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ABSTRACT Hyperspectral reflectance phenotyping and genomic selection are two emerging technologies
that have the potential to increase plant breeding efficiency by improving prediction accuracy for grain
yield. Hyperspectral cameras quantify canopy reflectance across a wide range of wavelengths that are
associated with numerous biophysical and biochemical processes in plants. Genomic selection models
utilize genome-wide marker or pedigree information to predict the genetic values of breeding lines. In this
study, we propose a multi-kernel GBLUP approach to genomic selection that uses genomic marker-,
pedigree-, and hyperspectral reflectance-derived relationship matrices to model the genetic main effects
and genotype · environment (G · E ) interactions across environments within a bread wheat (Triticum
aestivum L.) breeding program. We utilized an airplane equipped with a hyperspectral camera to
phenotype five differentially managed treatments of the yield trials conducted by the Bread Wheat
Improvement Program of the International Maize and Wheat Improvement Center (CIMMYT) at Ciudad
Obregón, México over four breeding cycles. We observed that single-kernel models using hyperspectral
reflectance-derived relationship matrices performed similarly or superior to marker- and pedigree-based
genomic selection models when predicting within and across environments. Multi-kernel models combining
marker/pedigree information with hyperspectral reflectance phentoypes had the highest prediction accu-
racies; however, improvements in accuracy over marker- and pedigree-based models were marginal when
correcting for days to heading. Our results demonstrate the potential of using hyperspectral imaging to
predict grain yield within a multi-environment context and also support further studies on the integration of
hyperspectral reflectance phenotyping into breeding programs.
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The aim of plant breeding programs is to develop and deliver new, high-
yielding crop varieties that are adapted to a range of environmental
conditions. Twomajor challenges of breeding for multiple environments
are: (1)beingable toaccount for thepresenceofgenotype-by-environment
interaction (G ·E), and (2) the high costs of evaluating trials at multiple
locations. Statistical, genomics, and phenomics tools that enable the ac-
curate prediction and selection of candidate lines appropriate for each
target environment may serve to increase the rate of genetic gain while
reducing costs associated with large-scale multi-environment field trials.

In recent years, genomic selection (GS) and high-throughput phe-
notyping (HTP) have emerged as potential technologies for improving
breeding efficiency (Furbank and Tester 2011; Cabrera-Bosquet
et al. 2012; Crossa et al. 2017). In GS, genome-wide marker effects
are estimated for a “training set” of lines that has been phenotyped
and genotyped (Meuwissen et al. 2001). Those estimates are then
applied to selection candidates prior to phenotyping to predict
trait values, which may reduce the time and cost of testing breeding
lines. While GS was initially developed to predict within individual
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environments, recent studies have extended the genomic best linear
unbiased prediction (GBLUP) model to accommodate G· E interac-
tions. Burgueño et al. (2012), Heslot et al. (2013), Jarquín et al. (2014),
López-Cruz et al. (2015), and Pérez-Rodríguez et al. (2017) reported
increases in prediction accuracies with extended models relative to
single-environment analyses.

HTP is based on the remote and proximal sensing of a large number
of crop plants to collect relevant phenotypes while reducing labor time
and cost (White et al. 2012; Araus and Cairns 2014; Pauli et al. 2016).
When deployed across different developmental growth stages and in
multiple environments, HTP can drastically increase the phenotypic
information available to breeding programs, which may help to im-
prove selection accuracy. Although HTP traits represent indirect esti-
mations and may not be able to provide the level of precision of direct
measurement, they may be of particular use at the early generation
stage in breeding programs when seed is limited. In wheat breeding,
large numbers of lines are sown in small, unreplicated plots for the
purpose of visual selection and seed increase prior to grain yield testing
in large replicated plots. Measurements of grain yield from small plots
are not meaningful, nor are they feasible to collect when thousands of
lines are being screened. Therefore, acquiring accurate predictions of
grain yield at the early generation stage using HTP may serve to im-
prove selection accuracy, though an initial proof of concept at the
replicated yield trial stage is necessary to effectively develop prediction
approaches.

A range of ground-based and aerial HTP platforms have been
recently developed to improve the accuracy, efficiency, and scope of
phenotypic data collection (Andrade-Sanchez et al. 2014; Crain et al.
2016; Haghighattalab et al. 2016). A major advantage of aerial plat-
forms is their ability to phenotype large areas of field trials in minimal
time. This enhanced efficiency increases the spatial and temporal res-
olution of the phenotypic data and may be critical when assessing
breeding trials at multiple locations. A number of recent studies have
integrated traits collected with HTP into GS to increase prediction
accuracy for grain yield in wheat (Rutkoski et al. 2016; Sun et al.
2017; Crain et al. 2018).

Todate,manyof theapplicationsof aerialHTPwithinplantbreeding
programshave focused onmeasuring the spectral reflectance of the crop
canopy. Plant cells, tissues, and pigments have wavelength-specific light
absorption, reflectance, and transmittance patterns that may, for exam-
ple, differentiate between healthy and stressed plants (Li et al. 2014).
Vegetation indices (VIs) provide a convenient method to summarize
spectral reflectance information into scores that may be predictive of
economically important traits (Govaerts et al. 1999). VIs such as the
normalized difference vegetation index (NDVI) have been shown to be
predictive of grain yield in wheat (Aparicio et al. 2000; Labus et al.
2002). However, since VIs are calculated from only a few wavelengths,
they cannot leverage the high density of information captured by
hyperspectral cameras, which record reflectance at a large number of

narrowband wavelengths in the visible and near infrared regions of the
light spectrum (Viña et al. 2011). While hyperspectral data may have a
greater capacity than VIs to detect phenotypic differences between
individuals, the high dimensionality of the data may complicate the
interpretation. For these data to becomemeaningful for plant breeding,
methods that can derive useful information on traits relevant to breed-
ing are needed.

To address the high dimensionality of hyperspectral data, Aguate
et al. (2017) found that integrating information from all hyperspectral
wavelengths using ordinary least squares, partial least squares, and
Bayesian shrinkage resulted in higher prediction accuracy than what
could be achieved using individual VIs in maize. Montesinos-López
et al. (2017a) proposed a Bayesian functional regression analysis using
hyperspectral wavelengths that likewise resulted in higher accuracies
for predicting grain yield in wheat when compared to a range of VIs.
Montesinos-López et al. (2017b) further extended this method to in-
corporate genomic and pedigree information, in addition to accommo-
dating G ·E by modeling hyperspectral band-by-environment (B · E)
interactions. Their study found that models that included the B ·E term
had higher prediction accuracies than those that did not, suggesting that
hyperspectral reflectance may be a useful phenotype for modeling
G· E interactions.

When collecting hyperspectral data within a multi-environment
context, the number of predictors increases in proportion to the number
of environments and phenotyping time-points observed, which may
comeat a computational cost dependingon the type of predictionmodel
used (Montesinos-López et al. 2017b). One possible approach that
may minimize computation time would be to use the hyperspectral
bands as a high dimensional predictor set, similar to the case of pre-
diction with genomic markers in GBLUP, by creating a relationship
matrix between individuals using the hyperspectral bands. This way,
the number of bands could be very large without increasing the com-
plexity of the GBLUP prediction model. Separate genomic marker/
pedigree and hyperspectral reflectance kernels could be integrated to
model the genetic main effects and G ·E interactions, respectively.

Multi-environment field trials are often unbalanced, which can
complicate their use in prediction across environments. When deploy-
ing HTP in large breeding programs, it can be difficult to ensure that all
locationsarephenotypedat thesamestageandthe samenumberof times
throughout the season. Weather conditions, technical difficulties with
the cameras or sensors, and scheduling with contracted pilots/airports
may prohibit the use of aerial HTP on certain days, and lines grown at
differentsitesmaydevelopat fasteror slowerratesdependingonweather
and management conditions. As a result, sites may have different
numbers of observed HTP time-points, as in Sun et al. (2017). It is well
documented that canopy spectral reflectance varies according to crop
phenology (Viña et al. 2004; Zhang et al. 2003). One strategy for com-
paring HTP time-points across varying sites may be to classify them
according to the predominant developmental growth stage at the time
of phenotyping.

To test these approaches, we deployed HTP on the CIMMYT Bread
Wheat Improvement Program’s multi-environment yield evaluations
of advanced germplasm to phenotype a range of differentially managed
treatments with a hyperspectral camera at multiple time-points
throughout the growing season. The main objectives of this research
were to: (1) propose a multi-kernel, multi-environment GBLUPmodel
that involves modeling genetic main effects using genomic markers or
pedigrees and modeling the G· E interactions using relationship ma-
trices derived from hyperspectral reflectance data, (2) compare the
prediction accuracies of models utilizing genomic marker/pedigree
main effects kernels and hyperspectral G ·E interaction kernels
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separately and in combination, and (3) determine the optimal
developmental growth stages for hyperspectral phenotyping based
on grain yield prediction accuracy.

MATERIALS AND METHODS

Experimental Data
The dataset included a total of 3,771 bread wheat lines evaluated at the
Campo Experimental Norman E. Borlaug in Ciudad Obregón, México
over the course of four breeding cycles: 2013-14, 2014-15, 2015-16, and
2016-17. In each cycle, lines were sown under five differentially man-
aged treatments: Optimal Bed, Optimal Flat, Moderate Drought, Severe
Drought, and Heat. Descriptions of the managed treatments are given
in Table 1. The 20managed treatment-breeding cycle combinations are
herein referred to as site-years. Within each of the five managed treat-
ments, 1,092 lines were arranged into 39 trials in a a-lattice design with
three replicates and six incomplete blocks per replicate. Each replicate
contained two repeated checks. ‘Kachu #1’ was sown as a check in the
Optimal Bed, Optimal Flat, and Moderate Drought managed treat-
ments. ‘Baj #1’ was used as a check in the Severe Drought and Heat
managed treatments. ‘Borlaug100 F2014’ was sown as the other
check in all managed treatments. All lines within a breeding cycle
were evaluated in all five managed treatments, while no lines other
than checks overlapped between cycles. Records for some lines
were removed from the analysis due to unavailability of genotypic
or agronomic data, resulting in the final dataset: 588 lines in 2013-
14, 1,033 lines in 2014-15, 1,063 lines in 2015-16, and 1,087 lines in
2016-17, for a total of 56,565 plots phenotyped. Each breeding
cycle contained full-sib families with an average of two full-sibs
per family.

Grain yield (GY) in t ha-1 and lodging evaluated on an ordinal
scale (0: no lodging; 5: completely lodged) were assessed in all three
replicates. Heading date was recorded as the date of 50% spike
emergence within the plot. Maturity date was recorded as the date
of senescence of the peduncle for 50% of stems in the plot. Days to
heading (DTHD) and days to maturity (DTMT) were measured as
the number of days to reach heading and maturity, starting from the
date of the first irrigation if sowing was on dry soil or from the
sowing date if sowing was in pre-irrigated fields. DTHD and DTMT
were assessed for the first replicate only due to the high heritability
of those traits.

Hyperspectral Phenotyping
Hyperspectral reflectance data were collected with a hyperspectral cam-
era (A-series, Micro-Hyperspec VNIR, Headwall Photonics, Fitchburg,
MA, USA) as part of the Alava Remote Sensing Spectral Solution
(ARS3, Alava Ingenieros, Madrid, Spain) mounted in a Piper PA-16
Clipper aircraft. The camera’s sensor had a 12-bit radiometric reso-
lution, covering the light spectrum in the 380–850nm region with a
7.5nm full width at half maximum and set with an integration time of

18ms. Spectral binning resulted in 62 wavelengths between 398-847nm
(Rodrigues et al. 2018). The flights were scheduled around noon
(GMT-7) and aligned to the solar azimuth angle at a height of 300m,
resulting in 30cm resolution. The aerial imagery acquisition during the
growing seasonwas spaced approximately at seven- to ten-day intervals
on mostly clear days.

Radiometric calibration of the sensor was done using coefficients
derived froma calibrateduniform light source and an integrating sphere
(CSTMUSS2000C Uniform Source System, LabSphere, North Sutton,
NH,USA).Dark frame correctionwas performed for eachflight dataset.
Atmospheric calibrationwas performedusing irradiancemeasurements
acquired at the beginning and end of each flight using a Jaz
spectrometer with a CC-3 Cosine Corrector (Ocean Optics Inc,
FL, USA) for the 2016-17 breeding cycle. For remaining three
breeding cycles, irradiance was modeled using aerosol optical depth
from sun-photometer measurements (Microtops II, Solar Light
Company, Glenside, PA, USA) based on the SMARTS simulation
model (Gueymard 1995; Gueymard 2005).

Ortho-rectification and georeferencing of the imagery were per-
formed using PARGE (ReSe Applications Schläpfer, Wil, Switzerland)
based on data from the inertial navigation system (INS) attached to the
camera (IG-500N model, SGB systems S. A. S., Carrières-sur-Seine,
France). Hyperspectral reflectance data were extracted from the aerial
images using the mean value of the pixels inside the central area of each
observed plot, avoiding 0.5m from the plot border.

Each hyperspectral phenotyping time-point within each site-year
was assigned a developmental growth stage classification according to
the predominant growth stageof the lineswithin the site-year at the time
of phenotyping (Table 2). The vegetative (VEG) stagewas defined as the
period between germination and 50% of plots at heading. The head-
ing stage (HEAD) was defined as the period between 50% of plots at
heading and 100% of plots at heading. The grain fill stage (GF) was
defined as the period between 100% of plots at heading and 100% of
plots at maturity.

Genotypic Data
All lines were genotyped using genotyping-by-sequencing (Elshire et al.
2011) according to the pipeline described in Poland et al. (2012). From
the initial set of 34,900 single nucleotide polymorphisms (SNPs), 8,519
SNPs remained after excluding all markers with more than 70% of
missing data or minor allele frequency less than 0.05. For each marker,
missing data were imputed using the sample mean of observed values
(Poland et al. 2012).

Basic Statistical Models
Within each site-year, best linear unbiased estimates (BLUEs) were
calculated for the agronomic traits and for each hyperspectral band at
each phenotyping time-point using the following model:

yijkl ¼ mþ gi þ tj þ rkðjÞ þ blð jkÞ þ eijkl (1)

n Table 1 Description of the field management conditions in each of the five managed treatments sown at the Campo Experimental
Norman E. Borlaug in Ciudad Obregón, México

Managed Treatment Planting Date Plot Type Plot Dimensions Irrigation Methods

Optimal Bed Late November/Early December Two beds with 3 rows per bed 2.8m · 0.8m Five furrow irrigations
Optimal Flat Late November/Early December Flat sown plot with 6 rows 4.0m · 1.3m Five flood irrigations
Moderate Drought Late November/Early December Two beds with 3 rows per bed 2.8m · 0.8m Two furrow irrigations
Severe Drought Late November/Early December Flat sown plot with 6 rows 4.0m · 1.3m Three minimal irrigations

through drip
Heat Late February Two beds with 3 rows per bed 2.8m · 0.8m Five furrow irrigations
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where yijkl is the trait value for genotype i within trial j, replicate k,
and block l; m is the overall mean; gi is the fixed effect for genotype i;
tj is the random effect for trial j, which are assumed to be indepen-
dently and identically distributed according to a normal distribution
with mean zero and variance st

2, that is, tj � iid N(0, st
2); rk(j) � iid N

(0,sr
2) is the random effect for replicate k within trial j; bl(jk) � iid N

(0, sb
2) is the random effect for block l within replicate k and trial

j; and eijkl � iid N(0, s2
e ) is the residual effect. For DTHD and

DTMT, which were recorded for only one replicate, the replicate
and block effects were excluded from the model. For validation of
prediction models, best linear unbiased predictions (BLUPs) for GY

within each site-year were calculated by treating the effect for genotype
gi in model (1) as random with gi � iid N(0, sg

2) and by including a
covariate for lodging as a fixed effect, fit only when lodging was ob-
served within a site-year. To correct for the influence of phenology,
BLUPs for GY were calculated again using DTHD included as a fixed
effect in model (1).

BLUEs were also calculated for each hyperspectral band on a
developmental growth stage basis according to the growth stage
classifications detailed in Table 2. BLUEs for each hyperspectral
band for the VEG, HEAD, and GF stages were estimated by fitting
the following model:

n Table 2 Classification of hyperspectral phenotyping time-points as vegetative (VEG), heading (HEAD), and grain fill (GF) phenological
stages

Breeding Cycle Phenotyping Date Optimal Bed Optimal Flat Moderate Drought Severe Drought Heat

2013-14 10 Jan — VEG VEG — —

17 Jan — VEG VEG VEG —

30 Jan VEG VEG VEG VEG —

07 Feb VEG VEG VEG VEG —

14 Feb HEAD VEG HEAD HEAD —

19 Feb HEAD HEAD HEAD HEAD —

27 Feb GF HEAD GF GF —

11 Mar GF GF GF GF —

17 Mar GF GF GF — —

25 Apr — — — — VEG
02 May — — — — HEAD
07 May — — — — HEAD
21 May — — — — GF

2014-15 10 Jan VEG VEG VEG VEG —

19 Jan VEG VEG VEG VEG —

04 Feb VEG VEG VEG VEG —

09 Feb VEG VEG HEAD HEAD —

25 Feb HEAD HEAD GF GF —

10 Mar GF GF GF GF —

15 Mar GF GF GF GF —

23 Mar GF GF GF — —

26 Mar GF GF — — —

07 Apr — GF — — —

14 Apr — — — — VEG
24 Apr — — — — HEAD
28 Apr — — — — HEAD
06 May — — — — GF

2015-16 26 Feb HEAD HEAD GF GF —

03 Mar HEAD HEAD GF GF —

09 Mar GF GF GF GF —

15 Mar GF GF GF GF —

22 Mar GF GF GF GF —

02 May — — — — HEAD
09 May — — — — GF
14 May — — — — GF

2016-17 10 Jan VEG VEG VEG VEG —

17 Jan VEG VEG VEG VEG —

23 Jan VEG VEG VEG VEG —

02 Feb VEG VEG VEG HEAD —

10 Feb VEG VEG HEAD HEAD —

16 Feb HEAD VEG HEAD GF —

22 Feb HEAD HEAD GF GF —

15 Mar GF GF — GF —

29 Mar GF — — — —

05 Apr GF — — — —

11 Apr GF — — — —

02 May — — — — HEAD
22 May — — — — GF
31 May — — — — GF
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yijklm ¼ mþ gi þ dj þ tkð jÞ þ rlð jkÞ þ bmðjklÞ þ eijklm (2)

where yijkl is the hyperspectral reflectance trait value for genotype i on
time-point j and within trial k, replicate l, and blockm;m is the overall
mean; gi is the fixed genetic effect for genotype i; dj � iid N(0, sd

2) is
a random effect for time-point j; tk(j) � iid N(0, st

2) is random effect
for trial k nested within time-point j; rl(jk) � iid N(0, sr

2) is the
random effect for replicate l nested within time-point j and trial k;
bm(jkl) �iid N(0, sb

2) is the random effect for block m nested within
time-point j, trial k, and rep l; and eijklm �iid N(0, s2

e ) is the residual
effect. BLUEs were also calculated for each hyperspectral band across
all available phenotyping time-points (ALL) using model (2).

Broad-sense heritability within site-years was calculated for GY
(Bernardo 2010) and each hyperspectral band as:

H2 ¼ s2
g

s2
g þ s2

e
nreps

(3)

where sg
2 is the genetic variance, s2

e is the error variance, and nreps is
the number of replicates (nreps = 3). sg

2 and s2
e were derived by

fitting model (1) with the effect for genotype gi treated as random
with gi� iid N(0, sg

2). For each breeding cycle, Pearson’s correlations
for GY betweenmanaged treatments were calculated using the BLUEs
derived from model (1). Pearson’s correlations were also calculated
between GY BLUEs and the BLUEs for each hyperspectral band
calculated in model (2).

Relationship Matrices
Genetic relationships between individuals weremodeled using genomic
markers, pedigrees, and hyperspectral reflectance phenotypes. The ge-
nomic relationship matrix (G) was calculated according to Endelman
and Jannink (2012). The additive relationship matrix (A) was derived
from pedigrees and calculated as twice the coefficient of parentage.

Hyperspectral reflectance-based relationship matrices (H) were cal-
culated within each site-year using the hyperspectral BLUEs calculated
for 1) the individual time-points from model (1), 2) the developmental
growth stages from model (2), and 3) all time-points from model
(2). The matrices were calculated as H ¼ SS9

nbands, where S is a matrix
of the centered and standardized BLUEs of the hyperspectral bands
and nbands is the total number of hyperspectral bands observed
(nbands = 62).

Prediction Models

Genetic Main Effects: To compare the utility of hyperspectral re-
flectance-based models to standard marker- and pedigree-based
methods for genomic prediction, the following single-kernel genetic
main effects model was fitted using marker- and pedigree-derived
relationship matrices:

yij ¼ mþ Ei þ gj þ eij (4)

where yij is the BLUE of GY for genotype j in site-year i,m is the overall
mean, Ei is the fixed effect for site-year (i = 1,...,I), gj is the random effect
for genotype j (j = 1,...,J), and eij is the residual effect. We assume that
the joint distribution of genotype effects is distributed according to a
multivariate normal distribution with mean 0 and variance-covariance
matrix sg

2K, that is, g ¼ ðg1;:::; gJÞT �MVNð0;   s2
gKÞ, where s2

g de-
notes the genomic variance and K represent the genomic relationship
matrix between individuals G (K=G) or the additive pedigree relation-
ship matrix A (K=A).

Hyperspectral Reflectance Main Effects: To mimic a situation in
which genomic marker and pedigree information are not available,
the following single-kernel model was fitted using the hyperspectral
reflectance-derived relationship matrices only:

yij ¼ mþ Ei þ Ehij þ eij (5)

where yij, m, and Ei are as defined in model (4). Ehij is the ran-
dom effect of the hyperspectral bands for genotype j in site-year
i with the joint distribution of the hyperspectral bands as
hE ¼ ðhE11;:::; hEIJÞT � MVNð0;s2

hHÞ, where s2
h is the hyperspec-

tral band variance and H is the hyperspectral reflectance-derived
relationship matrix. Unlike matrices G and A, which have only one
row and column for each unique genotype evaluated, the matrix H
has a row and column for each unique site-year-genotype combi-
nation where I · J results in the total number of site-year-genotype
combinations.

Genetic Main Effects + Genetic G 3 E: As a basis for comparison to
assess the advantage of G ·E models that integrate both marker or
pedigree relationship matrices with hyperspectral reflectance-derived
relationship matrices, model (4) was extended to accommodate G ·E
interactions using marker or pedigree information. The following
multi-kernel model was fit:

yij ¼ mþ Ei þ gj þ gEij þ eij (6)

where yij,m,Ei, and gj are as defined inmodel (4). The gEij term is assumed
to have multivariate normal distribution gE ¼ ðgE11;:::; gEIJÞT �
MVN(0, (ZgKZg

T)∘(ZEZE
T)s2

gE) where Zg and ZE are incidence
matrices for genotypes and site-years, K represents the genomic
relationship matrix (K=G) or the additive pedigree relationship
matrix (K=A), and s2

gE is the variance component for gEij (Jarquín
et al. 2014).

Genetic Main Effects + Hyperspectral Reflectance G 3 E: Finally, a
multi-kernel model using marker or pedigree information to estimate
the genetic main effects and hyperspectral reflectance phenotypes to
model the G ·E interactions was fitted:

yij ¼ mþ Ei þ gj þ hEij þ eij (7)

Here, yij, m; Ei, and gj are defined as above in model (4).
The term hEij is assumed to have multivariate normal distribution
hE ¼ ðhE11;:::; hEIJÞT � MVN(0, (ZgHZg

T)∘(ZEZE
T)s2

hE) where Zg

and ZE are incidence matrices for genotypes and site-years and s2
hE

is the variance component for hEij. The (ZgHZg
T)∘(ZEZE

T) term is
obtained with the block diagonal matrix BDiag(H11,...,HII) where Hii

represent the hyperspectral relationship matrices for genotypes in
site-year i = 1,...,I.

Software
Processing of the hyperspectral images was performed using the ARS3
hyproQ software (Álava Ingenieros, Madrid, Spain). Plot polygons for
tabular data extraction were generated using ArcGIS (ESRI, Redlands,
California, USA). Images were aligned manually in ArcGIS if they did
not overlay the plot polygons due to INS inaccuracy.

All models were fit using the R statistical programming lan-
guage (R Core Team 2018). Basic models (1-3) were fit with the
package “ASReml-R” (Gilmour et al. 2014) for R, while the predic-
tion models (4-7) were fit using the “BGLR” package (de los Campos
and Pérez-Rodríguez 2014) for R. The marker-based genetic
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relationship matrices were calculated using the A.mat() function
within the “rrBLUP” package (Endelman 2011) for R. The coefficients
of parentage for the pedigree relationship matrices were estimated
using the “Browse” application within the International Crop Infor-
mation System software package (McLaren et al. 2000).

Assessing Model Prediction Accuracy
The abovemodels were fit to assess model prediction accuracy for three
prediction strategies representing different testing and evaluation prob-
lems relevant to plant breeding programs: 1)within site-year, 2)within
breeding cycle/across managed treatments, and 3) across breeding
cycles/within managed treatment.

A train-test (TRN-TST) validation scheme (Daetwyler et al. 2013) of
20 random partitions was used to assess model prediction accuracy for

all prediction strategies. For within site-year prediction, a random 80%
of records within a given site-year were assigned to the TRN set, and the
remaining 20% were used as the TST set for prediction. This reflects a
scenario in which prediction of the trait values for a set of unobserved
lines is performed within a managed treatment and breeding cycle of
interest. Models (4) and (5) were fitted without the Ei term for site-year
and models (6) and (7) were not tested for the within site-year pre-
diction scheme because multiple site-years were not considered.

For prediction within breeding cycle/across managed treatments,
predictionswere carried out across thefivemanaged treatmentswithin a
single breeding cycle. TheTRN set consisted of all records from four out
of the five managed treatments within a breeding cycle plus 20% of
records fromthefifthmanaged treatment.Theremaining80%of records
from the fifth managed treatment were assigned to the TST set for

Figure 1 Boxplot of BLUEs for wheat grain yield (t ha-1) in each of the 20 observed site-years.

Figure 2 A graphical representation of the unbalanced nature of the hyperspectral reflectance phenotypic data. Four site-years are represented:
2014-15 Optimal Flat, 2014-15 Severe Drought, 2016-17 Optimal Flat, and 2016-17 Severe Drought. The histograms represent heading dates.
Each dashed line corresponds to a hyperspectral phenotyping date colored according to the predominant growth stage of the lines at the time of
phenotyping.
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prediction. In this situation, lines have been previously characterized in
all managed treatments except one, where only 20% of records were
available.

For prediction across breeding cycles/within managed treat-
ment, predictions were performed across the four breeding cycles
but within a single managed treatment. The TRN set contained
all records from three out of the four breeding cycles for a given
managed treatment plus 20% of records from the fourth breeding
cycle. The remaining 80% of records from the fourth breeding cycle
were assigned to the TST set for prediction. This scenario predicts
performance of unobserved lines that are 1-3 breeding cycles re-
moved from lines in the training set.

Table S1 illustrates examples of TRN-TST partitioning for the three
prediction schemes. For all prediction strategies, model prediction
accuracy was assessed as the Pearson’s correlation between predic-
tions for GY and GY BLUPs with and without correction for DTHD
calculated in model (1). Reported values are the mean and standard
deviation of the 20 random TRN-TST partitions implemented. The
same partitioning “splits” were used to assess all models to ensure
fair comparisons.

Data Availability
All phenotypic and genotypic data required to confirm the results
presented in this study are available on CIMMYT Dataverse link:
hdl:11529/10548109. The “GID” column denotes the unique identifiers
for the genotypes. Supplemental material available at Figshare: https://
doi.org/10.25387/g3.7653473.

RESULTS

Descriptive Statistics
To evaluate the potential of integrating aerial hyperspectral reflectance
phenotypes intoGS to improve prediction accuracy forGY inwheat, we
deployed an airplane equipped with a hyperspectral camera to pheno-
type wheat breeding trials in 20 site-years at multiple time-points
throughout the growing season. Across the site-years, the Optimal
Bed and Optimal Flat managed treatments had higher GY than the
stressed Moderate Drought, Severe Drought, and Heat managed treat-
ments (Figure 1). The standard deviations for GY remained relatively
stable across site-years, ranging from 0.30 to 0.68 t ha-1 (Table S2).
Broad-sense heritability forGYwas high across site-years, ranging from
0.58 to 0.94 (Table S2). Overall, correlations for GY between managed
treatments were moderately positive (Figure S1). The managed treat-
ments that received similar levels of irrigation (e.g., Optimal Bed with
Optimal Flat; Moderate Drought with Severe Drought) showed signif-
icant correlations (p-value # 0.05) in all breeding cycles.

Between 3 and 11 hyperspectral phenotyping time-points were
collected within each site-year (Table 2). In most site-years, at least
one hyperspectral phenotyping time-point was collected during each
of the three developmental growth stages. While the managed treat-
ments within a breeding cycle were often phenotyped on the same date,
the growth stage at the time of phenotyping frequently differed
among the managed treatments (Figure 2). During the 2015-16
cycle, technological issues with the camera prevented early season
phenotyping. As a result, no hyperspectral data were collected

Figure 3 Broad-sense heritabilities of the hyperspectral wavelengths for each phenotyping time-point within each site-year. Each boxplot
represents the distribution of broad-sense heritability values for the 62 hyperspectral wavelengths observed. The colors correspond to the
developmental growth stage of the site-year at the time of hyperspectral phenotyping.
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during the VEG stage. The Optimal Bed, Optimal Flat, and Heat
managed treatments had hyperspectral phenotypes for the HEAD
and GF stages only, while the Moderate Drought and Severe Drought
managed treatments had hyperspectral phenotypes for the GF stage
only due to early maturation of the crop under water stress.

Broad-sense heritability estimates for the hyperspectral bands
were generally between 0.5 and 0.8 for most phenotyping time-points
(Figure 3). Heritabilities were relatively homogeneous across individual
time-points and developmental growth stages. In all site-years, the
lowest heritabilities were observed for the hyperspectral bands between
398 and 425 nm. Heritabilities in the 2013-14 Optimal Flat site-year
were notably lower than in other site-years, falling between 0.00 and
0.25, though the GF time-points were more heritable with values
around 0.40. Low heritabilities (,0.20) were also observed for the
9 March time-point in the 2015-16 Moderate Drought site-year.

Correlations between the individual hyperspectral bands and GY
ranged from -0.68 to 0.64 across the 20 site-years and were most
frequently the strongest above 500 nm (Figure 4). While there were
some observable similarities in correlation patterns among time-points
taken during the same growth stage within the same site-year, patterns

were not uniform across site-years, breeding cycles, or managed treat-
ments. In some site-years, there were clear differences in correlation
patterns between developmental growth stages. For example, in the
2014-15 Optimal Bed site-year, correlations between GY and hyper-
spectral reflectance in the 398-700 nm range were around 0 during the
VEG stage but became progressively more negative during the HEAD
and GF stages, reaching around -0.4. For the same managed treat-
ment during the 2016-17 breeding cycle, distinct differences in cor-
relation patterns between the three developmental growth stages
were also observed; however, the patterns do not reflect those ob-
served in 2014-15. Despite irregularities in correlation patterns, the
correlations between hyperspectral bands from the GF stages and
GY were, on average, stronger by 0.10 than for hyperspectral phe-
notypes taken during the VEG and HEAD stages.

Model Prediction Accuracy

Within Site-Year: Five types of relationship matrices were used within
single-kernelmodels (4) and (5) forwithin site-year prediction: genomic
(G), pedigree (A), individual hyperspectral phenotyping time-points
(e.g., H.10Jan, H.23Mar, etc.), hyperspectral phenotype BLUEs

Figure 4 Empirical correlations between grain yield and hyperspectral reflectance BLUEs within each site-year. Each solid line represents a
phenotyping time-point and the Pearson’s correlation between grain yield and the 62 hyperspectral wavelengths observed. Lines are colored
according to the predominant developmental growth stage of the site-year at the time of hyperspectral phenotyping. Correlation values $ |0.10|
are significant at a level of 0.001, as denoted by the dotted red lines.
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calculated from multiple time-points for each developmental growth
stage (H.VEG, H.HEAD, H.GF), and hyperspectral phenotype
BLUEs calculated using all available time-points (H.ALL). Model
(4) was used to assess accuracies using the G and A relationship
matrices for prediction. Model (5) was fit to assess accuracies using
the hyperspectral reflectance-derived relationship matrices.

Prediction accuracies of models using the individual hyperspectral
time-point-derived relationshipmatrices ranged from0.00 to0.75witha
mean of 0.42 (Figure 5A). These results are similar to the prediction
accuracies observed for models using the G and A relationship matri-
ces, which recordedmeans of 0.41 and 0.42 and ranges of 0.19-0.60 and
0.19-0.67, respectively. In 18 and 17 of the 20 site-years, at least one
hyperspectral phenotyping time-point showed accuracies that were
equivalent or superior toG andA, respectively. In considering the most
highly predictive hyperspectral phenotyping time-point in each site-
year, 11 were recorded during the GF stage, followed by 6 and 3 in the
HEAD and VEG stages, respectively, although the site-years had dif-
ferent numbers of hyperspectral phenotyping time-points from each
growth stage and some site-years had no observations recorded during
the VEG and HEAD stages.

The level of prediction accuracy for the individual hyperspectral
time-points was highly correlated with the strength of the relation-
ship between hyperspectral reflectance and GY (Figure 6). For a

given time-point within a site-year, the correlation between hyper-
spectral reflectance and GY was taken for each of the 62 hyperspectral
wavelengths. The average of the absolute values of those correlations,
or their relative magnitudes, was then compared to the level of pre-
diction accuracy for that time-point. For the 71 time-point/site-year
combinations, the average magnitude of the correlation between hyper-
spectral reflectance and GY explained 51% of the variation in prediction
accuracy, though the two characters exhibited a non-linear relationship
(Figure 6A). Correlations beyond 0.25 between hyperspectral reflectance
and GY provided little marginal increase in prediction accuracy. When
GY was corrected for DTHD, this relationship was linear, and the
correlation between reflectance and GY explained 26% of the variation
in prediction accuracy (Figure 6B).

Inconsideringpredictionmodelsusingrelationshipmatricesderived
from the hyperspectral phenotype BLUEs for each growth stage, rela-
tionship matrixH.GF had the highest prediction accuracies in 11 of the
20 site-years, followed byH.HEAD in 8 site-years andH.VEG in 1 site-
year. Combining multiple time-points in this manner did not neces-
sarily increase accuracy. The accuracies of models using relationship
matricesH.VEG,H.HEAD, andH.GFwere comparable to the mean of
the accuracies of models using individual time-point-derived relation-
ship matrices. Likewise, the accuracies of models using relationship
matrix H.ALL, which combined all available time-points, were on

Figure 5 Within site-year prediction accuracies, with and without correction for DTHD. Accuracy is expressed as the average Pearson’s correlation
between predictions and observed BLUPs for GY across 20 random TRN-TST partitions. Results shown according to the type of relationship matrix
tested: Genomic (G), pedigree (A), individual hyperspectral time-points (e.g., H.10Jan, H.23Mar, etc.), hyperspectral BLUEs for each develop-
mental growth stage (H.VEG, H.HEAD, H.GF), and hyperspectral BLUEs across all time-points (H.ALL). The color corresponds to the predominant
developmental growth stage of the site-year at the time of phenotyping. Error bars are the standard deviation of prediction accuracy for the
20 random partitions.

Volume 9 April 2019 | Spectral Reflectance in Genomic Prediction | 1239



average slightly higher than themean of the accuracies of the individual
time-point models but lower than models using the most predictive
time-point.

While correcting for DTHD had negligible impacts on prediction
accuracy for models using the G and A relationship matrices, the
accuracies of models using the hyperspectral reflectance-derived
relationship matrices decreased by 0.10 on average (Figure 5B).
The greatest reductions were observed in the Severe Drought and
Moderate Drought treatments, which showed average decreases in
accuracy of 0.20 and 0.18, respectively. After the DTHD correction,
at least one individual time-point-derived relationship matrix recorded
prediction accuracies that were equivalent or superior to accuracies
when using relationship matricesG andA in 13 out of the 20 site-years.

Within Breeding Cycle/Across Managed Treatments: For prediction
across managed treatments within a breeding cycle, the genomic-,
pedigree-, and hyperspectral reflectance-derived relationship matrices
were tested individually in single-kernel models and in combination in
multi-kernel models (Table 3). Prediction accuracies are shown in
Figure 7. Single-kernel models included the following: genetic main
effects (G and A) from model (4) and hyperspectral reflectance main
effects (H.VEG, H.HEAD, H.GF, and H.ALL) from model (5). Multi-
kernel models were built by combining a main effects kernel with
a G· E interaction kernel in models (6) and (7). In model (6), the
G ·E interaction kernel was also fit using relationship matrices G or
A. These models are herein referred to as G + GGxE and A + AGxE. In

model (7), the hyperspectral reflectance-derived relationship matrices
were used to estimate the G· E interaction kernel. These models are
referred to as G + H.VEGGxE, A + H.HEADGxE, etc. according to the
respective relationship matrices used to estimate the genetic main ef-
fects and G· E interactions. The H.VEG, G + H.VEGGxE, and A +
H.VEGGxE models were assessed for 14 out of the 20 site-years due
to the unavailability of hyperspectral data at the vegetative stage in the
remaining 6 site-years. Likewise, the H.HEAD, G + H.HEADGxE, and
A + H.HEADGxE models were assessed for 18 out of the 20 site-years.
The remaining models using relationship matrices H.GF and H.ALL
were tested for all site-years.

When considering the single-kernel hyperspectral main effect mod-
els, 2013-14 Optimal Flat had prediction accuracies close to zero. The
2013-14 Optimal Flat site-year had high levels of lodging, which may
have affected the reflectance signatures of the crop canopy. The hyper-
spectral reflectance phenotypes for 2013-14 Optimal Flat had lower
heritabilities than all other site-years. To summarize trends for the
remaining 19 site-years, the results from the single-kernel hyperspectral
main effects models for 2013-14 Optimal Flat were removed from the
analysis. The accuracies of H.VEG averaged 0.37 across the site-years
where it was tested, which was similar to the accuracies of G (0.35) and
A (0.34) (Figure 7A). H.HEAD, H.GF, and H.ALL showed slightly
higher averages accuracies of 0.44, 0.44, and 0.46, respectively. The
greatest differences in prediction accuracy between the hyperspectral
reflectance-based models and G and A were observed in the 2015-16
and 2016-17 breeding cycles. In these cycles, the H.HEAD, H.GF, and

Figure 5 Continued.
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H.ALL showed accuracies that were on average 0.22 greater than the
G and A. When correcting all models for DTHD, mean accuracies of
H.VEG (0.29),H.HEAD (0.34),H.GF (0.30), andH.ALL (0.34) models
were more similar to G (0.33) and A (0.32) (Figure 7B).

Expanding the single-kernel G and A models to account for the
G ·E interactions with the G + GGxE and A + AGxE models improved
prediction accuracies to a level of 0.43 on average, an increase of 0.08
and 0.09 over theG andAmodels, respectively. These improvements in
accuracy were more pronounced during the 2016-17 breeding cycle,
recording gains in accuracy of 0.16 and 0.19 forG+GGxE andA+AGxE,
respectively. Likewise, slightly greater improvements were observed for
the Severe Drought (gains of 0.13 and 0.16 for G + GGxE and A + AGxE,
respectively) managed treatment. Similar trends were observed when
correcting for DTHD, though accuracies were 0.04 lower on average.

The multi-kernel models that estimated the main effects using
relationship matrices G or A and the G· E interactions using hyper-
spectral reflectance-derived relationship matrices gave the highest
accuracies overall. Hyperspectral reflectance-derived relationship
matricesH.VEG,H.HEAD,H.GF, andH.ALL had average accuracies
of 0.54, 0.56, 0.56, and 0.58, respectively, when integrated with rela-
tionship matrix G and average accuracies of 0.53, 0.55, 0.55, and 0.57,
respectively, when integrated with relationshipmatrixA. In most site-
years, no clear “best model” could be identified among the multi-
kernel models within a site-year. Accuracies were similar regardless
of during which growth stage the hyperspectral reflectance data were
recorded or whether genomic markers or pedigrees were used to
model the main effects.

When compared to the G + GGxE and A + AGxE models, the use of
hyperspectral reflectance to estimate the G· E interactions increased
prediction accuracies by an average of 0.12 and 0.10, respectively, and
by an average of 0.08 and 0.06, respectively, after correcting for DTHD.
Compared to the corresponding single-kernel hyperspectral reflectance
models, the integration of markers or pedigrees with hyperspectral re-
flectance in multi-kernel models increased prediction accuracies on an
average by 0.11 and 0.17, respectively, and by 0.14 and 0.19, respectively
when correcting for DTHD.

Across Breeding Cycles/Within Managed Treatment: The models
tested for prediction across breeding cycles/within managed treatment
were the sameas those tested for predictionwithin breeding cycle/across
managed treatments (Table 3). Prediction accuracies are shown in
Figure 8. On average, accuracies were 0.08 lower in this prediction
scheme than for prediction within a breeding cycle and acrossmanaged
treatments.

For the single-kernel hyperspectral main effects models, H.GF in
2013-14 Heat and all single-kernelHmodels for 2013-14 Optimal Flat
showed prediction accuracies close to zero. The 2013-14 Heat site-year
was phenotyped once during the GF late in the growing season
(21 May), which was close to maturity. Figure 4 shows that the corre-
lation between hyperspectral reflectance and GY for that time-point is
close to zero for each of the 62 wavelengths. To consider average trends,
these were removed from the analysis. Mean accuracies of the H.VEG,
H.HEAD, H.GF, and H.ALL models were 0.37, 0.45, 0.45, and 0.46,

Figure 6 The relationship between individual hyperspectral time-
point prediction accuracy and the average magnitude of the correla-
tions between hyperspectral bands and GY. The absolute values of the
correlations between hyperspectral bands and GY were calculated and
then averaged across the 62 bands for each time-point within each
site-year. Plotted on the x-axis, this represents the average strength of
the relationship between hyperspectral reflectance and GY for each
time-point within each site-year. The y-axis shows the prediction
accuracy for each individual hyperspectral time-point in within site-
year prediction.

n Table 3 Description of the single- and multi-kernel models
tested for prediction within breeding cycle/across managed
treatments and across breeding cycles/within managed treatment

Model Abbreviation

Relationship Matrix
Used to Model the
Genetic Main Effect

Relationship Matrix
Used to Model the
G·E Interaction

Effect

G A H.VEG G A H.VEG

G X
A X
H.VEG X
G + GGxE X X
A + AGxE X X
G + H.VEGGxE X X
A + H.VEGGxE X X

G is the genomic relationship matrix, A is the additive pedigree relationship
matrix, and H.VEG is the hyperspectral relationship matrix derived from BLUEs
calculated across hyperspectral phenotyping time-points collected at the
vegetative stage. Single- and multi-kernel models using relationship matrices
H.HEAD, H.GF, and H.ALL follow the same form as those using H.VEG shown
here.

Volume 9 April 2019 | Spectral Reflectance in Genomic Prediction | 1241



respectively (Figure 8A). The accuracies of the G and A models were
slightly lower, recording averages of 0.25 and 0.28, respectively. When
correcting for DTHD, themean accuracies ofH.VEG,H.HEAD,H.GF,
and H.ALL models were 0.28, 0.34, 0.32, and 0.34, respectively
(Figure 8B). While closer in performance to G and A, the single-kernel
hyperspectral main effects models still conferred an advantage in some
site-years.

Expanding theG andAmodels to account for theG· E interactions
marginally increased accuracies to 0.32 and 0.31 for the G + GGxE and
A+AGxEmodels, respectively. As with prediction within breeding cycle/
across managed treatments, the highest accuracies were observed for the
multi-kernel models that estimated the genetic main effects using
markers or pedigrees and the G· E interactions using hyperspectral
reflectance. Hyperspectral reflectance matrix H.VEG had an average
accuracy of 0.39 when integrated with G and 0.41 when integrated
with A. H.HEAD, H.GF, and H.ALL had average accuracies of 0.46,
0.46, and 0.48, respectively, when integrated with G or A. As before,
for most site-years, these multi-kernel models were observed to have
similar levels of accuracy within each site-year, irrespective of which
hyperspectral reflectance-derived relationship matrix was used to
model the G· E interactions or whether markers or pedigrees were
used to model the genetic main effects.

When compared to the G + GGxE and A + AGxEmodels, estimating
the G· E interactions using hyperspectral reflectance increased pre-
diction accuracy by an average of 0.12 and 0.14, respectively, and by
an average of 0.07 and 0.08, respectively, when correcting for DTHD.
Average improvements over the corresponding single-kernel hyper-
spectral reflectance main effects models ranged from 0.04 to 0.06 and
from 0.06 to 0.08 after correcting for DTHD.

Mean accuracies and standard deviations of all models for the three
prediction schemes can be found in Files S1, S2, and S3, respectively.

DISCUSSION
We proposed a multi-kernel, across-environment GBLUP model that
uses relationship matrices derived from genomic markers, pedigrees,
and aerial hyperspectral reflectance phenotypes to estimate the genetic
main effects and the G ·E interactions in the context of a wheat breed-
ing program. Our study found that deriving a relationship matrix from
high-dimensional hyperspectral reflectance phenotypes - as if they were
genomic markers - for use in GBLUP can be an effective approach for
predicting GY in wheat and in many situations resulted in predictions
accuracies that were equivalent or superior to the use of genomic
markers or pedigrees. This is consistent with similar studies that used
linear and non-linear modeling approaches including ordinary least

Figure 7 Within breeding cycle/across managed treatments prediction accuracies, with and without correction for DTHD. Accuracy is expressed
as the average Pearson’s correlation between predictions and observed BLUPs for GY across 20 random TRN-TST partitions. In each partition, the
TRN set consisted of all records from four out of the five managed treatments within the breeding cycle plus 20% of records from the fifth
managed treatment. Single-kernel models tested were genetic main effects only (G or A) and hyperspectral reflectance main effects (H.VEG, H.
HEAD, H.GF, H.ALL). Multi-kernel models assessed were genetic main effects plus genetic GxE (G + GGxE, A + AGxE) and genetic main effects plus
hyperspectral reflectance GxE (e.g., G + H.VEGGxE, A + H.ALLGxE, etc.). The color corresponds to the developmental growth stage of the site-year
at the time of phenotyping. Error bars are the standard deviation of prediction accuracy for the 20 random partitions.
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squares, partial least squares, Bayesian shrinkage, and functional
regression methods to predict grain in maize and wheat with
hyperspectral reflectance data (Aguate et al. 2017; Montesinos-
López et al. 2017a).

The heritabilities of the hyperspectral wavelengths and their corre-
lations with GY were not homogeneous across time-points, growth
stages, breeding cycles, or managed treatments. Wavelengths between
398 and 425 nm were observed to have the lowest heritabilities while
those below 500 nm tended to have the weakest correlations with GY.
These results are consistent with a similar study of canopy reflectance in
wheat (Hansen and Schjoerring 2003) that found low signal-to-noise
between 400 and 438 nm. According to Mahlein et al. (2015), the
hyperspectral imaging systems most commonly used in agriculture
have poor sensitivity to reflectance in the blue region of the light spec-
trum (400-500 nm). Despite this, Montesinos-López et al. (2017a)
showed that removing wavelengths with low heritability did not
improve prediction accuracies when using hyperspectral reflectance
to predict GY in wheat. Based on this result, we used all hyper-
spectral wavelengths to build relationship matrices for prediction.
However, the blue region of the light spectrum contains important
information on the optical properties of plants, including the ab-
sorbance maxima of chlorophyll a, chlorophyll b, and carotenoids
(Lichtenthaler 1987; Horton et al. 1996). Further advancements in
the ability of hyperspectral imaging to accurately record reflectance
in the blue region may potentially improve prediction accuracies for
grain yield.

Whenpredicting lineperformancewithina site-yearof interest,most
site-years recorded at least one individual hyperspectral time-point with
prediction accuracy equivalentor superior topredictionwithmarkers or
pedigrees, suggesting thathyperspectral reflectancephenotypesmaybea
useful alternative for generating predictionswhenmarkers andpedigree
are not available. We also found that combining multiple time-points
into hyperspectral BLUEs for a given growth stage generally did not
improve accuracy beyond the average accuracy across the individual
time-points. In practice, however, GY data would not be available to
inform the identification of the most predictive time-points. Therefore,
phenotyping at multiple time-points throughout the growing season to
developmulti-time-point BLUEsmay be an effective approach to buffer
against time-points with low prediction accuracy.

It is also possible that some information pertaining to plant growth
and development is lost when integrating multiple time-points using
means-based approaches. An alternative that may more fully capture
temporal variations couldbe tomodel a growth curvebasedon reflectance
data for each line in each site-year, as in Verhulst et al. (2011). A greater
number of time-points than were measured in this study may be
required to accurately develop growth curves. In addition, statistical
methods that can integrate multiple curves from a range of hyper-
spectral bands may be needed. Further research in this area should be
performed to compare prediction accuracies of hyperspectral reflec-
tance-based growth curves vs. those achieved in this study.

Correcting results forDTHDreduced accuracieswhenhyperspectral
reflectance-derived relationship matrices were used, but not for marker

Figure 7 Continued.

Volume 9 April 2019 | Spectral Reflectance in Genomic Prediction | 1243



or pedigree matrices. These results suggest that the hyperspectral re-
flectance measurements are also capturing physiological parameters
associated with relative maturity. The greatest reductions in accuracy
were observed in the Drought and Severe Drought managed treat-
ments, where GY is typically associated with earliness. This is con-
sistent with Rutkoski et al. (2016), which found that correcting for
DTHD in wheat GY reduced the prediction accuracies of multivariate
GS models integrating NDVI and canopy temperature measurements
with markers and pedigrees. The CIMMYT bread wheat breeding
program maintains a high level of diversity for DTHD in germplasm
development due to its wide target of geographic regions. For breed-
ing programs with high levels of variation for DTHD, it may be
advisable to perform a correction for DTHD when predicting GY
using hyperspectral reflectance so as to avoid indirect selection on
relative maturity.

To test our proposed prediction approaches in amulti-environment
context, we developed two prediction schemes. In the first, predictions
were performed within a breeding cycle for genotypes that have been
evaluated under some treatments but not others. In the second,
predictions were performed across breeding cycles onto genotypes
that were not previously evaluated. Overall, prediction accuracies in
the second scheme were lower than for the corresponding models

in the first, which is consistent with previous studies showing that
predicting the performance of newly developed lines is more chal-
lenging than the prediction of lines that have been evaluated in
correlated environments (Burgueño et al. 2012; Crossa et al. 2014).

Ifmarkers or pedigrees are not available, our results showed that
predicting GY with hyperspectral reflectance-derived relationship
matrices alone in single-kernel models could provide similar
results in terms of accuracy. It should be noted that this study
was conducted at the yield trial stage of the breeding programwhen
families contain fewer full-sibs and the variance due to Mendelian
sampling is low. As pedigrees do not account for Mendelian
sampling, it is possible that prediction with hyperspectral reflec-
tance may be more advantageous than pedigree-based GS at earlier
stages of the breeding program in which families contain greater
numbers of full-sibs, though further research is needed to assess the
ability of hyperspectral reflectance to distinguish within-family
variation.

The optimal prediction accuracies were achieved by building com-
binedmodels that usedmarkers or pedigrees tomodel the genetic main
effects and hyperspectral reflectance to model theG· E interactions.
However, in prediction across breeding cycles within a managed
treatment, the improvements in accuracy with the addition of

Figure 8 Across breeding cycles/within managed treatment prediction accuracies, with and without correction for DTHD. Accuracy is expressed
as the average Pearson’s correlation between predictions and observed BLUPs for GY across 20 random TRN-TST partitions. In each partition, the
TRN set consisted of all records from three out of the four of the breeding cycles for the managed treatment plus 20% of records from the fourth
breeding cycle. Single-kernel models tested were genetic main effects only (G or A) and hyperspectral reflectance main effects (H.VEG, H.HEAD,
H.GF, H.ALL). Multi-kernel models assessed were genetic main effects plus genetic GxE (G + GGxE, A + AGxE) and genetic main effects plus
hyperspectral reflectance GxE (e.g., G + H.VEGGxE, A + H.ALLGxE, etc.). The color corresponds to the developmental growth stage of the site-year
at the time of phenotyping. Error bars are the standard deviation of prediction accuracy for the 20 random partitions.
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markers or pedigrees were marginal when compared to the corre-
sponding single-kernel hyperspectral reflectance models. This result
was similar to Montesinos-López et al. (2017b), which found that the
addition of markers or pedigrees did not significantly improve accu-
racy. The modest increases observed when predicting across breeding
cycles within a managed treatment may not justify the added invest-
ment of marker genotyping.

When considering the optimal developmental growth stages during
which to collect hyperspectral reflectance data, there were some differ-
ences in accuracy among growth stages when predicting with single
hyperspectral phenotyping time-points within a site-year. Overall, the
time-points from the HEAD and GF stages showed slightly higher
accuracies than those collected during the VEG stage. However, when
predicting across site-years, the advantage of phenotyping later in
the season was reduced, particularly for the multi-kernel models
that combined markers or pedigrees with hyperspectral reflec-
tance-derived relationship matrices, where most often there was
no considerable difference in accuracy among the different growth
stages. Montesinos-López et al. (2017a) observed clear optimal
time-points for hyperspectral phenotyping in a multi-environment
context. However, their study represented a balanced scenario in
which all lines in all environments were phenotyped an equal number
of times, and individual phenotyping time-points could be used to
predict across environments. While classifying time-points according
to the predominant growth stage at the time of phenotyping repre-
sents a simple and efficient method for predicting across site-years,
it is somewhat difficult to compare results between growth stages.

The numbers of time-points observed for each growth stage were
not consistent within and across site-years. In addition, the growth
stage classifications used were dependent on the predominant growth
stage of the site-year and did not reflect the variation in phenology
within the site-year at the time of phenotyping. These challenges may
warrant further investigation into multi-environment prediction
when HTP datasets are unbalanced in the number of time-points
observed and at which stage of crop development those observations
were recorded.

While our results suggest that hyperspectral reflectance datahave the
potential to add value to a breeding program by providing accurate GY
predictions, the data used in this study were collected on large plot sizes
that are suitable for measuring GY per se. While our approach may
provide breeding programs with GY predictions earlier in the growing
season, enabling more efficient allocation of resources at harvest, a
potentially greater benefit could come from utilizing this method for
smaller plot sizes where there is limited seed available to replicate and
reliably assess yield. To address this, we are currently evaluating the use
of aerial HTP at the early generation stage when measuring GY is not
feasible.

The integration of highly dimensional data, such as hyperspectral
reflectance, into relationship matrices for use in GBLUP has several
advantages. First, there is no additional development in statistical
software required to implement the proposed models. Many options
for fitting GBLUP such as “rrBLUP”, “GAPIT”, and “BGLR” are cur-
rently available and are being increasingly used. The models proposed
here can be readily implemented in these or other existing software

Figure 8 Continued.
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without requiring additional user training. In addition, with the devel-
opment of improved hyperspectral sensors that register reflectance at
wavelengths ranging from 400 to 2500 nm, it is likely that the number
of data points available for predictionwill continue to increase. By using
the relationship matrix-based approach to GBLUP that we have pro-
posed, these increases in data dimensionality will neither influence the
complexity of the GBLUP model, nor will they increase the compu-
tation time of the model itself. This approach could also be useful for
integrating different types of highly dimensional phenotypes for pre-
diction, such as ionomics and metabolomics data (Riedelsheimer
et al. 2012). Rincent et al. (2018) recently showed that relationship
matrices derived from near infrared spectroscopy absorbance of win-
ter wheat grains and powdered leaf tissue between 400 and 2500 nm
provided yield prediction accuracies that were superior to marker-
based GBLUP approaches. Further research should be performed to
assess the potential for this relationship matrix-based approach to be
applied to other forms of biological data.

Conclusion
In this study, we have proposed a multi-kernel GBLUPmodel that uses
genomic marker-, pedigree-, and hyperspectral reflectance-derived
relationships matrices to model the genetic main effects and G· E
interactions across environments within a bread wheat breeding pro-
gram. We have shown that deriving relationship matrices from aerial
hyperspectral reflectance phenotypes can effectively predict GY in
wheat within and across managed treatments and breeding cycles.
Accuracies when testing single-kernel models using hyperspectral re-
flectance data alone are similar to those achieved with markers or
pedigrees. Our results also show that combining markers/pedigrees
with hyperspectral reflectance data in multi-kernel models can increase
accuracies over single-kernel approaches, but in some prediction sce-
narios, these increases were modest. We also suggested a method for
addressing the issue of unbalanced HTP datasets involving the classi-
fication of time-points according to the predominant developmental
growth stage observed at the time of phenotyping. Accuracies of multi-
kernel models were roughly equivalent irrespective of the growth stage
in which hyperspectral phenotyping was performed. Further research
on how best to leverage multi-temporal phenotypes when the amount
of data differs across site-years is needed. The methods we have pro-
posed provide a simple and computationally efficient approach for
integrating highly dimensional aerial HTP information into genomic
selection and should be tested on other forms of high dimensional
biological data.
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