: 303.1701, [M+Na]+
calculated: 303.1701.

3.4.7. Dipentyl-isopropylphosphate (8c)
31P NMR (202.4 MHz, CDCl3) δ: −1.62; 13C NMR (125.7 MHz, CDCl3) δ: 13.9 (s,

2CH3), 22.2 (s, 2CH2), 23.6 (d, J = 5.0, 2CH3), 27.6 (s, 2CH2), 30.0 (d, J = 7.1, 2CH2), 67.5
(d, J = 6.2, 2OCH2), 72.3 (d, J = 5.9, OCH); 1H NMR (500 MHz, CDCl3) δ: 0.91 (t, J = 6.9,
6H, 2CH3), 1.26–1.40 (m, 14H, 4CH2, 2CH3), 1.66–1.72 (m, 4H, 2CH2), 4.00–4.05 (m, 4H,
2OCH2), 4.61–4.68 (m, 1H, OCH). [M+Na]+

found: 303.1703, [M+Na]+
calculated: 303.1701.
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3.4.8. Dipentyl-butylphosphate (8d)
31P NMR (202.4 MHz, CDCl3) δ: −0.62; 13C NMR (125.7 MHz, CDCl3) δ: 13.6 (s, CH3),

13.9 (s, 2 CH3), 18.7 (s, CH2), 22.2 (s, 2CH2), 27.6 (s, 2CH2), 30.0 (d, J = 6.8, 2CH2), 32.2 (d,
J = 6.8, CH2), 67.4 (d, J = 6.1, OCH2), 67.7 (d, J = 6.1, 2OCH2); 1H NMR (500 MHz, CDCl3)
δ: 0.93 (t, J = 7.2, 6H, 2CH3), 0.96 (t, J = 7.7, 3H, CH3), 1.33–1.40 (m, 8H, 4CH2), 1.41–1.46
(m, 2H, CH2), 1.67–1.72 (m, 6H, 3CH2), 4.03–4.08 (m, 6H, 3OCH2). [M+Na]+

found: 317.1857,
[M+Na]+

calculated: 317.1858.
For the NMR spectra of the products, see the Supplementary Materials.

3.5. Theoretical Calculations

DFT computations at the M062X/6–311+G (d,p) level of theory were performed
considering the solvent effect of the corresponding alcohol using the SMD solvent model
with the Gaussian 09 program package [21–23]. The geometries of the molecules were
optimized in all cases, and frequency calculations were also performed to ensure that the
structures were in a local minimum or in a saddle point. The conformations of the reported
structures were determined by conformational analysis. The solution-phase enthalpies and
Gibbs free energies were obtained by frequency calculations as well. The H and G values
obtained were given under 473 K, the corrected total energies of the molecules were taken
into account. Entropic and thermal corrections were evaluated for isolated molecules using
standard rigid rotor harmonic oscillator approximations, that is, the enthalpy and the Gibbs
free energy were taken as the “sum of electronic and thermal free energies” printed in a
Gaussian 09 vibrational frequency calculation. The standard state correction was taken into
account. The transition states were optimized with the QST3 or the TS (Berny) method.
The transition states were identified by having one imaginary frequency in the Hessian
matrix, and IRC calculations were performed in order to prove that the transition states
connected two corresponding minima.

For the details of the calculations, see the Supplementary Materials.

4. Conclusions

An MW-assisted protocol was developed for the esterification of monoalkylphosphates.
The first step was the chemoselective direct esterification in the presence of [bmim][BF4] as
the catalyst. The second step was an alkylation esterification. Even phosphoric triesters
with different alkyl groups were prepared. Additionally, quantum chemical computations
showed that the activation enthalpy was high (on average 156.6 kJ mol−1) for the monoes-
terifications, and even higher for the diesterifications, which agreed with the observed
experimental data. In addition, the determining effect of entropy was pointed out in the
esterifications. It is also noted that regarding direct esterifications, the overall energetics
for the formation of diesters was more favorable than that for the formation of the tri-
esters. As a whole, a new method was developed for the preparation of phosphate triesters
avoiding the use of P-chlorides as the starting materials. The first, direct MW-assisted
esterification step may be regarded as “green”. The experimental data were supported by
theoretical calculations.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27154674/s1. 31P, 13C and 1H NMR spectra of the products,
as well as the details for the quantum chemical calculations: coordinates, energetics and imaginary
frequencies for the relevant species.
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