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Abstract

The United States Environmental Protection Agency (EPA) has implemented a Bayesian spatial 

data fusion model called the Downscaler (DS) model to generate daily air quality surfaces for 

PM2.5 across the contiguous U.S. Previous implementations of DS relied on monitoring data from 

EPA’s Air Quality System (AQS) network, which is largely concentrated in urban areas. In this 

work, we introduce to the DS modeling framework an additional PM2.5 input dataset from the 

Interagency Monitoring of Protected Visual Environments (IMPROVE) network located mainly in 

remote sites. In the western U.S. where IMPROVE sites are relatively dense (compared to the 

eastern U.S.), the inclusion of IMPROVE PM2.5 data to the DS model runs reduces predicted 

annual averages and 98th percentile concentrations by as much as 1.0 and 4 μg m−3, respectively. 

Some urban areas in the western U.S., such as Denver, Colorado, had moderate increases in the 

predicted annual average concentrations, which led to a sharpening of the gradient between urban 

and remote areas. Comparison of observed and DS-predicted concentrations for the grid cells 

containing IMPROVE and AQS sites revealed consistent improvement at the IMPROVE sites but 

some degradation at the AQS sites. Cross-validation results of common site-days withheld in both 

simulations show a slight reduction in the mean bias but a slight increase in the mean square error 

when the IMPROVE data is included. These results indicate that the output of the DS model (and 

presumably other Bayesian data fusion models) is sensitive to the addition of geographically 

distinct input data, and that the application of such models should consider the prediction domain 

(national or urban focused) when deciding to include new input data.
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1. Introduction

Several recent epidemiology and exposure studies linking air pollution concentrations to 

health effects have transitioned from using composite monitors to continuous air quality 

surfaces [1-3], necessitating the need for additional refinement and evaluation of the 

methods used to generate these surfaces. Conceptually, continuous surfaces are an 

improvement because they capture the gradients of exposure fields that composite monitors 

neglect. These studies have generated air quality surfaces by fusing monitoring data with 

chemical transport models, satellite-based estimates, land surface models, and/or population 

density estimates [4-7]. In addition to the different types of input data, several different 

statistical models have been used for the fusion calculations. For a recent review of the 

different input data and statistical models used for data fusion of ambient air pollution, see 

Shaddick et al. [8]. Few of these past studies, however, describe the sensitivity of these 

surfaces to the spatial coverage of observed input data used to derive the fields.

In recent years, the United States Environmental Protection Agency (EPA) has used a 

Bayesian spatial downscaling fusion model called the Downscaler (DS) model [9] to create 

air quality surfaces of 24-h average PM2.5 concentrations of the contiguous U.S. for use in 

the draft Policy Assessment of the National Ambient Air Quality Standards (NAAQS) for 

Particulate Matter [10] and the Centers for Disease Control and Prevention’s (CDC) 

National Environmental Public Health Tracking Network [11]. The DS model also has the 

potential to be utilized in other air quality applications, including data fusion for EPA’s 

AirNow or citizen scientists using low-cost sensors to monitor pollution levels in their 

region.

2. Methods

As inputs to the DS model, we used both point-level monitoring data from EPA’s Air 

Quality System (AQS) network and gridded model output from the Community Multiscale 

Air Quality (CMAQ) model [12]. The two data sources combine the accuracy of 

measurement data and the spatial coverage of CMAQ predictions to create an accurate air 

quality surface with realistic gradients. The DS model uses a spatially varying weighted 

model to derive spatial covariate terms for the CMAQ grid cells surrounding the monitoring 

station. A local smoothed surface is generated via a mean-zero Gaussian Markov random 

field with an exponential covariance structure, which then implicitly relates the monitored 

values to the CMAQ modeled output within the neighboring grid cells via random weights 

that are spatially varying according to an exponential kernel with an empirically estimated 

decay parameter [9]. A spatial regression relationship between monitoring station point-level 

measurements and gridded model output is then determined by regressing monitoring data 

onto the derived CMAQ regressors. Applying the model on the spatially complete gridded 

CMAQ surface allows for point-level predictions at locations where a monitor may not exist, 
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hence downscaling. The regression relationship is applied separately for each time step of 

data, and can be expressed in a generalized equation as follows:

Y(s) = β0 + β1x(s) + ε(s) (1)

where Y(s) is the observed concentration at point s, x(s) is the CMAQ concentration at point 

s based on the weighted average of both the grid cell containing the monitor and neighboring 

grid cells (in our application, up to three neighboring grid cells were used in each direction 

from the monitor location s, with the grid weights decreasing exponentially over distance as 

described above), β0(s) is the intercept where β0(s) = β0 + β0(s) is composed of both a global 

component, β0, and a local component, β0(s), that is modelled as a mean-zero Gaussian 

process with exponential decay, β1 is the global slope, and ε(s) is the model error. A 

comprehensive discussion of the DS methodology is given in Heaton et al. [13]. This 

framework allows for multiple levels of spatial dependence, where the spatially varying 

regression coefficient describes the spatial relationship between monitoring stations, with 

dependence decaying over the distance between sites, and the spatial dependence between 

CMAQ grid cells is accounted for via the spatially varying weighted derived regressors. 

Conjugate priors are used for the spatial covariates and the error variance, with the spatial 

decay parameters estimated via a grid search placing discrete mass at varying percentages of 

the maximum observed differences from the monitor location (as described in Heaton et al. 

[13]). The DS modeling framework uses Markov chain Monte Carlo methods to draw 

random samples from iteratively updated parameter distributions during the parameter 

estimation, allowing for uncertainty quantification for the resulting predictions via estimates 

of the standard error associated with these sampling distributions. The Downscaler model is 

fully described in a series of three papers [9,14,15], with the version of DS used here based 

on Berrocal et al. [9].

In this work, we evaluated the impact of adding Interagency Monitoring of Protected Visual 

Environments (IMPROVE) PM2.5 concentrations from sites in remote regions to the DS 

inputs. Typical DS applications use only PM2.5 measurements from AQS sites, whose land 

use is heavily urban in nature (i.e., biased towards urban). Specifically, we conducted DS 

model simulations with and without IMPROVE measurements to quantify the scale and 

direction of the changes in DS PM2.5 predictions. Two annual DS model runs were 

performed in this study to predict PM2.5 concentrations at a 12 × 12 km2 grid resolution for 

the year 2014 using the CMAQv5.1 continental U.S. domain. For both model runs, a 

consistent set of monitoring (2014 ambient PM2.5 concentrations at the urban-focused AQS 

sites) and modeling (CMAQ predictions from a 2014 annual simulation) inputs were used, 

with the second run also incorporating data from the IMPROVE network. These IMPROVE 

PM2.5 concentration data were added without modifications to test the impact on the DS 

predictions. This evaluation not only quantifies the impact of the new monitoring inputs to 

DS but also identifies the domain-wide effect of adding a geographically distinct (in this 

case only remote sites) observational dataset to DS. The previous DS model runs performed 

by the EPA for the NAAQS and CDC used only regulatory-quality PM2.5 concentrations 

from the AQS network as inputs, and therefore did not include the IMPROVE PM2.5 data.
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3. Data Sources

The AQS PM2.5 concentrations include only the 24-h average regulatory-quality 

measurements from the federal reference method (FRM) or federal equivalent method 

(FEM) monitors across the 48 contiguous United States. Monitors at AQS sites measure 

regulatory-quality PM2.5 concentrations on a variety of sampling frequencies, with roughly 

13%, 47%, and 40% of sites having monitors operating on a 1-in-6 day, 1-in-3 day, or daily 

sampling, respectively, in 2014. No annual completeness criteria were applied to the AQS 

sites, but missing daily data were ignored in the DS model runs. The AQS input datasets 

were summarized by annual means (circles, Figure 1A) and 98th percentile values (circles, 

Figure 2A) to approximate the averaging times of the PM2.5 NAAQS. The 934 AQS sites, 

shown as the circles in Figures 1A and 2A, are relatively widespread in the eastern U.S. and 

California and sparse in the Intermountain West. This spatial distribution is a function of the 

network design intent, which focuses on higher concentration areas and populated areas.

In 2014, the IMPROVE network [16,17] consisted of 153 sites located in remote areas, like 

National Parks and Wilderness Areas mostly in the western U.S. (hereafter defined as the 

region with a longitude west of 100° W containing 98 IMPROVE sites). IMPROVE sites 

measure concentrations of PM2.5 mass and concentrations of PM2.5 chemical components on 

the same 1-in-3-day schedule throughout the U.S. Although PM2.5 mass concentrations are 

measured at IMPROVE sites using a filter-based method similar to an FRM, it is not 

considered regulatory quality [17]. The IMPROVE input datasets were summarized by 

annual means (triangles, Figure 1A) and 98th percentile values (triangles, Figure 2A). The 

IMPROVE sites fill in the spatial gaps in many of these Intermountain West areas.

Of the 153 IMPROVE sites, 17 were collocated with AQS sites and can be intercompared. 

Analysis of the 2014 PM2.5 observations from temporally and spatially collocated 

IMPROVE and AQS measurements indicates that the IMPROVE annual averages are biased 

low (−15%) compared to AQS annual averages but with a difference that is not statistically 

significant (p-value = 0.368). This bias is similar to the results of Hand et al. [18], which 

compared monthly averages from six collocated IMPROVE and CSN sites between 2008 

and 2011. We also found that 2014 IMPROVE and AQS PM2.5 data at the 17 collocated sites 

have high correlation coefficients (0.72 to 0.99) and slopes near unity (0.73 to 1.13). Only 

six IMPROVE sites in the western U.S. are collocated with AQS sites; analysis of the 2014 

PM2.5 observations from temporally and spatially collocated IMPROVE and AQS 

measurements at these western U.S. sites indicates that the low bias of the IMPROVE annual 

averages is reduced (−7%) and also not statistically significant.

The 2014 CMAQ annual simulation used version 5.1 coupled to the Weather Research and 

Forecasting (WRF) version 3.7.1 for the meteorological inputs [19,20]. The CMAQ model 

configuration included bi-directional ammonia (NH3) air-surface exchange (v2.1) using the 

Massad formulation [21], CB05e51 chemical mechanism, AERO6 aerosol module, and 

lightning NOx-adjusted to lightning strike data. The PM2.5 concentrations predicted by 

CMAQ were calculated by adding up the concentrations of several chemical species 

including sulfate, nitrate, ammonium, sodium, chloride, elemental carbon, organic matter, 

and other minor components and multiplying those values by the fraction of the three model 
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modes with diameters <2.5 μm. The CMAQ input datasets were summarized by annual 

averages (Figure 1B) and 98th percentiles (Figure 2B). Note the complete spatial coverage 

and qualitative similarity in the national spatial gradients seen in the AQS and IMPROVE 

measurements.

In order to study the impact of the inclusion of the IMPROVE data on DS predictions, the 

two DS model runs consisted of (1) a “baseline” run using AQS inputs without IMPROVE 

data and (2) a “w/IMPROVE” run, which includes both AQS and IMPROVE data, i.e., the 

inclusion of IMPROVE data being the only difference between the two model runs. For both 

model runs, every day of 2014 was simulated despite the fact that all IMPROVE sites 

operate on the same 1-in-3-day schedule and only affect those days in the DS model runs. 

Therefore, we report the DS results only for days with IMPROVE sample (hereafter 

“IMPROVE sample dates”) in the main text but show the results for all days in 2014 

(hereafter “entire period”) in the supplemental information to provide a context for the 

impact on a typical application of the DS model. In the following section, we compare the 

annual average and 98th percentile values predicted by the two DS model runs as well as 

evaluate DS predictions to the AQS and IMPROVE PM2.5 data used as in the input to the 

model.

4. Results

4.1. Concentrations from Downscaler Model Runs

Compared to the CMAQ-predicted PM2.5 annual average and 98th percentile concentrations 

in Figures 1B and 2B, respectively, the annual average and 98th percentile PM2.5 values 

from all DS model runs (Figure 1C,D and Figure 2C,D, respectively) have smoother 

gradients and fewer areas at the extremes of the data range. This can be seen for the lower 

values in Maine, and in Georgia and Alabama as well as Louisiana for the higher values, 

with differences in both lower and higher values shown in Washington. The differences 

between the baseline and w/IMPROVE DS annual average predictions are largest in areas 

near IMPROVE monitors across the western U.S., the Ozarks region of Arkansas, and the 

Appalachian Mountains. For the 98th percentile DS predictions, a similar pattern of 

smoother gradients than CMAQ and less extreme values emerges for both the baseline and 

w/IMPROVE DS model runs. For the entire period (see Figures S1 and S2), the CMAQ and 

baseline DS annual average and 98th percentile values are similar to those on IMPROVE 

sample dates.

4.2. Differences in Concentrations between Downscaler Model Runs

The w/IMPROVE—baseline difference plot in Figure 3A showing the difference in annual 

average w/IMPROVE DS and baseline predictions identifies three distinct regions: (1) 

Isolated areas in the San Joaquin Valley, CA and Denver, CO with increased PM2.5 (>0.5 μg 

m−3), (2) widespread areas in the central and eastern U.S. with little change or slight 

increases (0–0.4 μg m−3), and (3) widespread areas in the western U.S. where PM2.5 

predictions were reduced by more than 1.0 μg m−3. The largest reduction in PM2.5 

predictions were in states like Idaho and Oregon, where a smaller number of AQS sites with 

moderate PM2.5 values are combined with several IMPROVE sites with very low PM2.5 to 
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reduce PM2.5 predictions by more than 2.0 μg m−3. Isolated areas, such as San Joaquin 

Valley, CA and Denver, CO, with increased PM2.5 concentrations in the w/IMPROVE DS 

model run are near high elevation areas with reduced PM2.5; this results in a sharper gradient 

of PM2.5 concentrations in these regions predicted by the w/IMPROVE DS model run. This 

is likely due to a decrease in spatial covariance, allowing for both higher/lower local 

concentrations. Relative to the annual average difference plot, the 98th percentile difference 

plot for w/IMPROVE—baseline in Figure 3B shows fewer areas with reduced PM2.5 

concentrations (mainly in Oregon) and more areas with slightly higher PM2.5 (mainly in the 

central U.S.). For the entire period, these annual and 98th percentile differences are smaller 

(see Figure S3).

When the differences between the w/IMPROVE and baseline DS predictions are separated 

into quarterly averages, a strong seasonal cycle is evident (see Figure 4 and Figure S4). 

Relative to the warmer months in quarters 2 and 3, the colder months of quarter 1 and 

quarter 4 have much larger changes in the w/IMPROVE DS predictions (both increases and 

decreases). The cause of this seasonality is as follows: (1) The absolute wintertime PM2.5 

concentrations are higher than in other seasons for most areas of the U.S. and (2) wintertime 

inversions contribute to much higher PM2.5 concentrations in the valleys (where AQS sites 

are typically located) than at higher elevations (where IMPROVE sites are typically located), 

and (3) summertime PM2.5 concentrations in most areas of the U.S. are dominated by 

secondary components, such as sulfate and organic carbon, which affect both urban and 

remote areas [22]. By virtue of the 1-in-3-day sampling schedule for all the IMPROVE sites 

across the U.S., 2/3 of the days have no impact from the IMPROVE data and are identical to 

the baseline DS model run. Figures S1 and S2 indicate that the impact of including the 

IMPROVE PM2.5 data in DS is much smaller for the entire period. The DS modeling 

framework also generates standard error estimates, which quantify the model uncertainty. 

The difference plot of the standard error estimates for the w/IMPROVE and baseline model 

runs (Figure S5a) shows that there is a general trend of much lower errors over much of the 

western U.S. and moderately higher errors over much of the eastern U.S. Near the 

IMPROVE sites, the w/IMPROVE predictions consistently have lower errors regardless of 

geography. Much like the predicted concentration differences, the standard error differences 

between the two DS model runs are smaller for the entire period (see Figure S5b).

4.3. Downscaler Evaluation

If we assume that the DS prediction at the grid centroid is consistent with the grid average, 

the PM2.5 concentrations at the AQS and IMPROVE sites can be used to evaluate the 

baseline and w/IMPROVE DS model runs. For the AQS sites, Figure 5 shows that the PM2.5 

concentrations are well-predicted (mean bias within ±1 μg m−3) by both the baseline (Figure 

5A) and w/IMPROVE (Figure 5C) DS model runs; this result is not surprising because these 

data are used as input in both. The absolute mean bias difference (∣w/IMPROVE – AQS∣ – 

∣baseline – AQS∣) plot in Figure 5E identifies the location of AQS sites with improved or 

degraded predictions by the w/IMPROVE DS model run relative to the baseline. Most of 

these sites had slight increases or decreases in their mean bias, but a few had their mean 

biases degrade by >0.5 μg m−3. The AQS sites with degraded predictions in the w/

IMPROVE DS model run were clustered in areas near multiple IMPROVE sites, including 
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parts of California and Oregon, with underpredictions that were made worse by introducing 

low PM2.5 concentrations from the IMPROVE sites (Figure 6).

For the IMPROVE sites, Figure 5B shows that the baseline DS model run almost universally 

overpredicts concentrations with many sites having a mean bias >2 μg m−3. Overpredictions 

at the IMPROVE sites are also common in the w/IMPROVE DS model run (Figure 5D), but 

most sites have a mean bias within ±1 μg m−3. The absolute mean bias difference in Figure 

5F shows that nearly all predictions in the w/IMPROVE DS model run were better than that 

of the baseline, often by more than 1 μg m−3. Of the few IMPROVE sites with degraded 

predictions in the w/IMPROVE DS model run, most were clustered near AQS sites whose 

concentrations are underpredicted in both DS model runs.

Domain-wide validation statistics (based on sensitivity runs where 10% of the input data is 

left out) were also calculated for the baseline and w/IMPROVE model runs, which we 

limited only to (1) AQS sites and (2) the common site-days (1889 or ~10% of withheld 

baseline DS site-days) from the two model runs. When looking at withheld AQS site-days, 

the w/IMPROVE bias (0.18 μg m−3) is significantly lower than baseline (0.29 μg m−3) while 

the mean squared error and fraction of time that the prediction is included within the 95% 

confidence interval (aka, coverage) are not significantly different. When looking at the 

common site-days withheld in both simulations, the w/IMPROVE model has a lower bias 

(0.30 μg m−3) than baseline (0.35 μg m−3) but the low number of site-days led to no 

performance differences being statistically significant. Random withholding can in some 

cases underestimate actual model error [23]. In this case, the error is being used in a relative 

sense to compare two simulations, so the effect is not expected to be influential. More details 

of the validations are available in Table 1. Scatter density plots of the validation results for 

the baseline and w/IMPROVE DS model runs when AQS site-days are withheld (Figure S6) 

show that the correlation coefficients are similar between the two model runs and are 

comparable to those reported in a cross-validation experiment by Berrocal et al. [24].

4.4. Case Study for Denver, CO

An illustrative example of DS predictions near Denver, Colorado (Figure 6) gives some 

insight to the impact of including IMPROVE data in the DS model run. In the Denver 

region, an urban core with high PM2.5 concentrations monitored by AQS sites is near high 

elevation areas with low PM2.5 concentrations monitored by IMPROVE sites. The numerous 

AQS and IMPROVE sites near Denver, CO combine to inform the gradients in the DS-

predicted PM2.5 between the urban core and nearby mountains. The gradients are sharper in 

the w/IMPROVE DS model run, and while the IMPROVE site nearest to the urban core 

(Long’s Peak) is overpredicted in both DS model runs the overprediction is mitigated in the 

w/IMPROVE DS model. This is seen in both the annual average spatial field as well as 

across the 2014 time series (Figure 6). DS performance at the AQS site on the edge of the 

urban core (Boulder, CO, USA) has the opposite problem; in the baseline model run, the 

underpredictions are increased under the w/IMPROVE run. This underprediction is 

especially evident on high PM2.5 concentration days at Boulder, CO when the w/IMPROVE 

DS model run is trying to fuse these data with much lower PM2.5 concentrations at the 

nearby IMPROVE site. The time series plots for the IMPROVE site in Figure 6 also shows 
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an unintended consequence of using the IMPROVE data as input to DS; because all 

IMPROVE sites sample on the same schedule (1-in-3 days) throughout the United States, the 

w/IMPROVE DS model run has more day-to-day variation than the baseline run for the 

entire period.

5. Conclusions

Prior to completing the DS model runs, we expected that incorporating IMPROVE data 

would result in better predictions at both AQS and IMPROVE sites compared to the baseline 

using only AQS data. The results were more nuanced. The IMPROVE sites were much 

better predicted by the inclusion of IMPROVE data, but some of the AQS sites experienced 

a slight degradation in predictions. The effect of including IMPROVE data is most obvious 

in preserving broad low-concentration areas in the western U.S. that are present in both the 

CMAQ model and the IMPROVE network but are absent in the AQS-only DS predictions. In 

areas like Denver, CO with strong gradients of PM2.5 concentrations associated with 

elevation changes, incorporating IMPROVE data in DS enhances those gradients. These 

examples highlight the effect of a bias in the AQS network towards urban and polluted areas 

that impacts DS predictions at unmonitored and/or more rural locations. Incorporating the 

relatively low PM2.5 concentrations from IMPROVE sites to the DS model also resulted in 

an increase in predicted concentrations for some areas. Overall, the cross-validation results 

of common site-days withheld in both simulations show both a slight reduction in the mean 

bias and a slight increase in the mean square error when the IMPROVE data is included. 

These nonintuitive results are due to the combination of global and local components of the 

DS equations and the pollutant process itself, suggesting that without the IMPROVE data the 

spatial covariance in the baseline DS model run is overestimated. They suggest that the 

domain (national- or urban-focused) and the type of data inputs to DS must be carefully 

considered.

Another consideration for the incorporation of the IMPROVE network data is the day-to-day 

variation in the PM2.5 predictions, particularly near IMPROVE sites. The effect of leaving 

out IMPROVE observations can only be evaluated for 1-in-3 days but is implicitly present 

on all days. When performing daily DS simulations, only 1/3 of all days are affected by 

IMPROVE and much of the impacts are lost (see Figures S1 and S2). Even with IMPROVE 

1-in-3-day observations, the average day observational input is still biased towards urban 

and polluted areas. This highlights the need to either incorporate other sources of data with 

greater temporal coverage (e.g., AOD derived from a geostationary satellite like the 

Geostationary Operational Environmental Satellite (GEOS) series) and/or higher spatial 

resolution (e.g., 4 km CMAQ domain), or to apply DS using time aggregates (e.g., monthly 

average) to minimize the unmonitored time periods. The use of IMPROVE and/or other 

irregular inputs to data fusion techniques need to be carefully considered when utilizing DS 

predictions. This study does not address the ability of CMAQ or other potential DS inputs to 

replicate the PM2.5 surface; using high-quality inputs is fundamental for any data fusion 

application regardless of the methodology.

The distinct change in DS model bias at IMPROVE vs. AQS sites shows that more input 

data for fusion applications does not always directly improve all predictions. The consistent 
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reduction in bias when adding IMPROVE measurements suggests that the baseline DS 

increases predictions in rural areas as the original inputs are based on urban monitors. The 

worsening underpredictions at AQS sites when adding IMPROVE to DS suggests that 

concentrations at urban sites are reduced by addition of information from generally lower 

concentration rural monitors. This may point to a need to differentiate PM2.5 species with 

long lifetimes (i.e., secondary species) and short lifetimes (i.e., primary species) when 

applying the statistical downscaling approaches. More research is needed to further constrain 

appropriate scales of influence.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Annual average PM2.5 concentrations (in units of μg m−3) (A) observed at AQS (circles) and 

IMPROVE (triangles) sites and predicted on IMPROVE sample dates by the (B) CMAQ 

model, (C) Downscaler with the baseline configuration, and (D) Downscaler with 

IMPROVE data.
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Figure 2. 
98th percentile PM2.5 concentrations (in units of μg m−3) (A) observed at AQS (circles) and 

IMPROVE (triangles) sites and predicted on IMPROVE sample dates by the (B) CMAQ 

model, (C) Downscaler with the baseline configuration, and (D) Downscaler with 

IMPROVE data.
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Figure 3. 
Difference in (A) annual average and (B) 98th percentile PM2.5 concentrations (in units of 

μg m−3) on IMPROVE sample dates as predicted by Downscaler when the IMPROVE data 

are included.
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Figure 4. 
Difference in (A) Q1 (January, February, March), (B) Q2 (April, May, June), (C) Q3 (July. 

August, September), and (D) Q4 (October, November, December) quarterly average PM2.5 

concentrations (in units of μg m−3) on IMPROVE sample dates as predicted by Downscaler 

when the IMPROVE data are included.
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Figure 5. 
Mean bias for the (A,B) baseline Downscaler prediction, (C,D) Downscaler prediction with 

IMPROVE data, and the difference in the absolute mean bias between the two model runs 

for the PM2.5 observations at (E) AQS and (F) IMPROVE sites for 2014. The green colors 

on the bottom row figures represent locations where the Downscaler predictions with 

IMPROVE data had a lower model bias (improved prediction) and purple colors represent 

locations where the Downscaler predictions with IMPROVE data had a higher model bias 

(worse prediction).
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Figure 6. 
Denver, Colorado-area annual average PM2.5 concentrations on IMPROVE sample dates that 

were (A) predicted by Downscaler with the baseline configuration and (B) predicted by 

Downscaler with IMPROVE data superimposed with annual averages observed at the AQS 

(circles) and IMPROVE (triangles) sites. The time series charts give the 24-h average PM2.5 

concentrations observed and predicted at Long’s Peak and Boulder, CO.
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Table 1.

Validation (10% of site-days randomly withheld) results for 2014 Downscaler model runs (baseline and w/

IMPROVE) for all site-days (All), AQS site-days (AQS), or all common site-days (common). The statistics 

shown include the number of site-days (N), mean bias, mean square error, and coverage. Here, 90% 

confidence intervals are shown in parentheses.

Simulation Selection N Mean Bias Mean Sq. Error Coverage

Baseline AQS 18,518 0.29 (0.25, 0.33) 10.85 (9.86, 11.84) 0.95 (0.95, 0.96)

w/IMPROVE All 20,257 0.28 (0.24, 0.32) 11.51 (10.43, 12.60) 0.95 (0.94, 0.95)

w/IMPROVE AQS 17,317 0.18 (0.14, 0.23) 11.87 (10.65, 13.09) 0.95 (0.95, 0.95)

Baseline Common 1889 0.35 (0.24, 0.46) 8.67 (7.42, 9.92) 0.95 (0.94, 0.96)

w/IMPROVE Common 1889 0.30 (0.19, 0.41) 8.69 (7.41, 9.98) 0.96 (0.95, 0.97)
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