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Abstract

Functional-effective connectivity and network topology are nowadays key issues for study-

ing brain physiological functions and pathologies. Inferring neuronal connectivity from

electrophysiological recordings presents open challenges and unsolved problems. In this

work, we present a cross-correlation based method for reliably estimating not only excitatory

but also inhibitory links, by analyzing multi-unit spike activity from large-scale neuronal net-

works. The method is validated by means of realistic simulations of large-scale neuronal

populations. New results related to functional connectivity estimation and network topology

identification obtained by experimental electrophysiological recordings from high-density

and large-scale (i.e., 4096 electrodes) microtransducer arrays coupled to in vitro neural pop-

ulations are presented. Specifically, we show that: (i) functional inhibitory connections are

accurately identified in in vitro cortical networks, providing that a reasonable firing rate and

recording length are achieved; (ii) small-world topology, with scale-free and rich-club fea-

tures are reliably obtained, on condition that a minimum number of active recording sites are

available. The method and procedure can be directly extended and applied to in vivo multi-

units brain activity recordings.

Author summary

The balance between excitation and inhibition is fundamental for proper brain functions

and for this reason is precisely regulated in adult cortices. Impaired excitation/inhibition

balance is often associated with several neurological disorders, such as epilepsy, autism

and schizophrenia. However, estimating functional inhibitory connections is not an easy

task and few methods are available to identify such connections from electrophysiological

data. Here we present a cross-correlation based method to identify both excitatory and

inhibitory functional connections in large-scale neuronal networks. The method is appli-

cable to both in vitro and in vivo spike data recordings. Once a connectivity map (i.e. a

graph) is obtained, we characterized the associated topology by means of classical graph

theory metrics to unveil functional architecture. In this work, we analyze in vitro cortical

networks probed by means of large-scale microelectrode arrays (i.e., 4096 sensors) and we
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derive network topologies from spike data. The functional organization found is called

“small-world and scale-free” and is the same organization found in cortical in vivo brain

regions by means of different experimental methods. We also show that to obtain reliable

information about network architecture at least a network with a hundred of nodes-neu-

rons is needed.

Introduction

Understanding the relationships between structure and function, dynamics and connectivity

of neuronal circuits are a challenge of the modern neurosciences, especially as the characteriza-

tion of neuronal interaction in terms of functional and effective connectivity [1–3] is con-

cerned. Functional connectivity is an observable phenomenon defined as statistical

dependency between remote neurophysiological events; it is usually inferred on the basis of

correlations among neuronal activity measurements, by means of different approaches ranging

from basic cross-correlation[4] to model-based methods[1, 5]. Effective connectivity refers

explicitly to the influence that a neuron or neural system exerts on another one, either at syn-

aptic or population level; it can be inferred by perturbing the activity of a neuron, and then by

measuring the other neurons activity changes.Structural or anatomical connectivity is related

to the physical connections (i.e., synapses) among neurons [2]. In this paper, we refer to the

more general framework of functional connectivity, even if, by using the proposed correlation-

based method, directed graphs (i.e. causal relationships) can be derived (cf. Materials and

Methods sect.).

The complexity of the nervous system and the difficulties of multi-site parallel recordings

in in vivo experimental models, hampered the systematic study of emergent properties of com-

plex networks. At the same time, the availability of validated methods able of reliably inferring

functional connections down to synaptic level is still limited. To this end, we adopted a reduc-

tionist approach making use of in vitro experimental models coupled to Micro-Electrode

Arrays (MEAs). In this context, large-scale neural networks developing ex vivo and chronically

coupled to MEAs [6], represent a well-established experimental system for studying the neuro-

nal dynamics at population level [7]. Despite their simplicity, they show recurrent synchro-

nized periods of activity, as also observed in vivo during sleep or anesthesia, and even quiet

wakefulness [8, 9]. These model systems represent a good trade-off between controllability-

observability and similarity to the in vivo counterpart, allowing accessibility and manipulation

from both chemical and electrical point of view. Recent advances in multichannel recording

techniques have made possible to observe the activities of thousands of neurons simulta-

neously with the acquisition of massive amount of empirical data [10]. These methods are very

attractive since they allow the detailed monitoring of the on-going electrophysiological spatio-

temporal patterns of complex networks [11–14].

Reconstructing the detailed functional connectivity of a neuronal network from spikes data

is not trivial, and it is still an open issue, due to the complexities introduced by neuron dynam-

ics and high anatomical interconnectivity [15, 16]. Statistical analysis of spike trains was pio-

neered by Perkel [17] and followed by more than four decades of methodology development

in this area [18]. Cross-correlation based methods remain the main statistics to evaluate inter-

actions among the elements in a neuronal network, and produce a weighted assessment of the

connections strength. Weak and non-significant connections may tend to obscure the relevant

network topology made up of strong and significant links, and therefore they are often dis-

carded by applying an absolute or a proportionally weighted threshold [19]. Correlation-based
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techniques include independent components analysis, synchrony measures [20], cross-correla-

tion [21, 22], correlation coefficients [7, 23], partial-correlation [24]. Other widespread tech-

niques to infer functional connectivity are based on Information Theory (IT) methods [10, 25,

26], Granger causality [27, 28] and dynamical causal modeling [1]. With few exceptions [29,

30], all the recently introduced and revisited methods concentrate on excitation, ignoring inhi-

bition or admitting the failure in reliably identifying inhibitory links [26].

In this work, we focus attention on cross-correlation histogram (CCH) based methods. We

present a new algorithm able to efficiently and accurately infer functional excitatory and inhib-

itory links; we validate the method on simulated neuronal networks; finally, we study connec-

tion properties in large-scale ex vivo neuronal networks showing how to directly and reliably

derive the topological properties of such networks.

There are three different connectivity conditions that, theoretically, influence the temporal

correlation between neurons: pairs of excitatory neurons, pairs of inhibitory neurons, and

inhibitory-excitatory pairs [31]. The first term is the one usually estimated and from which we

obtain the inferred functional excitatory network usually represented by a (directed) graph.

The second term is negligible as inhibitory-inhibitory links are physiologically very sparse

[32]. The last term, when it is exerted by a GABAergic interneuron to cortical excitatory neu-

rons, acts by reducing the activity and decreasing the spontaneous fluctuations (i.e., feedfor-

ward inhibition). On the contrary, when it is exerted by cortical excitatory neurons to

GABAergic interneurons, it acts by increasing the activity of such neurons that, in turn, form

inhibitory synaptic contacts with the glutamatergic cortical cells (i.e., feed-back inhibition)

[33]. In other studies [34–36],it was noticed the primary effect of inhibition is a trough in the

cross-correlogram: to detect this interaction a background of postsynaptic spiking against

which the inhibitory effect may be exercised (i.e., high and tonic firing rates) is needed [22].

From experimental works related to in vivo multi-unit recordings, it was shown the sensitivity

to excitation is much higher than the sensitivity to inhibition [37] (due to the low firing rates

of neurons).

Finally, it should be underlined the analysis of interactions in neuronal networks is a quite

demanding computational process, and all the currently proposed methods for analyzing mul-

tiple spike trains rely on quantities that need to be computed through intensive calculations

[38]. By using the ad-hoc developed CCH, we could derive functional connectivity maps (both

for excitation and inhibition) and to reliably extract topological characteristics from multiple

spike trains in large-scale networks (i.e., thousands of neurons) monitored by large-scale

MEAs (i.e., thousands of micro-transducers).

Results

Revealing excitatory and inhibitory connections: New and optimized cross-

correlogram based approach

Starting from the standard definition of the cross-correlation [22] (cf., Materials and Methods

sect.), we adopted the normalization approach described in [21, 39] to obtain the “raw” Nor-

malized Cross-Correlation Histogram (NCCH). We formalized our hypothesis that, the

extraction of negative peaks (rather than troughs) obtained by a filtering operation on the

NCCH and followed by distinct thresholding operations for excitatory and inhibitory connec-

tions allows to identify a significant percentage of inhibitory connections with a high-level

accuracy at low computational cost. Theoretically, cross-correlation is able to detect both an

increase and a decrease of the synchrony between spike trains related to putative interconnec-

ted neurons. However, in real experimental data, the cross-correlogram is very jagged making

difficult the detection of small peaks and troughs, and, apart from specific conditions (i.e.,

Functional connections and topology in large scale networks from electrophysiological data
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high and tonic firing rate) [4], hindering the detection of inhibition. Our approach consists in

a simple post processing of the cross-correlation histogram, thus obtaining what we called Fil-

tered and Normalized Cross-Correlation Histogram (FNCCH, curly brackets in Eq (1)).

Stated a reference neuron x and a target neuron y, Eq (1) provides the mathematical defini-

tion of the absolute peak of the FNCCH.

FNCCHxypeak
¼ CxyðtÞj t ¼ arg maxt

�
�
�CxyðtÞ �

1

W
Pv¼W

2

v¼� W
2

CxyðvÞ
�
�
�

� �

ð1Þ

where W is the time window where FNCCH is evaluated. The filtering procedure (cf. Materials

and Methods sect.) consists in subtracting the mean value of the cross-correlogram (in the

time window W) from the values of the normalized cross-correlogram Cxy(ν), ν 2 [-W/2, W/
2]. The subsequent peaks extraction operation is performed by considering the absolute values,

and it allows to compute the highest peak. In this way, it is possible to distinguish between

peaks and troughs by taking into account the original signs: a positive value refers to an excit-

atory link, and a negative value refers to an inhibitory one. Details about further refinements

needed to avoid detection of false inhibitory connections can be found in the Supplementary

Information (cf., Sect. S1). In the next sections, we show the validation of the method with the

aid of large-scale in silico networks; then, we present the results, in terms of functional connec-

tivity maps and network topology, obtained from the analysis of multi-electrode parallel

recordings of in vitro neuronal populations. Such populations are coupled to both 60 channels

MEAs (MEA-60) and high-density MEAs with 4096 micro-transducers (MEA-4k) (cf. Materi-

als and Methods sect.).

Validation of the FNCCH by means of in silico neural networks

We applied the FNCCH (time window W = 25 ms and time bin 1.0 ms) to 10 realizations of in
silico neural networks made up of 1000 randomly connected neurons, characterized by an

average ratio between inhibitory and excitatory connections of 1/4 (cf., Materials and Methods

sect.). The model was tuned to reproduce the dynamics exhibited by in vitro neuronal net-

works. Simulations show the typical signature characterized by a mix of spiking and bursting

activities as displayed by the raster plot and the Instantaneous Firing Rate (IFR) traces of the

excitatory (red) and inhibitory (blue) neuronal populations of Fig 1A. From a topological

point of view, both the excitatory and inhibitory structural sub-networks follow a random con-

nectivity, as the incoming degree distributions of Fig 1B (inset) display. Each neuron receives

100 connections from the other neurons: excitatory neurons receive 80% of excitatory and

20% of inhibitory links, respectively, (reflecting the ratio of the excitatory and inhibitory popu-

lations); inhibitory neurons receive only excitatory connections (cf. S2C Fig). Further details

about the dynamics and connectivity of the simulated neuronal networks can be found in the

Supplementary Information (cf., Sect. S2). Fig 1C and 1D quantify the performances of the

FNCCH by means of the Receiver-Operating-Characteristic (ROC) [40] curve and the Mat-

thews Correlation Coefficient (MCC) [41]. Fig 1C shows the ROC curves obtained by compar-

ing the Synaptic Weight Matrix (SWM) of the model (i.e., the ground truth) with the

computed Functional Connectivity Matrix (FCM), and Fig 1D shows the MCC curve (cf.,

Materials and Methods sect.). The ROC curve relative to the detection of inhibitory connec-

tions (blue curve in Fig 1C) is very close to the perfect classifier, with an Area Under Curve

(AUC) of 0.98 ± 0.01 (blue bar in the inset of Fig 1C). The MCC curve relative to the inhibitory

links (blue curve in Fig 1D) has a maximum value of 0.87 ± 0.04, showing a good precision in

the identification of inhibition. Then, we compared the sensitivity of the FNCCH for the detec-

tion of excitatory links (red curves in Fig 1C and 1D) with the standard NCCH’s one (for

Functional connections and topology in large scale networks from electrophysiological data
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excitation, black curves in Fig 1C and 1D) to underline the improved detection capabilities

obtained by the filtering procedure. We observed not only a significant (p< 0.001) AUC

increase (0.92 ± 0.01 vs. 0.72 ± 0.02, Fig 1C inset), but also significant improvements in both

ROC and MCC curve shapes for low values of false positive rates (FPR). In particular, we can

notice (Fig 1D), that the FNCCH excitatory curve has a maximum value of about 0.75 with

respect to the correspondent NCCH value (for the same false positive rate) that is negative

(suggesting a disagreement between prediction and observation). Further details about false

and true positive detection can be found in the Supplementary Information (Sect. S5). The

above results justify the use of a hard threshold procedure (cf., Materials and Methods sect.) to

select the strongest and significant functional connections. The Thresholded Connectivity

Matrix (TCM) is thus directly computed from the FCM by using a threshold equal to (μ + 1 σ),

(mean plus one standard deviation of the connections strength) for the inhibitory links, and (μ

Fig 1. Functional connectivity estimation from 10 in silico neural networks. a, Raster Plot and mean Instantaneous Firing Rate (IFR) representative of the

simulated electrophysiological activity. b, Estimated functional in-degree distribution (red curve for excitatory links and blue curve for the inhibitory ones) and

(inset) structural in-degree distribution of the implemented network models. c, ROC functions for the inhibitory (blue curve) and the excitatory (red curve) links

obtained by applying the FNCCH; the black curve, is related to only excitatory links extracted with the standard NCCH, is depicted for comparison.

Corresponding AUCs are represented in the inset. d, MCC curves related to the inhibitory and excitatory links computed by applying the FNCCH; the black

curve, related to only excitatory links extracted with the standard NCCH, is shown for comparison. e, Box plot of the excitatory and inhibitory delay distributions

obtained by means of the FNCCH.

https://doi.org/10.1371/journal.pcbi.1006381.g001
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+ 2 σ) for the excitatory ones, obtaining estimated links with a very high-level of accuracy (cf.

Materials and Methods sect.): R2 = 0.99 for the inhibitory links and R2 = 0.94 for the excitatory

ones. To investigate whether the reconstructed functional connectivity network resembles the

one of the model, we calculated the excitatory and the inhibitory (Fig 1B) links degree distribu-

tion after the thresholding procedure from TCM. The computed degree-distributions fit a

Gaussian distribution (Fig 1B, R2 = 0.99 for the inhibitory links and R2 = 0.98 for the excitatory

ones), in accordance with the original distributions used to generate the structural (random)

connectivity of the model (Fig 1B inset). It can be noticed that the mean and standard devia-

tion values of the functional Gaussian distribution for the excitatory links are in good agree-

ment with the structural ones (μfunct = 87, σfunct = 13.2 and μstruct = 80, σstruct = 19.6). On the

other hand, for the inhibitory links, such values are higher than the structural ones due to the

presence of many polysynaptic interactions (μfunct = 48, σfunct = 9.3 and μstruct = 25, σstruct =

14.5). Finally, we computed the delay distribution for both the excitatory and the inhibitory

links from the TCM (Fig 1E). The extracted delay distribution for the excitatory links qualita-

tively reflects the one used to generate the model (uniform distribution in the interval [0, 20]

ms). The estimated inhibitory distribution, instead, exhibits a more confined range which

reflects the one used to produce the model (constant delay set at 1 ms), but with a spread and a

median value at about 5 ms (cf., Materials and Methods sect.). The disagreement can be

explained by the presence of multiple and polysynaptic interactions (due to the combination

of excitatory and inhibitory inputs on a single neuron; cf., Discussion sect.).

Further validation of the proposed method was pursued by implementing a scale-free (with

small-world features) network. The results (cf. Supplementary Information, S3 Fig) are less

striking than those obtained for random connectivity; nevertheless, FNCCH outperforms stan-

dard cross-correlation and the identification of inhibitory links is still maintained with a simi-

lar general trend.

Functional Connectivity and emergent network topologies in in vitro large-

scale neural networks

The FNCCH was applied to neuronal networks coupled to two different devices: MEA-60 and

MEA-4k. Fig 2 shows the two utilized microtransducers (Fig 2A and 2D) and illustrative

images of networks coupled to the two (Fig 2B and 2E). Such networks are the morphological

substrate originating the complex electrophysiological activity characterized by an extensive

bursting dynamics (i.e., highly synchronized network bursts) and a random spiking activity.

Fig 2C and 2F show two examples of spontaneous activities recorded by a MEA-60 (Fig 2C)

and a MEA-4k (Fig 2F). We can observe silent periods, desynchronized spiking activity, and

peaks of activity (of different duration and called network bursts), which cause a rapid increase

of the Instantaneous Firing Rate (IFR) (Fig 2C and 2F, bottom panels). More details about the

spiking and bursting dynamics originated by networks coupled to MEA-4k are reported in the

Supplementary Information (S1 Table). We analyzed three cortical and three striatal networks

coupled to the MEA-60 (FNCCH parameters: time window W = 25 ms and time bin 0.1 ms)

and three cortical networks coupled to the MEA-4k (FNCCH parameters: time windows

W = 24 ms and time bin of 0.12 ms) after they reached a stable stage (i.e., after 21 Days In
Vitro, 21 DIV).

Fig 3A and 3G show connectivity graphs of cortical and striatal networks coupled to a

MEA-60 device (Fig 3B and 3H and 3C and 3I show the contribution of excitation and inhibi-

tion, respectively). All the graphs were obtained by applying the hard threshold approach and

the spatio-temporal filtering to prune co-activations (cf., Materials and Methods sect.). Then,

we looked, for the cortical networks, the presence of privileged sub-networks constituted by

Functional connections and topology in large scale networks from electrophysiological data
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the most connected nodes (i.e., rich club), by computing the Rich Club Coefficient (RCC)

curve [42] (cf., Materials and Methods sect., Eq (10)). The nodes of these sub networks are

highlighted in yellow and cyan (Fig 3B and 3C). For the striatal culture, the qualitative preva-

lence of inhibitory connections is clearly visible. To characterize the detected links for the cor-

tical cultures, we computed the box plots of the functional connection peak delays (Fig 3D)

and lengths (Fig 3E) of the excitatory (red) and inhibitory (blue) connections. Similar graphs

derived from a cortical network coupled to a MEA-4k were obtained (Fig 4A). Links strength

is represented by two color codes (arbitrary unit) for excitation (hot-red color code) and inhi-

bition (cold-blue color code). The two detected subnetworks are also shown in Fig 4B and 4C.

Moreover, the box plots pointing out the connection peak delays and lengths are depicted in

Fig 4F and 4G. Noteworthy it is that the inhibitory links are slower, and with possible slightly

longer connections than the excitatory ones, as reported in literature for structural and func-

tional connectivity in brain slices [43]. Considering the high number of connections found by

using the MEA-4k, we point out the two hundred strongest connections for excitation and the

fifty strongest connections for inhibition (Fig 4D and 4E), illustrating how these main links

include both short and long interactions with a prevalence of short interactions for excitatory

connections.

Fig 2. Micro-Electrode Arrays (MEAs) used in the experiments. a, MEA-60 device, b, Cortical network coupled to the MEA-60. c, example of 100 s

recording of spontaneous electrophysiological activity and mean Instantaneous Firing Rate (IFR) plot. d, MEA-4k device. e, Cortical network coupled to the

MEA-4k. f, Example of 100 s recording of spontaneous electrophysiological activity and mean IFR plot. Both the recordings come from cortical assemblies at

DIV 25.

https://doi.org/10.1371/journal.pcbi.1006381.g002
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Fig 3. Functional connectivity analysis on different neural network populations coupled to the MEA-60 device. a, Functional connectivity graph obtained

by applying the FNCCH to a cortical network at DIV 25. Excitatory and inhibitory links are separately thresholded and shown, for reader convenience, in

panel b, (excitation, red color map) and c, (inhibition, blue color map). Color scales are indicative of the relative connection strength based on the peak of

FNCCH. Yellow circles in panel b and cyan circles in panel c represent the identified rich club nodes. d, Box plot of the delays of the detected functional links.

e, Box plot of the connection lengths of the detected links. f, Mean percentage of the inhibitory links revealed by the FNCCH at varying the recording time. g,

Example of functional connectivity graph relative to a striatal network at DIV 21 coupled to a MEA-60 device. Panels h, and i, show the excitatory (red color

map) and inhibitory (blue color map) networks, respectively.

https://doi.org/10.1371/journal.pcbi.1006381.g003
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We also computed the inhibitory links percentage with respect to the total number of

detected links for the three different experimental conditions and three experiments for each

condition. As expected, we found that striatal cultures have a higher percentage of inhibition

and inhibitory links (about 60%)[44, 45] than cortical ones (about 25%). It is worth noticing

that for the cortical cultures the excitatory/inhibitory ratio is detected quite independently of

Fig 4. Functional connectivity analysis on cortex neural networks populations coupled to the MEA-4k. a, Functional connectivity graph obtained by

applying the FNCCH to a cortical network at DIV 21 coupled to a MEA-4k device. Excitatory and inhibitory links are separately thresholded and shown, for

reader convenience, in panel b, (excitation, red color map) and c, (inhibition, blue color map). Color scales are indicative of the relative connection strength

based on the peak of FNCCH. Cyan circles in panel b and pink circles in panel c represent the identified rich club sub-networks. Functional connectivity

maps showing the d. 200 excitatory and e. 50 inhibitory strongest links. f, Box plot of statistical distribution of the delays of the detected functional links. g,

Box plot of the statistical distribution of the connection lengths of the detected links. h, Percentage of the inhibitory links revealed by the FNCCH at varying

the recording time.

https://doi.org/10.1371/journal.pcbi.1006381.g004
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the number of recording sites (Figs 3F and 4H), although it tends to stabilize with a shorter

recording time for the MEA-4k. Interestingly enough, the found ratio (about 1/4) in cortical

networks between inhibitory and excitatory links is roughly the same as the ratio of inhibitory

and excitatory neurons as estimated by immunostaining in similar experimental preparations

[8].

In order to derive the topological features [46] of the analyzed cortical networks, we com-

puted the Clustering Coefficient, CC (Fig 5A) and the average shortest Path Length, PL (Fig

5B). Then, we extracted the Small-World Index (SWI) by comparing the CC and the PL of the

analyzed networks with the mean values of CC and PL of 100 realizations of a random network

with the same degree-distribution, as recently proposed [26]. We found that when cortical net-

works are coupled to MEA-4ks devices, we can see the emergence of a clear small-world (SW)

topology (Fig 5C); on the other hand, for cortical networks coupled to MEA-60s devices, we

cannot infer any SW topology. From the measurements performed by MEA-4ks, we can state

that both inhibitory and excitatory subnetworks with their small world index, SWI >>1

(9.2 ± 3.5 for the inhibitory links and 5.2 ± 2 for the excitatory ones) contribute to ‘segrega-

tion’. Moreover, both inhibitory and excitatory links with their fraction of long connections

contribute also to network ‘integration’ (i.e., communication among the SWs). To further

characterize the topology of these neuronal assemblies, we also investigated the possible emer-

gence of scale-free topologies [47] by evaluating the presence of hubs[48] and power laws for

the excitatory (Fig 5D), inhibitory (Fig 5E) and global (Fig 5E, inset) link degree distributions.

In agreement with previously published model systems [49] and other studies [43], we

obtained that such distributions fit a power law with R2 higher than 0.92, in all the three cases.

Finally, we searched for the presence of privileged sub-networks made up of the most

Fig 5. Topological features of the detected functional networks. a, Mean Cluster Coefficient (CC). b, average shortest Path Length (PL). c, Small-World

Index (SWI). Red and blue colors indicate excitatory and inhibitory population, respectively. Degree Distributions of d excitatory, e inhibitory, and total links

(inset). f, Schematic representation of the procedure used to decrease the electrodes density to analyze the SWI dependence on the electrodes resolution. g,

SWI evaluation as a function of the electrodes density from 1849 to 60 microelectrodes.

https://doi.org/10.1371/journal.pcbi.1006381.g005
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connected nodes (i.e., rich club) of the investigated networks by computing the RCC curve.

For the analyzed cortical cultures, we found privileged sub-networks as indicated by the com-

puted RCC values with a maximum value of 2.7 ± 0.5. Fig 4B and 4C show the rich club net-

works identified for one neural network coupled to the MEA-4k, represented by means of blue

circles (for excitatory subnetwork) and pink circles (for inhibitory subnetworks). Fig 3B and

3C are the analogous for a cortical neural network coupled the MEA-60 (yellow for the excit-

atory nodes and light blue for the inhibitory ones).

Similar cortical networks coupled to the MEA-60 devices show no clear SW topology (Fig

5C); these networks seem to be characterized by a (sub)-random topology with SWI of

0.4 ± 0.1 for the excitatory and 0.2 ± 0.2 for the inhibitory links. These cortical networks are of

the same type as the ones coupled to the MEA-4k (i.e., similar density of neurons, same age,

same culture medium), and the apparent estimated random topology should be attributed to

the low number of recording sites (i.e., 60 channels) that are not enough to reliably infer topo-

logical features. To determine how the number and density of electrodes are crucial, we com-

puted the SWI by considering a reduced number of electrodes for the functional connectivity

analysis from the MEA-4k recording, as described in Fig 5F. In particular, we started from the

full resolution of the MEA-4k (i.e., 4096 electrodes), and we progressively decreased the elec-

trode density to 60 electrodes (inter-electrode distance 189 μm, electrode density 19 electrode/

mm2) to obtain a configuration comparable with the MEA-60 devices, as previously reported

[50]. The obtained results are shown in Fig 5G: the SWI decreases down to a random topology

becoming variable and unstable when the number of the considered electrodes is less than 100.

This last result is referred to the excitatory links and the same analysis was not applied to the

inhibitory connections. Such inhibitory links are much less than the excitatory ones, thus lead-

ing to an inhibitory topology reconstruction that is strongly influenced by the decimation

scheme applied to reduce the number of electrodes.

Discussion

The computation of the correlation of firing activity in the framework of multiple neural spike

trains has been introduced since the 1960s. For over thirty years, cross-correlation, its generali-

zations [51], and its homologue in the frequency domain [52], have been the main tools to

characterize interactions between neurons organized into functional groups, or “neuronal

assemblies”. A common established technique was to build a cross-correlogram (CCH),

describing the firing probability of a neuron as a function of time elapsed after a spike occurred

in another one. Nevertheless, in the literature, there is no standard definition of CC, and the

strength of a connection can be estimated by different means. To make the correlation coeffi-

cient independent of modulations in the firing rate, it is essential to have procedures for cor-

rection, normalization and thresholding of the coincidence counts obtained from cross-

correlation calculations. Commonly used normalization procedures are related to Normalized

Cross-Correlation Histogram (NCCH) [21, 39], event synchronization [53], Normalized

Cross-Correlation (NCC–Pearson Coefficient) [23], Coincidence Index of the CC [26]. Once

that a Functional Connectivity Matrix (FCM) is obtained, a thresholding procedure is neces-

sary to discard those values that are related to spurious connections. All these approaches pres-

ent advantages and disadvantages, but none of them have been applied to reliably identify

inhibitory connections on large-scale network from spiking activity. In this paper we presented

a filtered and normalized CC based algorithm (i.e., FNCCH) from which thresholded func-

tional connectivity matrices and (directed) weighted graphs for excitation and inhibition can

be obtained.
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From the analysis of the data, we identified both small-world and scale free topologies in

cortical networks for the excitatory and inhibitory sub-networks. More specifically, we

extracted inhibitory networks in cortical (and striatal) neuronal cultures demonstrating the

good performance of the method and offering new understanding of neuronal interactions in

large cell populations. Finally, the proposed algorithm strengthens previously results presented

in the literature [34], states a new way (i.e., through large-scale MEAs and CCH based analysis)

to investigate network topology and opens up new perspective for the analysis of multisite

electrophysiological recordings [54].

Identification of inhibition

Generally, by inspecting a CCH, we can notice an increase or a decrease of the fluctuations

[22]. In some studies, it was noticed that the primary effect of inhibition on the cross-correlo-

gram is a trough near the origin, and for this interaction to be visible there must be present a

background of postsynaptic spiking against which the inhibitory effect may be exercised

(high-tonic firing rate regime) [4, 35]. From experimental works related to the analysis of con-

nectivity from cortical multi-unit recordings [55], a good sensitivity for excitation is obtained,

while the situation is considerably worse for inhibition.

This is due to a low sensitivity of CCH for inhibition, especially under the condition of low

firing rates [4, 56]. The difference in sensitivity may amount to an order of magnitude, and it

was demonstrated that for inhibition, the magnitude of the departure relative to the flat back-

ground is equal to the strength of the connection, whereas for excitation it involves an addi-

tional gain factor [4].

As a whole, the lack of efficiency in the detection of inhibition, simply reflects the dispro-

portionate sensitivity of the analysis tool [57]. In our work, we introduced a cross-correlogram

filtering approach (FNCCH) developed to overcome the inhibition detectability issue. As Fig 1

shows, the FNCCH is able to detect, with high accuracy, the inhibitory links when applied to

in silico neural networks with similar dynamics with respect to the actual ones. The filtering

procedure improves also the detectability of the excitatory links, resulting in a reshaping of the

ROC curve (Fig 1A) with an increase of both precision (MCC curve, Fig 1B) and AUC with

respect to the standard cross-correlation (NCCH). However, the presented FNCCH, being a

CC-based method, has some limitations in the inhibitory links detection that we tried to inves-

tigate with our in silico models. The main factor affecting the detectability of inhibition, is the

variability of CC. In order to reduce this variability, it is possible to increase the number of

coincidences per bin by widening the bin-width (that is, down-sampling with loss of informa-

tion in the acquired electrophysiological data), or by increasing the number of involved events

(which can be obtained with high firing rate and/or by raising the recording time)[58].

Another influencing factor depends on the balance of excitatory and inhibitory neuronal

inputs (i.e., balanced model) and it is referred to the relative strength between inhibitory and

excitatory inputs. In fact, when the neuron is not balanced, excitation is, on average, stronger

than inhibition. Conversely, when the neuron is balanced, both excitation and inhibition are

strong and detection of inhibitory links improves [22, 31, 57]. Starting from the in silico
model, we were able to investigate the impact of rates variability on excitation/inhibition

detectability, and to try to define a reasonable threshold (criterion for detectability [22, 56]). In

particular, we varied the firing rate of the inhibitory neurons from 20 spikes/s to 2 spikes/s,

while maintaining a firing rate of 2–3 spikes/s for the excitatory neurons. We found that the

detectability of the functional inhibitory links is preserved with our method, down to a firing

of about 6 spikes/s, and then decreases significantly. We investigated also the inhibition identi-

fication with respect to the recording time. Starting from 1 hour of simulation, we reduced
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(10 min steps) the recording time, and we found that there is a decrease in the inhibition

detectability below 30 minutes of recording (cf. S4 Fig). Finally, we investigated the perfor-

mances of the FNCCH in a scale-free and small-world network. The detection of inhibition

was still possible with relatively good results, even if the global performances of the algorithm

decreases. This shall not be attributed to the scale-free topology, but to the reduced firing rate

for both inhibitory and excitatory neurons and to possible unbalances between inhibition and

excitation (cf. S3 Fig). Nevertheless, the method could reliably capture the topology of the net-

work and qualitatively estimate the synaptic in-degree distribution. Thus, the obtained results

enabled us to apply the FNCCH to in vitro large-scale neural networks, and allowed us to infer

topology and functional organization. The described procedure could be also directly applied

to Multi Unit Activity (MUA) from in vivo multi-site measurement recordings. Other methods

(e.g., partial correlation, transfer entropy) were not taken explicitly into consideration for

comparison, either for their computational costs, or for the inability to identify inhibitory

links [59].

The emergence of a scale free and small-world topology

The cortical networks probed with MEA-4k showed a clear small-world topology. The inhibi-

tory functional links had a SWI equal to 9.2 ± 3.5, higher than the value extracted from the

excitatory links (5.1 ± 1.9). Conversely, the cortical networks coupled to the MEA-60 showed a

random organization topology (0.21 ± 0.212 for the inhibitory links and 0.38 ± 0.1 for the

excitatory ones). These apparent random organizations are due to the low number of record-

ing sites of the acquisition system; in fact, it is worth to remember that the SWI is computed

by comparing cluster coefficient (CC) and average shortest path length (PL) of the analyzed

networks to the corresponding values for surrogate random equivalent networks (same num-

ber of nodes and links). From the obtained results, unlike recently presented findings [42], we

demonstrated that the emergence of small-worldness, cannot be reliably derived or observed

in a neuronal population probed by a reduced number (< 100) of recording sites. To charac-

terize connectivity properties, besides the importance of well-defined statistical tools used for

the analysis, it is fundamental to probe network activity by using large-scale microtransducer

arrays (i.e., with at least 200 electrodes). As a whole, the issue related to the low number of

recording sites should be carefully taken into account when extracting dynamical features as

well as organizational principles of complex networks.

Finally, it should be underlined that we focused our attention on CC based methods. We

mentioned, in the Introduction, the widespread use of Information Theory (IT) based tech-

niques. Beside the relative novelties of such methods, and the good performances (for a review

see [38] and references therein), they showed high computational costs and, to our knowledge,

the inability to reliably estimate inhibitory connections [26]. Although theoretically, IT based

methods such as Transfer Entropy (TE) and Mutual Information (MI) are able to detect inhib-

itory links, we are not aware of studies consistently reporting a successful identification of

inhibitory connections. The problem is in the incapability of distinguishing between excitatory

and inhibitory links, rather than in the detection of inhibition as pointed out in the Supple-

mentary Information (S6 Fig).

Materials and methods

Ethics statement

Primary neurons were obtained from rat embryos (18 days, E18) from Sprague Dawley preg-

nant rats (Charles River Laboratories). The experimental protocol was approved by the Euro-

pean Animal Care Legislation (2010/63/EU), by the Italian Ministry of Health in accordance
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with the D.L. 116/1992 and by the guidelines of the University of Genova (Prot. N. 24982,

October 2013).

Cross-correlation

Cross-correlation (CC) [22] measures the frequency at which a neuron or electrode fires (“tar-

get”) as a function of time, relative to the firing of an event in another one (“reference”). Math-

ematically, the correlation function is a statistic representing the average value of the product

of two random processes (the spike trains). Given a reference electrode x and a target electrode

y, the correlation function reduces to a simple probability Cxy(τ) of observing a spike in one

train y at time (t + τ), given that there was a spike in a second train x at time t; τ is called the

time shift or the time lag. In this work, we use the standard definition for the cross-correlation

computation, following a known normalization approach on the CC values [39]. We define

the cross-correlation as follows:

CxyðtÞ ¼
1
ffiffiffiffiffiffiffiffiffiffi
NxNy

p
XNx

s¼1

xðtsÞyðts � tÞ ð2Þ

where ts indicates the timing of a spike in the x train, Nx is the total number of spikes in the x
train and Ny is the total number of spikes in the y train. Cross-correlation is limited to the

interval [0, 1] and it is symmetric Cxy(τ) = Cyx(-τ). The cross-correlogram is then defined as

the correlation function computed over a chosen correlation window (W, τ = [-W/2, W/2]).

Different shapes of cross-correlograms can be obtained from pairs of analyzed spike trains.

The occurrence of significant departures from a flat background in the cross-correlogram (i.e.,

a peak or a trough) is an indication of a functional connection[4]. In particular, a peak corre-

sponds to an excitatory connection and a trough to an inhibitory link. The different amplitude

of the peaks can be related to the existence of different levels of synchronization between neu-

ral spike trains. Generally, a correlogram can reflect a so-called direct excitatory connection

between two neurons when a one-sided peak is evident (displaced from the origin of time by

latency corresponding to the synaptic delay).

Cross-correlation histogram

The use of spike train data offers the possibility to optimize the cross-correlation algorithm

efficiency. To overcome the lack of efficiency of many of the proposed CC computation strate-

gies, we present an alternative approach based on the “direct” spike time stamps inspection

that avoids un-necessary calculations on the binarized spike trains. In fact, the only important

information is stored in the bins containing a spike (i.e., spike time stamp), that are signifi-

cantly less than null bins. If we consider that the average mean firing rate in neural networks

oscillates between 0.2 spikes/s and 20 spikes/s [60], at a sampling frequency of 10 kHz, it yields

only 2% of bin with spikes and 98% of meaningless bins: thus, we developed a new version of

the CCH as indicated in Fig 6E.

Filtered and normalized cross-correlation histogram (FNCCH)

Let us consider a reference neuron x and a target neuron y, and let us suppose that we com-

puted the NCCH between x and y. After the NCCH computation, the maximum value (i.e., the

peak) is used as a value reflecting the strength of the estimated functional link. If x and y share

an excitatory link, this procedure works well (Fig 6A and 6B). On the other hand, when x
inhibits y, the inhibitory trough will be discarded in favor of the NCCH peak (Fig 6C), with a

misleading excitatory link detection. The CCH shapes are similar also in the correlograms
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derived from experimental data, although with an even more jagged behavior. Fig 6F and 6G

show two examples of detected putative excitatory and inhibitory connections.

Fig 6. Example of detection for excitatory and inhibitory links in a network model. a, NCCH computed between

two spike trains related to two neurons linked by an excitatory link in the model (identified by a red asterisk). b.

FNCCH of the two neurons of panel a. The “entity peak” allows a better recognition of the excitatory link. c. NCCH

computed between two spike trains related to two neurons linked by an inhibitory link in the model. The NCCH

might detect a false excitatory peak (blue cross). d, FNCCH of the two neurons of panel c. The filtering procedure

allows to recognize the through and to detect the negative peak correspondent to the inhibitory link (blue asterisk). e.

Schematic representation and description of the algorithm to obtain the FNCCH. f. FNCCH (dashed line) for two

putative neurons connected by a putative excitatory connection. g. FNCCH (dashed line) for two putative neurons

connected by a putative inhibitory connection. The continuous lines in panels f and g are a smoothing of the

histogram (dashed lines).

https://doi.org/10.1371/journal.pcbi.1006381.g006
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Eq (1) gives the mathematical definition of the FNCCH computation that overcomes this

problem. We refer to the filtered peak value as entity of the peak. In this way, it is possible to

distinguish between peaks and troughs by taking into account the sign. A positive peak is

referred to an excitatory links (Fig 6A and 6B), conversely, a negative peak is referred to an

inhibitory link (Fig 6D). We implemented and applied also a post-computation filtering proce-

dure to improve the detectability of inhibitory links on noisy spike trains (cf., Supplementary

Information, S1 Fig).

The block diagram and pseudocode depicted in Fig 6E show the sequence of operations

executed by the FNCCH. The starting point is the first bin containing a spike in the target

train. The binning procedure is directly performed on the time stamps. For each couple of

neurons, starting from the first spike of the target train, we slide the time stamps of the refer-

ence electrode to find the first spike whose correlation window contains the target spike. Then,

we continue to move over the target train to build the entire cross-correlogram (for that refer-

ence spike). When the correlation window for the reference spike is completed (i.e., when we

have counted the number of spikes for all the bin of the target spike train), we move to the

next spike of the reference train, and re-iterate the procedure starting from the first target

spike into the correlation window, centered at the current reference spike. Then, we normalize

the CC and repeat all the aforementioned operations for the other electrodes. Exploiting the

symmetry of the CC function we consider only half of the electrodes for the computation.

Moreover, for each pair, we select, as target train, the one with the smallest number of spikes

to reduce the number of operations. Once the NCCH is obtained, we apply the filtering opera-

tion described by Eq (1) to compute the FNCCH values. Finally, we take the maximum abso-

lute value as estimation of the correlation strength between the two electrodes. If it is negative,

the found connection is considered a putative inhibitory link, otherwise is considered an excit-

atory one.

Spatio-temporal filtering procedure

We applied a Spatio-Temporal Filter directly to the functional connectivity matrix (FCM)

originated by the FNCCH. The procedure we implemented follows the one devised by Mac-

cione et al.,[61] by defining a distance-dependent latency threshold. More in detail, we evalu-

ated the links length (using the Euclidean distance) and the functional delays for each

electrodes pair. We assumed as maximum propagation velocity a value of 400 mm/s[62]. If a

functional connection has a temporal delay not compatible with such maximum velocity, it is

discarded. Finally, we introduced also a minimum delay of about 1 ms, compatible with fast

excitatory AMPA synaptic transmission.

Thus, we refined the FCM by removing all the links related to putative non-physiological

connections.

Thresholding procedure

Cross-correlation, as well as any other connectivity method, provides a full n x n Connectivity

Matrix (CM), whose generic element (i, j) is the estimation of the strength of connection

between electrodes i and j. A thresholding procedure is thus needed to eliminate those values

that are only relative to noise and not to real functional connections. In the literature, there are

several thresholding procedures, with different levels of complexity: the simplest one is to use a

hard threshold, defined as (μ + n � σ), where μ and σ are the mean and the standard deviation

computed among all the CM’s elements, respectively, and n is an integer[24]. There are other

more sophisticated approaches based on shuffling methods that consist in destroying all the

temporal correlations within the spike trains and compute a null hypothesis to test the
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significance of the connections[63]. However, shuffling procedures require many resources in

terms of memory and computational times. In this work we proved, by means of the in silico
network model, that a simple hard threshold method is sufficient. We found that significant

levels of accuracy can be obtained with a threshold equal to (μ + σ) for both excitatory and

inhibitory links (cf., Results sect.).

Receiver operating characteristic (ROC) curve

The ROC curve[40] is a common metrics used to evaluate the performances of a binary classifier

by comparing prediction and observation. In our study, the prediction is represented by the

computed Thresholded functional Connectivity Matrix (TCM), and the observation corresponds

to the Synaptic Weight Matrix (SWM) of the neural network model (i.e., the ground truth).

We can define the True Positive Rate (TPR) and the False Positive Rate (FPR) as follows:

TPR ¼
TP

TP þ FN
ð3Þ

FPR ¼
FP

FPþ TN
ð4Þ

where TP are the True Positive links, and TN, FP and FN are the True Negative, False Positive

and False Negative connections, respectively. The ROC curve is then obtained by plotting TPR

versus FPR. The Area Under Curve (AUC) is a main parameter extracted to have a single

number describing the performances of a binary classifier: a random guess will correspond to

0.5, while a perfect classifier will have a value of 1. Another important metrics that can be

extracted from a ROC analysis is the accuracy, defined as:

ACC ¼
TP þ TN

TP þ TN þ FP þ FN
ð5Þ

Matthews correlation coefficient (MCC) curve

The MCC curve[40] is a common metrics, alternative to the ROC analysis, used to evaluate the

performances of a binary classifier by comparing prediction and observation. Using the quan-

tities defined in the previous paragraph, changing the threshold used to compute the TCM, we

can define MCC as:

MCC ¼
TP � TN � FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FPÞðTPþ FNÞðTN þ FPÞðTN þ FNÞ

p ð6Þ

The MCC assumes values in the interval [–1, 1] and the MCC curve is obtained by plotting

the MCC value versus the false positive rate.

Cluster coefficient (CC)

Let x be a generic node and vx the total number of nodes adjacent to x (including x). Let u be

the total number of edges that actually exist between x and its neighbors. The maximum num-

ber of edges that can exist among all units within the neighborhood of x is given by vx(vx -1)/2.

The Cluster Coefficient (Cx) for the node x, is defined as:

Cx ¼
2 � u

vxðvx � 1Þ
ð7Þ
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The Average Cluster Coefficient, obtained by averaging the cluster coefficient of all the net-

works nodes, is a global metric often used to quantify the segregation at network level.

Average shortest path length (PL)

Let x and y be two generic nodes of a network V of n nodes. Let d(x, y) be the shortest distance

between the nodes x and y. We define the Average Path Length (L) as:

PL ¼
2

nðn � 1Þ

P
x6¼ydðx; yÞ ð8Þ

This topological parameter is commonly used to evaluate the networks level of integration.

Small world index (SWI)

To detect the emergence of small-world network [64], it is possible to combine the metrics pre-

viously introduced, defining the Small-World Index (SWI):

SWI ¼
Cnet
Crnd
Lnet
Lrnd

ð9Þ

where Cnet and Lnet are the cluster coefficient and the path length of the investigated network,

respectively, and Crnd and Lrnd correspond to the cluster coefficient and the path length of ran-

dom networks equivalent to the original network (i.e., with the same number of nodes and

links). A SWI higher than 1 suggests the emergence of a small-world topology.

Rich club

A graph representing a complex network is said to have a rich-club organization if the hub

nodes of such a graph are more strongly connected with each other than expected by their

high degree alone[42]. It is possible to infer such an organization by computing the Rich Club

Coefficient (RCC).

The RCC value at a specific k level is computed by evaluating the cluster coefficient among

the nodes with a degree higher than k:

RCC kð Þ ¼
2E>k

N>kðN>k � 1Þ
ð10Þ

where N>k is the number of nodes with a degree higher than k, and E>k represents the edges

between them. Evaluating the RCC with k varying from 1 to the maximum degree allows to

build the RCC curve. The RCC curve is normalized by the corresponding average value for a

set of surrogated random neural networks equivalent to the investigated one (i.e., networks

with the same number of nodes and edges). If the maximum RCC normalized coefficient value

is higher than one, a privileged sub-network (i.e., a rich club) is found.

Computational model

The network model was made up of 1000 neurons randomly connected. The dynamics of each

neuron is described by the Izhikevich equations[65]. In the actual model, two families of neu-

rons were taken into account: regular spiking and fast spiking neurons for excitatory and

inhibitory populations, respectively (S2A Fig). The ratio of excitation and inhibition was set to

4:1 as experimentally founded in cortical cultures [8]. In the model, each excitatory neuron

receives 100 connections from the other neurons (both excitatory and inhibitory) of the
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network. Such incoming connections reflect the same ratio of the neuronal population, i.e.,

80% of excitatory and 20% of inhibitory links. (S2C Fig). Each inhibitory neuron receives 100

input only from excitatory neurons. Autapses are not allowed. All the inhibitory connections

introduce a delay equal to 1 ms, otherwise excitatory ones range from 1 to 20 ms [66]. Synaptic

weights were extracted from a Gaussian distribution with mean equal to 6 and -5 for excitatory

and inhibitory weights (S2B Fig). Standard deviations were set to 1. Excitatory weights evolve

following the spike timing dependent plasticity (STDP) rule with a time constant equal to 20

ms[67]. The spontaneous activity of the neuronal network was generated by stimulating a ran-

domly chosen neuron at each time stamp injecting a current pulse extracted from a normal

distribution (Istm,exc = 11 ± 2; Istm,inh = 7 ± 2). The network model was implemented in MATLAB

(The MathWorks, Natick, MA, USA), and each run simulates 1 hour of spontaneous activity.

Cell culture, experimental set-up and experimental protocol

Cortical and striatal neurons were dissociated from rat embryos (E18) Sprague Dawley

(Charles River Laboratories). The day before plating, Micro-Electrode Arrays (both MEA-4k

and MEA-60) were coated with the adhesion proteins laminin and Poli-Lysine (Sigma-

Aldrich). The final density of plating was about 1200 cells/mm2 for the MEA-60 and 700 cells/

mm2 for the MEA-4k. MEAs were maintained for four weeks in a humidified incubator (5%

CO2, 37˚C) in Neurobasal medium supplemented with B27. More details about cell cultures

can be found in previous works[50, 68]. Recordings were performed using two kinds of MEAs:

(i) MEA-60 (Multi Channel Systems, Reutlingen, Germany) constituted by 60 planar Ti/TiN

microelectrodes 200 μm spaced with a diameter of 30 μm and arranged in a 8 by 8 square grid

(electrodes in the four corners are not present). (ii) MEA-4k (3Brain, Wadenswill, Switzer-

land) constituted by 4096 square microelectrodes 42 μm spaced, 21 μm side length, arranged

in a 64 by 64 square grid. Recordings of spontaneous activity were performed during the

fourth week in vitro. We recorded 1 hour of spontaneous activity at the sampling frequency of

10 kHz (MEA-60) and of 9046 Hz (MEA-4k).

Data analysis

Data analysis was performed off-line using MATLAB and C# (Microsoft, US). Spike detection.

The algorithm used to detect extracellularly recorded spikes was the Precise Timing Spike

Detection (PTSD) [69]. Practically, the detection was performed by setting three parameters: a

differential threshold, evaluated as 8 times the standard deviation of the noise of each elec-

trode; a peak life time period (set at 2 ms) and the refractory period (set at 2 ms). Spike sorting

was not performed as it is often difficult to distinguish different shapes during bursts due to

overlapping spikes [60]. Burst detection. Burst at single electrode level and network bursts were

detected by using previously developed and validated algorithms. Single electrode bursting

activity was detected by considering at least 5 spikes with a maximum Inter Spike Interval (ISI)

of 100 ms [70]. Functional connectivity and topological analysis. The FNCCH used to infer

functional connectivity, as well as the metrics used to characterize the topological features of

the cortical networks (Small-World Index, Clustering Coefficient, average shortest Path

Length) were collected in an update version of the SPICODYN software [71].

Statistical analysis

Data are expressed as mean ± standard deviation of the mean. Statistical analysis was per-

formed using MATLAB. Since data do not follow a normal distribution (evaluated by the Kolmo-

gorov-Smirnov normality test), we performed a non-parametric Kruskal-Wallis test.

Significance levels were set at p< 0.001. In the box plot representation, the median value and
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25th-75th percentiles are indicated by the box, mean value is indicated by the small hollow

square, and whiskers indicate 5th-95th percentiles.

Code availability

The developed FNCCH is available to the scientific community on the Neuroimaging Infor-

matics Tools and Resources Clearinghouse, (NITRC) repository (http://www.nitrc.org/). In

particular, the FNCCH has been embedded in a new release (v3.0) of the software tool SPICO-

DYN (https://www.nitrc.org/projects/spicodyn/).

Supporting information

S1 Data. All the electrophysiological spike data recorded with the MEA-60 and MEA-4k

devices and presented in the paper are available as binary files in HDF5 format in a com-

pressed file.

(RAR)

S1 Text. Supplementary information include: S1. Post computation FNCCH filtering; S2.

Computational Model; S3. FNCCH is able to identify topological properties of complex net-

works; S4. Identified inhibitory links depend on the recording time length; S5. FNCCH values

are proportional to the strength of the connections; S6. Comparison with a Transfer Entropy

based algorithm; S7. Spiking and bursting dynamics.

(DOCX)

S1 Fig. FNCCH post filtering procedure. In this illustrative case, correspondent to weak cor-

relation, the filtering procedure infers a negative value in the boundary region of the correla-

tion window (black line) leading to a false positive inhibitory link. To avoid this, heuristic post

filtering procedure is performed by a peak search re-applied in a smaller region of the correla-

tion window (green line) discarding part of the tail. The resulting peak, in this example, is

excitatory and with a shorter delay.

(TIF)

S2 Fig. Computational model features and simulation results. a, electrophysiological pat-

terns of excitatory (top) and inhibitory (bottom) neurons. b, Excitatory synaptic weights distri-

bution at t = 0 (left side) and at the end of the simulation (right side). c, ach neuron receives

(on average) 100 connections. In the case of excitatory neurons, the 80% of the incoming con-

nections are excitatory, while the remaining 20% come from inhibitory neurons. d, Sketch of

the permitted connections among the excitatory and inhibitory populations. e, MFR distribu-

tions. f, IBI distributions.

(TIF)

S3 Fig. Functional connectivity estimation from a scale-free neural networks. a, Raster Plot

and mean Instantaneous Firing Rate (IFR) representative of the simulated electrophysiological

activity. b, Estimated functional in-degree distribution (red curve for excitatory links and blue

curve for the inhibitory ones) and (inset) structural in-degree distribution of the implemented

scale-free model. c, ROC functions for the inhibitory (blue curve) and the excitatory (red

curve) links obtained by applying the FNCCH; the black curve, is related to only excitatory

links extracted with the standard NCCH, is depicted for comparison. Corresponding AUCs

are represented in the inset. d, MCC curves related to inhibitory and excitatory links computed

by applying the FNCCH; the black curve, related to only excitatory links extracted with the

standard NCCH, is depicted for comparison.

(TIF)
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S4 Fig. Percentage of the inhibitory links revealed by the FNCCH at the varying of the

recording time length.

(TIF)

S5 Fig. Comparison of the FNCCH values extracted from the simulations of n = 10 in silico
networks. The differences between true and false positive for both excitatory and inhibitory

links are statistically different (p value<0.001, Kruskal-Wallis non parametric test).

(TIF)

S6 Fig. DTE effective connectivity estimation relative to an in silico neuronal network.

Functional links are estimated starting from the simulated multi-site electrophysiological

activity. a, ROC curves relative to the total links (black), to the excitatory versus excitatory neu-

rons’ links (red), to the inhibitory versus excitatory neurons’ links (blue) and to the to the

inhibitory versus inhibitory (green). b, Correspondent AUCs. c, DTE weighted connectivity

matrix.

(TIF)

S1 Table. Topological parameters extracted from the in silico Scale Free neural network

compared to a random one.

(TIF)

S2 Table. Spiking and bursting features of neuronal cultures coupled to MEA-4k.

(TIF)
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