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ABSTRACT
One caveat in cancer research is the dependence of certain experimental systems that might not
really reflect the properties of the primary tumours. The recent irruption of 3D cultured cells
termed organoids could render a better representation of the original tumour sample. However,
every laboratory has its own protocol and tissue-provider to establish these cancer models,
preventing further dissemination and validation of the obtained data. To address this problem,
the Human Cancer Models Initiative (HCMI) has selected the American Type Culture Collection
(ATCC) to make available organoid models to the scientific community. In this regard, no
epigenetic information is available for these samples and, overall, the DNA methylation profiles
of human cancer organoids are largely unknown. Herein, we provide the DNA methylation
landscape of 25 human cancer organoids available at the ATCC using a microarray that inter-
rogates more than 850,000 CpG sites. We observed that the studied organoids retain the
epigenetic setting of their original primary cancer type; that exhibit a DNA methylation landscape
characteristic of transformed tissues excluding an overgrowth of normal-matched cells; and that
are closer to the DNA methylation profiles of the corresponding primary tumours than to
established 2D cell lines. Most importantly, the obtained DNA methylation results are freely
available to everyone for further data mining. Thus, our findings support from the epigenetic
standpoint that the ATCC human cancer organoids recapitulate many of the features of the
disorder in the patient and are excellent tools to be shared among investigators for further
tumour biology research.
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Background

Cancer is still a devastating disorder with an
increasing incidence worldwide. Thus, a major
effort to understand the cellular and molecular
pathways involved in its origin and evolution is
a necessity. In this regard, advances in new tar-
geted therapies and rescued pharmacological hits,
such as immunotherapy agents, are providing
more hope that the disease might eventually be
controlled. However, a major problem encoun-
tered in the cancer research arena is the lack of
good laboratory models that recapitulate the fea-
tures of the disorder in the patient, a caveat that
could explain the lack of success of several clinical
trials that at the pre-clinical stage were very pro-
mising. Many of these early studies in both aca-
demic and pharma laboratories use as initial

models cancer cell lines that grow in two-
dimensions (2D). Since the first immortalized cell
line (HeLa) was established [1] there are now
hundreds of human cancer cell lines that reflect
all tumour types and have been characterized at
the genomic and drug-sensitivity level [2–4]. Many
important discoveries have been produced from
these cancer models, but several issues that limit
their applications are also known. These include
that 2D cancer cell lines do not reconstitute the
architecture of the original tumour tissue, the
acquisition of immortalized cell lines from pri-
mary tumours is very inefficient, and that the
cancer cells could have changed to survive in
a monolayer on a plastic surface [5]. One comple-
mentary approach would be the use of patient-
derived tumour xenografts (PDXs) that can
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maintain to a certain degree the heterogeneity of
the primary tumour, including the cross-talk
between the cancer cells and the surrounding cell
microenvironment constituted by fibroblasts,
endothelial and immune cells [6]. However,
major drawbacks for this technology are the lim-
ited implantation rate for some tumour types and
the very long time required to grow these PDXs
until they are useful for further experimentation.

One alternative scenario that arose in these pre-
clinical models of cancer was initiated by the use of
three-dimensional (3D) culture methods, originally
established for neural stem cells that grew as neuro-
spheres [7]. From these systems, tumour spheroid
cultures were used for cancer stem cells and the field
exploded by the possibility to culture normal epithe-
lial stem cells as organoids. Organoids can be defined
as a 3D structure derived from stem cells that mimic
the cell types and self-organization present in the
original in vivo sample. The exceptional advance-
ment for epithelial-derived organoids, originally dis-
covered in intestinal cells, was possible by achieving
WNT pathway activation by R-spondin1 and BMP
pathway inhibition [8]. This procedure has now been
extended beyond colon cells to other tissues such as
pancreas, liver, lung, breast, and others, and not only
allowing the growth of the normal tissues but also of
the corresponding tumour types [9,10]. The advan-
tages of human cancer organoids are many and
among these, we can cite the current efficiency of
derivation from the most common epithelial
tumours types, the possibility to grow the neighbour-
ing normal tissue part, the relative conservation of
intratumoral heterogeneity, the great versatility to
perform genetic manipulation and drug testing
and, finally, the capacity to test them for a specific
patient in a timely manner [9,10].

The extraordinary expectations derived from the
emergence of human organoids for cancer research
can be limited by the required expertise and sophisti-
cation to initially obtain, grow, and characterize these
cells, in addition, to the problem of exchanging data
from highly diverse samples established around the
world. One possible solution is the creation of orga-
noid biobanks that can expand long term, cryopre-
serve, and provide these living materials to the
research laboratories. To achieve this aim, the
Human Cancer Models Initiative (HCMI), consti-
tuted by the National Cancer Institute (NCI),

Cancer Research UK (CRUK), Hubrecht Organoid
Technology (HUB), and Wellcome Sanger Institute
(WSI) have committed its efforts to make organoid
models available to the scientific community [11,12].
In this regard, many of the advances in tumour biol-
ogy in the last decades have been possible by the use of
2D established cancer cell lines with high-quality
standards provided to researchers around the world
by the American Type Culture Collection (ATCC)
and, for this reason, the ATCC has been selected as
the distributor of the HCMI models that are now
available to everyone (https://www.lgcstandards-atcc.
org/hcmi). Importantly, DNA sequencing data are
available for these human cancer organoids, but they
are missing a key layer of biological information: the
epigenetic setting constituted by DNA methylation
[13–16]. Thus, we have herein obtained and studied
the DNA methylation landscapes of human cancer
organoids available at the ATCC, in a similar manner
that we provided the DNA methylation profiles for
the 1,001 Sanger [17] and NCI-60 [18,19] cancer cell
lines panels. Most importantly, we have deposited all
the available DNA methylation data in the public
Gene Expression Omnibus (GEO) repository to
serve the scientific community in any further studies
that use these very promising human cancer models.

Results and discussion

Human cancer organoids show tumour-type
specific DNA methylation profiles

The genomic DNA from 25 embedded 3D cultures
(organoids) available at the American Type Culture
Collection (ATCC) (https://www.lgcstandards-atcc.
org/HCMI#Organoids) were interrogated for their
DNA methylation landscape using the Epigenetic
Infinium MethylationEPIC BeadChip (EPIC)
microarray from Illumina, as previously described
[20]. These organoids represented five tumour
types: Colorectal (n = 11), Pancreatic (n = 7),
Oesophageal (n = 4), Stomach (n = 2), and Lung
(n = 1) cancer. The characteristics of these organoids,
including ATCC ID, model ID, primary site, acqui-
sition site of the sample, clinical tumour diagnosis,
histological type, and gender and race of the donor
are described in Table 1. The complete DNAmethy-
lation data are freely available at the GEO repository
under accession number GSE144213:

1168 R. JOSHI ET AL.

https://www.lgcstandards-atcc.org/hcmi
https://www.lgcstandards-atcc.org/hcmi
https://www.lgcstandards-atcc.org/HCMI#Organoids
https://www.lgcstandards-atcc.org/HCMI#Organoids


https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE144213

We observed discrete DNA methylation profiles
between different organoid tumour types, which
enabled their distinction on the basis of the origin of
the primary using unsupervised hierarchical cluster-
ing with multi-step bootstrap resampling (Figure 1
(a)). The final hierarchical clustering represented as
a tree-based dendrogram also distributed at two arms
the studied organoids: one arm corresponding to all
the colorectal cancer organoids and the other
arm that included the rest of organoid cancer types
(Figure 1(a)). Dimensionality reduction analysis using
t-Distributed Stochastic Neighbour Embedding
(t-SNE) [21,22] provided very similar results
(Figure 1(b)).

The herein used MethylationEPIC BeadChip
Infinium microarray analyzes the methylation sta-
tus of 853,307 CpG sites (850 K). In comparison to

its previous version, the 450 K microarray [23], the
EPIC microarray interrogates additional regions
with poor CpG content, intergenic sequences,
and distant regulatory regions such as enhancers
regions provided by the ENCODE [24,25] and
FANTOM5 [26] projects. However, the majority
of DNA methylation information available from
databases, i.e., Gene Expression Omnibus (GEO)
or The Cancer Genome Atlas (TCGA) is still
derived from the 450 K platform. Because around
91% of the 450 K CpGs are also included in the
EPIC 850 K array [20], we speculated if limiting
our study to these shared methylation sites we
could obtain similar results for organoid tumour
type classification as described above. Using the
same unsupervised hierarchical clustering with
multi-step bootstrap resampling for these loci, we
again found specific DNA methylation profiles
that enabled the classification of the organoids

Table 1. General information regarding the human cancer organoids used in the DNA methylation study.

ATCC ID Model ID Primary site Acquisition site
Clinical tumour

diagnosis Histological type Gender Race

PDM-2 HCM-CSHL-0057-C18 Colon Sigmoid colon Colorectal cancer Adenocarcinoma Male White
PDM-4 HCM-CSHL-0060-C18 Colon Sigmoid colon Colorectal cancer Adenocarcinoma Male White
PDM-44 HCM-SANG-0267-D12 Colon Transverse colon Colorectal cancer Tubulovillous adenoma Male White
PDM-46 HCM-SANG-0269-C18 Colon Sigmoid colon Colorectal cancer Adenocarcinoma Male White
PDM-5 HCM-CSHL-0061-C18 Colon Sigmoid colon Colorectal cancer Adenocarcinoma Female White
PDM-7 HCM-CSHL-0063-C18 Colon Sigmoid colon Colorectal cancer Adenocarcinoma Male African
PDM-8 HCM-CSHL-0064-C18 Colon Sigmoid colon Colorectal cancer Adenocarcinoma Male Asian
PDM-9 HCM-CSHL-0065-C20 Colon Liver Colorectal cancer Adenocarcinoma Male Asian
PDM-43 HCM-SANG-0266-C20 Rectum Rectum Colorectal cancer Adenocarcinoma Female White
PDM-47 HCM-SANG-0270-C20 Rectum Rectum Colorectal cancer Adenocarcinoma Female White
PDM-6 HCM-CSHL-0062-C18 Rectum Rectosigmoid

junction
Colorectal cancer Adenocarcinoma Female White

PDM-36 HCM-CSHL-0089-C25 Pancreas Pancreatic head Pancreatic cancer Adenocarcinoma ductal
type

Male Unknown

PDM-37 HCM-CSHL-0090-C25 Pancreas Pancreatic head Pancreatic cancer Other Female Unknown
PDM-38 HCM-CSHL-0091-C25 Pancreas Pancreatic tail Pancreatic cancer Adenocarcinoma ductal

type
Female Unknown

PDM-39 HCM-CSHL-0092-C25 Pancreas Pancreatic head Pancreatic cancer Adenocarcinoma ductal
type

Male Unknown

PDM-40 HCM-CSHL-0093-C25 Pancreas Pancreatic head Pancreatic cancer Adenocarcinoma ductal
type

Female Unknown

PDM-41 HCM-CSHL-0094-C25 Pancreas Pancreatic head Pancreatic cancer Adenocarcinoma ductal
type

Female Unknown

PDM-90 HCM-SANG-0315-C25 Pancreas Other Pancreatic cancer Other Female White
PDM-120 HCM-BROD-0100-C15 Oesophagus Oesophagus – distal

third
Oesophageal cancer Oesophagus

adenocarcinoma
Male White

PDM-66 HCM-SANG-0290-C15 Oesophagus Oesophagus Oesophageal cancer Oesophagus
adenocarcinoma

Male White

PDM-67 HCM-SANG-0291-C15 Oesophagus Oesophagus Oesophageal cancer Oesophagus
adenocarcinoma

Male White

PDM-71 HCM-SANG-0295-C15 Oesophagus Oesophagus Oesophageal cancer Oesophagus
adenocarcinoma

Female White

PDM-135 HCM-BROD-0115-C16 Stomach Lymph node Stomach cancer Other Male White
PDM-146 HCM-BROD-0208-C16 Stomach Stomach (NOS) Stomach cancer Other Male White
PDM-3 HCM-CSHL-0058-C34 Lung Right upper lobe lung Lung cancer Acinar adenocarcinoma Male White
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according to their cancer type (Figure 1(c)). The
tree-based dendrogram also showed the two
described arms; the colorectal cancer branch and
the other arm that included all the other remain-
ing tumour types (Figure 1(c)). Dimensionality
reduction analysis by t-SNE yielded again identical
results with all colorectal tumours in one group
whereas the other cancer types grouped away
(Figure 1(d)). These results prompted us to use
the CpG sites common in both DNA methylation
microarray platforms for further comparisons with
other samples.

It is worth mentioning one exception to the
clear classification of organoids by tumour type
according to DNA methylation profiles. It was
the case of the oesophageal organoid PDM-66

that for both EPIC (850 K) and 450 K sites in
the hierarchical clustering (Figure 1(a,c)) and
t-SNE (Figure 1(b,d)) studies appeared among
the colorectal cancer organoids. We applied, in
this case, a further DNA methylation analysis, the
EPICUP test, that provides the tissue of origin in
Cancer of Unknown Primary (CUP) [27] and col-
orectal cancer was the second obtained
diagnosis. Thus, the epigenetic features of this
oesophageal cancer organoid closely resemble
a colorectal tumour. In this regard, it is worth
mentioning that oesophageal adenocarcinomas
harbouring certain molecular defects, such as
ARID1A mutations and microsatellite instability,
exhibit clinicopathological features fairly similar to
colorectal adenocarcinomas [28,29].

b

StomachColorectal Esophageal Lung Pancreatic

a c

d

Figure 1. Cancer organoid DNA methylation landscapes retain the original tumour type epigenetic profile. (a and c) Heatmaps
demonstrating unsupervised hierarchical clustering with bootstrap resampling of DNA methylation profiles for all organoid samples
using (a) Infinium MethylationEPIC BeadChip (EPIC) (>850,000 CpGs) and (c) Infinium HumanMethylation450 BeadChip (450 K)
(>450,000 CpGs). Red represents methylated CpGs, green unmethylated CpGs. (b and d) t-SNE plots further highlight organoid
clustering based on their DNA methylation characteristics from EPIC (b) and 450 K (d). Each organoid sample is labelled according to
its respective ATCC ID (b and d). Organoid DNA methylation profiles are displayed as brown (colorectal cancer), violet (oesophageal
cancer), light blue (lung cancer), dark blue (pancreatic cancer), and yellow (stomach cancer).
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Human cancer organoids maintain
cancer-specific DNA methylation characteristics

Having shown that human cancer organoids
available at the ATCC exhibit distinct DNA
methylation profiles according to their tissue of
origin, we wondered if they also keep the epige-
netic dysregulation characteristic of the trans-
formed cells derived from each organ. This is
a relevant point because tumour organoids do
not grow quicker than their corresponding nor-
mal organoid counterpart [9]. Importantly, in
several cases, the cancer organoid grows slower
than the matching normal tissue, maybe related
to a higher percentage of mitotic failures and
ulterior cell death in the tumour organoid
[30,31]. Strategies to avoid the growth of the
normal tissue instead of the real tumour involve
initiating the culture either with pure tumour
material or the use of selective culture condi-
tions, such as the deprivation of growth factors
that are essential for normal-tissue-derived orga-
noids [9]. Thus, to check if in any of the studied
cancer organoids the healthy cells from residual
normal tissue have outgrown the cancer cells
and are the majority cell type in the available
organoid, we compared the DNA methylation
profiles of the cancer organoids with those of
the matching normal tissues. The DNA methyla-
tion profiles for 50 normal tissues were obtained
from the TCGA database (https://portal.gdc.can
cer.gov/), corresponding to 10 cases of each tis-
sue type: colon, pancreas, oesophagus, stomach,
and lung.

Using the unsupervised hierarchical clustering
with multi-step bootstrap resampling approach,
we found specific DNA methylation profiles in
the cancer organoids that enabled their distinction
from their corresponding normal tissues obtained
from the TCGA (Figure 2(a-e)). In this regard, the
tree-based dendrogram provided two clear arms
for each tissue of origin: one for the cancer orga-
noids and another for the corresponding normal
tissues. Dimensionality reduction analyses by
t-SNE mirrored the hierarchical clustering data
(Figure 3(a-e)). Thus, these results strongly sup-
port that the studied organoids are really derived
from tumour cells without evident normal tissue
contamination.

Human cancer organoids exhibit DNA
methylation profiles that are closer to primary
tumour samples than to established cancer cell
lines

As mentioned in the introduction, many studies
dealing with the cellular and molecular features of
tumours have been performed using human can-
cer cell lines that have proven to be a useful tool in
many cases, but these models also show important
caveats that question how they really mirror the
biology of the primary sample. In this regard,
organoids have been proposed to replicate better
the features of the real cancer case within the
patient. Thus, to validate or not this concept in
the studied set of ATCC cancer organoids, we
compared the DNA methylation landscapes of
these tumour organoids with those of primary
tumours and cancer cell lines according to each
cell type. The 450 K DNA methylation profiles for
the primary tumours were obtained from the
TCGA database (TCGA Research Network:
https://www.cancer.gov/tcga) (n = 500, 100 cases
for each one of the five studied tumour types) and
the cancer cell lines from the Sanger collection
[17] (n = 204, corresponding to 49 colon, 31
pancreas, 35 oesophagus, 28 stomach and 61 lung
cancer cell lines).

Applying the unsupervised hierarchical cluster-
ing with multi-step bootstrap resampling metho-
dology, we observed that overall the cancer
organoids clustered within the primary tumours
and rarely among the established cancer cell lines
(Figure 4(a,b) and Figure 5(a-c)). In this regard,
the tree-based dendrogram yielded two evident
arms: one for the primary tumours that included
also most of the organoids and another arm that
corresponded to the established cancer cell lines.
Dimensionality reduction studies by t-SNE
mimicked the hierarchical clustering data with
the cancer cell lines grouped apart, whereas the
majority of the cancer organoids clustered with the
primary tumours (Figure 4(c-d) and Figure 6
(a-c)). Thus, derived from the unsupervised hier-
archical clustering and t-SNE approaches, our data
favour the idea that human cancer organoids avail-
able at the ATCC resemble more the epigenetic
setting of primary tumours than long-term 2D
cultured cancer cell lines and can be very useful
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models to recapitulate the disease in the experi-
mental laboratory setting.

Conclusions

We know very little about how well the molecular
setting of human cancer organoids represents the
cellular defects that occur in primary tumour sam-
ples. Our ignorance in this area is larger if we just
focus in the epigenetic landscape where only in
a very few cases the DNA methylation patterns
have been recently explored in these tumoural
experimental models [32,33]. Our analyses of the
DNA methylation profiles in human cancer orga-
noids available from ATCC demonstrate that these
biological systems maintain their epigenetic signa-
ture characteristic of the original primary cancer
type, are truly transformed cells distinct from their
corresponding normal counterparts and are more
proximal to primary tumours than to long-
established cancer cell lines. Thus, these tumour

organoids represent an excellent tool for cellular
and molecular studies of human cancer. Most
importantly, their availability in ATCC constitutes
an advantage to develop more objective, coordi-
nated, and shareable investigations in this area by
scientists worldwide.

Methods

Sample preparation

Genomic DNA from 25 embedded 3D cultures
(organoid) representing 5 cancer subtypes were
purchased from the Human Cancer Models
Initiative, American Type Culture Collection
(ATCC). The clinical tumour diagnoses for the
five organoid cancer subtypes were Colorectal
(n = 11), Pancreatic (n = 7), Oesophageal
(n = 4), Stomach (n = 2) and Lung (n = 1) cancer.
Organoid IDs are listed in Table 1. Genomic DNA
was quantified using Pico Green fluorescence kit/

StomachColorectal Esophageal Lung Pancreatic Normal

a b

edc

Figure 2. Cancer organoid DNA methylation profiles are distinct to their healthy tissue counterparts according to unsupervised
hierarchical clustering. (a–e) Heatmaps showing unsupervised hierarchical clustering with bootstrap resampling DNA methylation
clustering of each cancer organoid against its healthy tissue equivalent. All healthy samples are represented in light grey and are
pertinent to the organoid cell type. For example, the heatmap represented in Figure 2a, light grey represents normal colorectal
tissue methylation, in Figure 2b, light grey represents methylation clustering in healthy oesophageal cells, etc. In all heatmaps, red
represents methylated CpGs, green unmethylated CpGs, and black. Organoid DNA methylation profiles are displayed by cancer
types: brown (colorectal cancer), violet (oesophageal cancer), light blue (lung cancer), dark blue (pancreatic cancer), yellow (stomach
cancer), and light grey (corresponding normal tissue). All interrogated CpGs were analysed using only EPIC and 450 K shared probes.
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Qubit® 2.0 Fluorometer (life technologies). DNA
integrity of all samples was checked by electro-
phoresis in a 1.3% agarose gel. Bisulphite conver-
sion of genomic DNA was carried out using the
EZ DNA Methylation Kit (Zymo Research)
following the manufacturer’s protocol and hybri-
dized to the Infinium MethylationEPIC BeadChip
(Illumina).

DNA methylation microarrays

Six hundred ng of bisulphite converted genomic
DNA from all organoids were randomly distributed
in a 96 well plate and subjected to genome-wide
DNA methylation examination of >850,000 CpG
sites by the Infinium MethylationEPIC (EPIC)
BeadChip (Illumina). DNA was hybridized to the
EPIC BeadChip following Illumina Infinium HD
Methylation protocol and scanned using HiScan
SQ system (Illumina). The resulting raw intensity
files (idat) were subsequently pre-processed in-

house for quality control. idat files created by the
Infinium HumanMethylation450 (450 K) BeadChip
(Illumina) fromprimary tumours and healthy tissues
were obtained from The Cancer Genome Atlas
(TCGA) database using their recommended GDC
client data transfer tool. TCGA is a publicly available
database providing essential genomics resources to
the cancer community. idat files corresponded to
TCGA projects that reflected the clinical tumour
diagnosis of the organoids samples; TCGA-COAD
and READ (colorectal cancer), TCGA-ESCA
(Oesophageal cancer), TCAG-LUAD (Lung cancer),
TCGA-PAAD (Pancreatic cancer), and TCGA-
STAD (Stomach cancer). A random selection of
500 primary tumours (100/tumour type) and 50
healthy samples (10/tissue type) from each project
were analysed in this study.

450 K data from the Sanger panel of cancer cell
lines were obtained from our previous publication
[17]. Where both EPIC and 450 K arrays were
examined in conjunction, idat files from EPIC
arrays were back-converted to 450 K arrays and

StomachColorectal Esophageal Lung Pancreatic Normal

a b

dc e

Figure 3. Cancer organoid DNA methylation profiles are distinct to their healthy tissue counterparts according to t-SNE. (a–e) t-SNE
of cancer organoid DNA methylation vs its normal tissue counterpart and each organoid sample is labelled according to its
respective ATCC ID. Organoid DNA methylation profiles are displayed by cancer types: brown (colorectal cancer), violet (oesophageal
cancer), light blue (lung cancer), dark blue (pancreatic cancer), yellow (stomach cancer), and green (corresponding normal tissue). All
interrogated CpGs were analysed using only EPIC and 450 K shared probes.
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combined at the first step of data processing to
minimize batch effects. >90% of 450 K CpG sites
are present on the EPIC array [20]; therefore, only
shared CpGs were retained for evaluation.

DNA methylation quality control, normalization,
and filtering

Raw signal intensity values were initially QC’d and
pre-processed from subsequent idat files in
R statistical environment (v3.6.1) [34] using the
minfi Bioconductor package (v1.32.0) [35,36].
Quality control steps were applied to minimize
errors and remove poor probe signals. Potential
labelling errors were discerned by examining methy-
lation status at sex chromosomes of each individual.

Problematic probes such as failed probes (detection
p value >0.01), cross-reacting probes, and probes
that overlapped single nucleotide variants within ±
1 bp of CpG sites were removed. Background correc-
tion and dye-based normalization were performed
using ssNoob algorithm (single-sample normal-
exponential out-of-band). Lastly, all sex chromo-
some probes were discarded. Final DNA methyla-
tion values for each CpG represented as β-values
were analysed. Downstream analyses were per-
formed under the R statistical environment (v3.6.1)
[34]. The complete DNAmethylation data are freely
available on the GEO repository under accession
number GSE144213:

https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE144213
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Figure 4. DNA methylation profiles from colorectal and pancreatic cancer organoids in the context of primary tumours and cancer
cell lines. Heatmaps representing unsupervised hierarchical clustering with bootstrap resampling of DNA methylation in colorectal
(a) and pancreatic (b) cancer organoid samples and their primary tumour [The Cancer Genome Atlas or (TCGA)] and cancer cell line
[Wellcome Sanger Institute (Sanger)] counterparts. Red represents methylated CpGs, green unmethylated CpGs. (c and d) t-SNE plots
show organoid, primary tumours and cancer cell lines clustering based on their DNA methylation profiles representing (c) colorectal
cancer and (d), pancreatic cancer. Each organoid sample is labelled according to its respective ATCC ID. (a – d) DNA methylation
profiles are displayed as cancer types and tissues; brown (organoid colorectal cancer), dark blue (organoid pancreatic cancer),
primary tumour (black) and cancer cell lines (dark grey). The primary tumours and cancer cell lines are respective of the organoid
tissue in each figure. All CpGs were analysed using only EPIC and 450 K shared probes.
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Hierarchical clustering with multi-step bootstrap
resampling

Comparison of intrinsic epigenetic characteristics
between organoids and primary tumours, cancer cell
lines and healthy tissues was conducted by examining
empirical β values for >400,000 CpG sites genome
wide. Robust correlations with multistep bootstrap
resampling and Euclidian distancemeasures for unsu-
pervised hierarchical clustering were performed using
the R package pvclust [37]. Ward.d2 minimum

variance agglomerative method for hierarchical clus-
tering formation was applied using the R package
hclust function [38]. The final hierarchical clustering
was represented as a tree-based dendrogram and
plotted in a heatmap generated by 5000 random β
values and constructed using R package heatmap.2.
Unmethylated CpGs where β values are 0 are repre-
sented in green, heterozygous methylation where β
values are 0.5 are represented in black andmethylated
CpGs where β values are 1, are represented in red.

cba

Esophageal Lung Stomach Primary tumor Cancer Cell line

Figure 5. DNA methylation profiles of oesophageal, lung, and stomach cancer cluster predominately with primary tumours
according to unsupervised hierarchical clustering. (a – c) Heatmaps demonstrating unsupervised hierarchical clustering with
bootstrap resampling of oesophageal cancer organoids, oesophageal primary tumours (TCGA), and oesophageal cancer cell lines
(Sanger) (a), lung (b) and stomach (c) DNA methylation. Red represents methylated CpGs, green unmethylated CpGs. Organoids are
represented in violet (oesophageal cancer), light blue (lung cancer), and yellow (stomach cancer). In black, all pertinent primary
tumours and dark grey, the respective cancer cell lines. All CpGs were examined using only EPIC and 450 K shared probes.
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Esophageal Lung Stomach Primary tumor Cancer Cell line

Figure 6. DNA methylation profiles of oesophageal, lung, and stomach cancer cluster predominately with primary tumours
according to t-SNE. (a–c) t-SNE plots of oesophageal organoid DNA methylation visualization (a), lung (b) and stomach (c) with
primary tumour (TCGA) and cancer cell line (Sanger) equivalents. Organoids are represented in violet (oesophageal cancer), light
blue (lung cancer), and yellow (stomach cancer). In black, all pertinent primary tumours and dark grey, the respective cancer cell
lines. All CpGs were examined using only EPIC and 450 K shared probes.
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Dimensionality reduction analysis using
t-Distributed Stochastic Neighbour Embedding
(t-SNE)

To further assess clusters found by hierarchical clus-
tering with multi-step bootstrap resampling and to
improve methylation data visualization, t-Distributed
Stochastic Neighbour Embedding technique was
applied using R package Rtsne [21,22]. Fifty-
thousand β values from across the genome in all tissue
types were randomly selected in 5000 iterations to
assemble and visualize sample features similarity.
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