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Abstract

Motivation: Influenza viruses represent a global public health burden due to annual epidemics and pandemic poten-
tial. Due to a rapidly evolving RNA genome, inter-species transmission, intra-host variation, and noise in short-read
data, reads can be lost during mapping, and de novo assembly can be time consuming and result in misassembly.
We assessed read loss during mapping and designed a graph-based classifier, VAPOR, for selecting mapping refer-
ences, assembly validation and detection of strains of non-human origin.

Results: Standard human reference viruses were insufficient for mapping diverse influenza samples in simulation.
VAPOR retrieved references for 257 real whole-genome sequencing samples with a mean of > 99:8% identity to
assemblies, and increased the proportion of mapped reads by up to 13.3% compared to standard references.
VAPOR has the potential to improve the robustness of bioinformatics pipelines for surveillance and could be
adapted to other RNA viruses.

Availability and implementation: VAPOR is available at https://github.com/connor-lab/vapor.

Contact: southgateJA@cardiff.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Influenza viruses are enveloped, single-stranded, segmented
negative-sense RNA viruses of the family Orthomyxoviridae.
Influenza A and B have eight genome segments, with major antigen-
ic recognition sites within the two proteins haemagglutinin (HA)
and neuraminidase. Accumulation of point mutations within the
antigenic recognition sites of HA and neuraminidase can result in
host immune evasion, thereby causing annual seasonal epidemics
(Petrova and Russell, 2018; Taubenberger and Kash, 2010). Current
estimates suggest that seasonal influenza A and B cause 4–5 million
severe infections (Tafalla et al., 2016) in humans with �291 000–
645 000 (Iuliano et al., 2018) deaths per year globally. Furthermore,
influenza type A is a zoonotic virus infecting a wide range of avian
and other non-human species (Sautto et al., 2018). These viruses
have the capability to reassort leading to the emergence of new
strains (Bouvier and Palese, 2008), which can result in pandemics.

Whole-genome sequencing (WGS) has been used to study the in-
fluenza virus genome for over a decade and is emerging as an

important tool in research and surveillance (Holmes et al., 2005;
McGinnis et al., 2016; Meinel et al., 2018; Rutvisuttinunt et al.,
2013). Protocols have been developed (Zhou et al., 2009, 2014) that
facilitate routine monitoring of isolates by public health organiza-
tions, as well as the study of transmission events (Houlihan et al.,
2018; Meinel et al., 2018). Two important data sharing resources
exist to this end; the NCBI Influenza Virus Resource (NIVR) (Bao
et al., 2008), and the Global Initiative on Sharing All Influenza Data
(Shu and McCauley, 2017), wherein over a hundred thousand influ-
enza genome segment sequences can be found at the time of writing.
Sequencing can be performed directly from clinical swabs with
single-reaction genomic reverse transcription polymerase chain reac-
tion (RT-PCR) (Goldstein et al., 2017; Zhou et al., 2009).
Furthermore, bioinformatics pipelines have begun to be developed
for efficient processing of this data (Borges et al., 2018; Wan et al.,
2015).

Despite the increasing application of next-generation sequencing
to influenza, the pitfalls associated with current bioinformatics
approaches have not been explored in depth. Influenza virus de
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novo assembly also poses additional challenges due to biological
population complexity and additional error resulting from RT-PCR
(Hunt et al., 2015; Orton et al., 2015). Firstly, we aim to provide evi-
dence that current mapping approaches can, due to diversity of influ-
enza genome sequences, routinely result in unmapped reads and
potential data loss. This has been previously noted in study of human
immunodeficiency virus (Wymant et al., 2018). If reads are lost dur-
ing mapping, coverage may appear to be poor, and downstream anal-
yses, such as SNP analysis, estimates of viral intra-host diversity or
even reconstructed sequences, may be biased. Furthermore, in the
worst case, sequences of zoonotic origin may fail to be identified,
resulting in a dataset that appears to be low coverage, missing seg-
ments or missing potential future pandemic reassortments. Whilst
alternatives, such as read classification by mapping to a large data-
base of influenza sequences (Yu et al., 2014) and subsequent de novo
assembly can help to resolve this issue, such pipelines are often com-
plex, slow and require expertise that is not necessarily available in
routine surveillance. Furthermore, even with recent assembly pro-
grams, misassembly can occur (Wymant et al., 2018). We aim to
show that this problem can be resolved by classification of isolates
from reads prior to analysis by directly querying a De Bruijn graph
(DBG) built directly from Illumina sequencing reads. Mapping reads
directly to a DBG has been previously argued to be less biased than
that of mapping to assembled contigs (Limasset et al., 2016).
Directly querying DBGs instead of assembled sequences has been pre-
viously addressed (Holley and Peterlongo, 2012; Limasset et al.,
2016; Liu et al., 2016; Salmela and Rivals, 2014), although most pre-
vious work has focussed on mapping reads to a DBG, and not diverse
RNA virus gene sequences. Instead of mapping reads to a DBG, we
sought to develop a method for querying short influenza genome
sequences against a short-read DBG in order to retrieve the most
similar reference. We compare our tool, VAPOR, with both a slow
BLAST-based (Altschul et al., 1990) approach and fast k-mer-based
MASH (Ondov et al., 2016), and show superior or equivalent results
in several use cases with reasonable runtimes.

2 Materials and methods

2.1 WGS datasets
Total RNA was extracted from patient samples using the NucliSens
easyMAG instrument according to the manufacturer’s instructions.
Following RNA extraction, a one-step RT-PCR (Quanta biosciences
qScript XLT kit, following manufacturer’s instructions) was then
undertaken to generate DNA for sequencing using the primers previ-
ously described for influenza A (Zhou et al., 2009) and influenza B
(Zhou et al., 2014). Sequencing was performed using Illumina
sequencing instruments. Libraries were prepared using NexteraXT,
and samples were then multiplexed for sequencing. Samples were
run on a MiSeq (2 �250 bp V2 kit—44 samples) and NextSeq
(2 �150 bp Medium Output kit—213 samples). In total, 257 sam-
ples were utilized. Short-read data can be found at s3.climb.ac.uk/
vapor-benchmark-data/vapor_benchmarking_realdata_reads_filtered_
18_03_18.tar, or hosted at the European Nucleotide Archive under
project accession PRJEB33950.

For publicly available data, any reads that were classified as
human by Kraken2 (Wood and Salzberg, 2014), or those that
mapped to the hg38 human genome with Minimap2 (Li, 2018),
were removed.

These WGS datasets were then processed by extraction of influ-
enza reads by mapping with Minimap2 (Li, 2018) to eight curated
influenza segment reference.fasta files (19 594 sequences in total),
one at a time. These reference files were prepared by downloading
all available influenza segment sequences from the NIVR (https://
www.ncbi.nlm.nih.gov/genomes/FLU/) and clustering to 99.5%
identity with cd-hit-est (Li and Godzik, 2006). Extracted reads were
assembled with IVA (Hunt et al., 2015). For all 257 fastq file pairs
used, a near-full-length ð> 90%Þ contig could be assembled for at
least one major segment protein. Samples for which a contig could
not be assembled were not used. In total, 1495 segment contigs were
included.

2.2 Mapping assessment
Four mapping programmes were assessed in this analysis:
Minimap2 (Li, 2018), BWA-MEM (Li and Durbin, 2009), NGM
(Sedlazeck et al., 2013) and Hisat2 (Kim et al., 2015). These tools
were used to represent a range of algorithms and intended use cases,
in order to assess whether robustness to influenza data is a common
problem, or whether it can be addressed by choice of tool. Default
settings were used for all tools. Each experiment can be reproduced
using the code and instructions found at github.com/connor-lab/
vapor_mapping_benchmarking. Four mapping simulations were
performed in total.

For assessment of the sufficiency of single reference strains for
mapping diverse samples, two simulations were performed. For as-
sessment of robustness to species origin, read sets were simulated
with ArtificialFastqGenerator (Frampton and Houlston, 2012) from
552 avian, 16 679 human and 4054 swine H1N1 HA coding sequen-
ces from the NIVR (Bao et al., 2008). An additional 0.05% in silico
substitution was introduced into simulated reads to account for
RT-PCR technical errors and biological intra-host variation. This
rate was chosen to be in accordance with experimental observations
made by Orton et al. (2015). Reads were then mapped to the
A/California/07/2009 (H1N1) HA reference sequence. For assess-
ment of robustness to divergence, technical and biological noise,
reads were simulated from A/Perth/16/09 (H3N2) HA, with add-
itional in silico mutation with per-base rates between 2 and 16%,
performed uniformly across the chosen reference sequence; reads
were simulated as above, then mapped back to A/Perth/16/09
(H3N2). This was performed 1000 times for each mutation rate.
A/California/07/2009 (H1N1) and A/Perth/16/2009 (H3N2) were
used as references since they are common clade representatives.
Samtools (Li et al., 2009) was used to retrieve successfully mapped
reads, which were then counted.

For comparison of mapping with and without VAPOR classifica-
tion, and potential zoonotic virus detection, two simulations were
performed using 33 133 unique approximately full-length influenza
A HA coding sequences of any lineage or species, downloaded from
the NIVR. In the first case, 5000 pairs of sequences were chosen ran-
domly; the first of the pair was used for read simulation as above,
and the second as a mapping reference. In the second simulation, a
single sequence was randomly chosen for read simulation, and the
reference was chosen by VAPOR version 1.0.1. This process is
shown in Supplementary Figure S1. As before, successfully mapped
reads were extracted with samtools, then counted.

To assess the potential benefit of classification with VAPOR on
real data, 206 of 257 fastq file pairs were subjected to mapping with
Minimap2 with default settings for short reads (-x sr), both with
and without VAPOR classification. A total of 51 out of 257 samples
with <1000 HA reads were excluded to avoid very low coverage
samples skewing calculation of mean percentage gain. In the first
case, reads were mapped to a set of 4 HA references from different
subtypes: A/Perth/16/2009 (H3N2), A/California/07/2009 (H1N1),
B/Florida/4/2006 (Yamagata) and B/Brisbane/60/2008 (Victoria). In
the second case, VAPOR was used to choose a single reference from
53 758 influenza A and B HA references. The number of reads map-
ping and the number passing VAPOR pre-filtering was recorded in
each case.

2.3 Algorithm overview
2.3.1 Definitions

Let R ¼ fr1; r2; . . . ; rjRjg and S ¼ fs1; s2; . . . ; sjSjg be indexed multi-
sets of strings (sequencing reads and references, respectively), over a
common alphabet R ¼ fA;T;C;Gg, where jRj denotes the cardinal-
ity of set R. LetW ¼ ðN;E;WÞ be a weighted DBG built from reads
R, where N, E and W are sets of nodes (k-mers), edges (k�1-mers)
and node weights (sequencing depth for some k-mer), for some k �
2 (by default k ¼ 21). We assume a model read generation process
reflective of RNA virus sequencing: let the multiset X ¼ fx1;
x2; . . . ; xjXjg, be a population of virus sequences (quasispecies) for
some gene, for which we suppose there is some major variant x*
with the greatest multiplicity. Let reads R be generated from this
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population, with varying coverage across the gene (possibly by sev-
eral orders of magnitude), and additional errors (due to RT-PCR
and sequencing). We attempt, using heuristics, to find a reference
that is similar to x*.

2.3.2 Mapping and scoring

VAPOR maps each reference s againstW, such that the ith k-mer of
s, denoted s[i, iþk] is either mapped to some node n 2 N, or
mapped to a gap. We note that s[i, iþk] does not have to equal n.
Let s0 be the string representation of the path mapped to by s.
Figure 1 demonstrates the concept of this mapping.

We next formulate a scoring function fWðs; s0Þ. We chose to fa-
vour sequences for which there is high weight inW; due to the high
degree of variation in RNA virus datasets, and large number of
closely related reference sequences, many k-mers may be present in
the W at low frequency, such that there may be several reference
sequences which correspond exactly to a path in W. Conversely,
since sequencing depth in these datasets may be highly skewed, we
seek to also reward matches which cover a greater proportion of the
reference, rather than those that have high depth for a short subse-
quence, then poor matches elsewhere. In order to capture this trade-
off, we define:

fWðs0; sÞ ¼ wðs0Þ �
Xjsj

i¼1

Midðs0i; siÞ (1)

where wðs0Þ is the fraction of non-gap bases of s0; jsj is the length of
string s and Mi is the maximum sequencing depth of k-mers that
overlap with the ith base of s

0
. That is, for the sequence of node

weights wi with corresponding k-mer nodes ni of s0; Mi ¼
maxfw�i ;w�iþ1; . . . ;wig, where �i ¼ maxð0; i� kþ 1Þ and dðs0i; siÞ ¼ 1
if s0i ¼ si, and 0 otherwise. Since any reference can be mapped onto
the graph in many ways, we attempt to heuristically find high scor-
ing placements.

2.3.3 Pre-processing

VAPOR first filters reads to remove non-target sequences (e.g. bac-
terial) and decide orientation of reads. As input, VAPOR takes a
fasta file of full or approximately full-length reference segment
sequences, and a.fastq (or.fastq.gz) file of WGS reads. Firstly,
VAPOR builds a set of k-mers U from all reference sequences. Next,
the ith read is decomposed into a set of non-overlapping subsequen-
ces of length k (words), Ai, and if jAi \Uj=jAij � t (the proportion
of read words also present in the references), where jAj gives the
number of elements of the set A, for some specified parameter t, the
read is discarded. This is repeated for the reverse complement; if
both are kept, the highest score decides orientation. Furthermore, in
order to try to eliminate erroneous k-mers, any node nj 2 N with
corresponding weight wj 2W less than a coverage parameter c is
discarded.

2.3.4 Core algorithm

Firstly,W is built from the filtered reads. Then for each input refer-
ence sequence, s, the core algorithm of VAPOR makes use of a heur-
istic seed-and-extend procedure to find a high scoring mapping of s
onto W. Each reference sequence, s, with length jsj, is decomposed
into a sequence of k-mers. Querying proceeds in four phases, where
the query is walked along the wDBG: k-mer seeding, trimming,
bridging and scoring. We seek to simultaneously perform the map-
ping and compute the array M0 ¼ ðM1dðs1; s

0
1Þ;M2dðs2; s

0
2Þ; . . . ;

Mjsjdðsjsj; s0jsjÞÞ as in (1). Firstly, an array a is initialized from exact
k-mer matches, where am is the weight of the mth k-mer of the refer-
ence, and any not in N are set to zero. For speed considerations,
only a subset of seed arrays is extended: those with a fraction
of non-zero elements greater than a user-defined parameter
–min_kmer_cov (default: 0.1), and in a top user-defined percentile
–top_seed_frac (default: 0.2). In order to reduce the number of sub-
optimal exact matches, seeds are trimmed. Each seed (sequence of
k-mer matches) in the array a, is trimmed back (set to zero) at both
ends until a suboptimal branch points in the graph within q posi-
tions of the end of the seed is found. This procedure is used to heur-
istically prevent suboptimal seeds to low coverage regions of the
wDBG, possibly generated by error or low frequency variants. Next,
bridging is performed. For the ith gap (run of zeros) in a of length l,
a bridge bi is formed by walking l locally optimal (where there is a
branch, the edge with the highest weight) edges in the wDBG from
the last matching k-mer. As such, bridging attempts to extend a
mapping with only exact matches to one with inexact matches.
Next, the array M is computed by (i) inserting bridge k-mer weights
and (ii) re-calculating the weight at each position j as Mj (as defined
in mapping and scoring). Finally, each bridge, bi, a string, is then
compared to the ith gap string, the original substring in the reference
sequence corresponding to the gap, in order to compute dðs0j; sjÞ as in
(1). For any sj in an exact match, dðs0j; sjÞ ¼ 1 by definition. Figure 2
shows the steps involved in computing the array M

0
for an example

graph mapping.
VAPOR is implemented in Python3, with source code available

at github.com/connor-lab/vapor.

2.4 Classification benchmarking
VAPOR was compared to MASH (Ondov et al., 2016) and BLAST
(Altschul et al., 1990) read classification by simulation. BLAST con-
sensus classification was performed by BLASTing each read, taking
the best scoring references by e-value then bit-score, summing the
number of times each result occurs in all reads and returning the
most frequent. Reads were simulated as follows: a reference, s0, was
chosen from 46 724 unique approximately full-length influenza A
HA sequences from the NIVR, and mutated uniformly with a given
probability (0.01, 0.02, 0.03) to generate a mutated sequence sm;
reads were simulated with ArtificialFastqGenerator as before, with a
higher uniform error rate of 1%, in order to provide a challenging
classification task representative of difficult datasets. To provide an
additional challenge, we simulated an intra-host population with
four minor sequences, mixed in the ratio of 100:5:1:1:1, with each

A

B

Fig. 1. Simplified VAPOR algorithm. Firstly, pre-processing and graph construction

is performed (A), where target reads R (solid black lines) are filtered from non-target

(e.g. bacterial) reads (dotted lines) using a fast k-mer comparison to references S.

This is followed by wDBG construction. Then, mapping and scoring is performed

simultaneously (B), where each reference sequence s (dashed line) is mapped to the

wDBG, W, built from these reads. This is done in two main steps: exact k-mer

matching (black circles) and extension (white circles) by heuristic graph traversal
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minor sequence additionally mutated by 1% relative to the major
sequence.

This process was performed 500 times for each category.
Performance was assessed as follows: the Levenshtein distance of
the mutated sequence sm was taken with respect to the original se-
quence so as a baseline, denoted by Lðsm; soÞ; the reads were classi-
fied by each tool with all 32 804 references as a database, and the
best hit sc returned by each were compared to the mutated sequence
to obtain L(sm, sc). Global alignment was performed with the pair-
wise2 module of Biopython (Cock et al., 2009) (with cost parame-
ters 0, �1, �1, �1, corresponding to Levenshtein distance).
We defined the additional Levenshtein distance, LA ¼ Lðsm; scÞ�
Lðsm; soÞ. This distance was chosen because, for mutated sequences,
it captures the additional error in classification beyond that caused
by uniform mutation to the original reference. We note that L(so,
sm) may occasionally be suboptimal, i.e. there may exist so such that
Lðso; smÞ < Lðso; smÞ where in silico mutations introduced resulted
in a sequence more similar to some other sequence in the database
than the original.

For real datasets, 257 raw fastq file pairs that produced full-
length contigs for at least one segment were chosen from the
sequencing runs described above. The assembled contigs were anno-
tated with BLAST (sorting by e-value, bit-score and length), and raw
reads classified by VAPOR. The percentage identity (PID) of
VAPOR classifications to each contig was recorded.

2.5 Detection of reassortments and zoonotic strains
For assessment of reassortment classification, two simulations were
performed. Firstly, 9659 avian, 18 308 human and 2893 swine com-
plete influenza genome sets were downloaded from the NIVR and
250 influenza human genome sets were randomly selected. Another
250 were randomly selected with a single segment swapped with a
randomly chosen avian or swine influenza segment. For each, 1000
reads from each segment were simulated uniformly with an error
rate of 0.5%. Each set of reads was classified with VAPOR. For the
reference strains chosen by VAPOR for each segment, respective HA
sequences were compared by global alignment, and PID taken. If the
maximum pairwise distance between chosen strain HA sequences
exceeded a given threshold v, a classification of true was returned.
Receiver operating characteristic curves were generated by varying
the parameter v. For assessment of intra-subtype reassortment

classification, the same experiment was performed with randomly
chosen H3N2 genomes.

2.6 Computational resources and performance

benchmarks
In all cases, experiments were performed natively on a 96 core,
1.4 TB memory CentOS version 7.4.1708 virtual machine hosted by
Cloud Infrastructure for Microbial Bioinformatics (CLIMB)
(Connor et al., 2016), with GNU parallel (Tange, 2011) where
required. Basic time and space benchmarks comparing BLAST and
VAPOR were performed with GNU-time (wall-clock time, max-
imum resident set size). The largest 11 influenza A samples with at
least 1% (between 1 and 16%) of reads identifiable as influenza
(samples 36, 51, 93, 95, 100, 101, 105, 113, 114, 131, 155) were
randomly sub-sampled to between 200 000 and 2 000 000 reads
(total for a pair of fastq files). BLAST and VAPOR were used to
query a database of 47 073 influenza A HA gene sequences. For
BLAST, reads were first converted to fasta files, which was not
included in the benchmark time. For BLAST, tabulated output was
specified (-outfmt 6), and output redirected to/dev/null in order to
reduce I/O time (assuming a tool using BLAST for classification
would not parse output files). VAPOR was also benchmarked on a
laptop with an IntelV

R

CoreTM i7-6600U CPU @ 2.60 GHz with
8 GB of memory, using the same samples without sub-sampling
(mean read total 6 600 000).

3 Results

3.1 Benchmarking single-reference mapping
A range of mapping programmes (Minimap2, BWA-MEM, Hisat2
and NGM) were compared to assess possible data loss when single
references are chosen for mapping of short reads from influenza virus
WGS datasets. For the first experiment, simulated reads from 16 679
human, 552 avian and 4054 swine H1N1 HA sequences retrieved
from the NIVR were mapped to the reference strain A/California/07/
2009 (H1N1). Reads were simulated with an additional 0.05% error
on top of simulated sequencing error to account for the combined ef-
fect of intra-host population variation and RT-PCR error. This error
rate was found to be conservative when compared to the raw error
rate in our datasets, as shown by Supplementary Figure S3, which
was frequently higher than 2%. The proportion of successfully
mapped reads for each tool and host species is given in Figure 3. In
this case, using a single reference strain with any of the programmes
resulted in unmapped reads. NGM resulted in the lowest average per-
centage of unmapped reads. When utilizing a database of all H1N1
sequences from human hosts, Minimap2, NGM, BWA-MEM and
Hisat2 had mean mapping percentages of 87.2, 92.2, 89.1 and
84.9% respectively; as such, even for these influenza sequences, data
loss was not uncommon, possibly due to samples in the database rep-
resenting human infection from zoonotic strains. However, for avian
and swine samples, read recovery was poor. For NGM, only 34.1%
of avian reads mapped successfully on average. Swine sequences were
mapped with intermediate success. This provides evidence that,
should zoonotic strains be sequenced in routine surveillance, they
may fail to map entirely, and go undetected.

Secondly, in order to assess how read recovery varies with se-
quence divergence, reads were simulated by taking the coding se-
quence of A/Perth/16/09 HA and subjecting it to in silico uniform
mutation at specified rate, with additional read error of 0.05% as
before (Supplementary Fig. S4). For all mapping programmes, at
�10% mutation, read recovery begins to regularly diminish, which
is insufficient for robust mapping of influenza strains from different
species. Furthermore, for several of the programmes tested, mapping
quality was suboptimal beyond 1–3% mutation.

3.2 Simulation classification performance
In order to assess the performance of classification from simulated
reads, our tool, VAPOR, was compared to MASH and consensus
BLAST classification. Reads were simulated from randomly selected

A

B

C

Fig. 2. Scoring procedure for an example graph mapping. An example mapping of a

reference s (dashed line) to a graph W (solid lines), with exact matches (black

circles) and inexact matches (white circles), is shown (A), with string representation

of the path, s
0
(B). Firstly, a weight array a is retrieved for which ai gives the weight

of the ith reference k-mer in the wDBG, where gaps are given a weight of zero.

These exact matches are then extended with bridges b to inexact matches. Next,

per-base weights M are calculated such that each base is given the greatest weight of

any k-mer that includes it, which also functions to assign weights to terminal char-

acters of a string (or substring before a gap) that do not have k-mers (such as ‘TA’ at

the fourth position). Finally, the array M
0
is computed as M

0

i ¼ di �Mi, where di ¼ 1

if s0i ¼ si, and zero otherwise. For our classifier, we chose to multiply the sum of this

array by the fraction of non-gap (non-zero) positions, in order to penalize high

weight, high gap mappings
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H1N1 HA sequences mutated with a given uniform per-base prob-
ability, with additional read error of 1% to provide challenging
datasets. A fourth category included simple simulated intra-host
populations (denoted as 3%/Q). Figure 4 shows the additional
Levenshtein distance, LA, for each tool. Mean coverage for simu-
lated reads was 77.76 for single-sequence simulations, and 96.03 for
simulated intra-host populations. The average additional distance of
retrieved sequences for MASH were 4.69, 5.24, 6.83 and 7.28,
showing some sensitivity to additional simulated variant noise; for
all cases mean additional distance for BLAST and VAPOR were
below 0.74 and 0.88, respectively. For MASH, the 75, 95 and 99%
percentiles for retrievals for the 3% threshold were 11.00, 24.00
and 37.04. However, for BLAST and VAPOR, these percentiles
were under 12 and 14, respectively, for all cases. These results show
that references chosen by BLAST and VAPOR were often near-
optimal or optimal, despite a large amount of noise, and that the
performance difference between these approaches was small. These
results show that the algorithm used by VAPOR facilitates accurate
classification of influenza strains directly from reads, comparable in
accuracy to BLAST for WGS read sets, which is generally not com-
putationally tractable for datasets with millions of reads (shown in
Supplementary Fig. S7).

3.3 Real data classification performance
In order to validate the performance of VAPOR directly on real
datasets, we took raw reads from 257 samples corresponding to
1495 segment contigs previously processed and assembled with
IVA, with a single full-length contig each previously annotated by
BLAST. In each case, corresponding reads were classified by
VAPOR. The chosen reference was compared by global alignment
to the assembled full-length contigs. Figure 5 gives a scatter plot
showing the PID of references retrieved by VAPOR to the assembled
contig versus the PID of references selected by BLAST classifications
of contigs. Comparison to BLAST classification of contigs was used
to provide a baseline near-optimal classification. The mean PID be-
tween contig and VAPOR classification was 99.82%. In the case of

NS1, VAPOR outperformed BLAST annotation of assembled con-
tigs, with a mean of 99.48 versus 98.74%. On closer inspection, this
was a result of the method used to sort BLAST results combined
with the presence of a sequence with an additional 150–200 bp of
the 30 untranslated region (UTR). Removal of this sequence and
sorting by PID resulted in a mean of 99.45 and 99.93%, respective-
ly. These results show that in most cases tested, VAPOR was able to
accurately identify a sample from reads with comparable perform-
ance to BLAST annotation of assembled contigs. We note that, for
some contigs, neither BLAST nor VAPOR could achieve classifica-
tions with a PID >97%. Manual examination of these samples
showed large deletions, with at least one a likely misassembly (dele-
tion including start codon, inclusion of 50 UTR).

3.4 Mapping with pre-classification
Raw mapping performance was also assessed on real data by map-
ping datasets with Minimap2 with and without pre-classification.
Figure 6 shows the number of additional reads mapped when pre-
classification was performed. In all but one case, this resulted in a
greater number of mapped reads, with a mean of 7816.03, corre-
sponding to a mean percentage gain of 6.85%, including a case with
over 68 000 additional reads. The maximum percentage increase
was 13.32%. An outlier did occur where the number of mapped
reads decreased. In this case, VAPOR identified several thousand
more reads as influenza than were mapped. On further inspection,
for this sample, reads mapped to both A/Perth/16/09 (H3N2) and A/
California/07/09 (H1N1), indicating that the sample represented in-
fluenza from two different subtypes. As such, this sample repre-
sented a true biological coinfection or a contamination and could
not be mapped to a single reference.

For simulations with randomly selected pairs from any species,
mean recovery rates were <20% without pre-classification
(Supplementary Fig. S5). However, with pre-classification using
VAPOR, the mean was over 99.72% for all tools, demonstrating

Fig. 3. Histogram showing proportion of mapped reads, by software and dataset.

Reads were simulated for each dataset retrieved from the NIVR: 16 679 Human

H1N1 HA (left column); 552 avian H1N1 HA (middle column); 4054 Swine H1N1

HA (right column). All sequences were mapped to California/07/2009. For human

viruses, most simulated datasets mapped successfully, although even for this dataset,

around 10% of samples had some proportion of unmapped reads. However, for

avian and swine sequences, mapping quality was poor, and often failed entirely.

Even for the best performing software, NGM, avian sequences mapped poorly

Fig. 4. Box plots showing additional Levenshtein distance of input sequence to out-

put reference chosen by VAPOR, MASH and BLAST consensus classification.

Reads with 1% error rate were generated from randomly selected references

mutated in silico by 1, 2, 3 and 3% with additional biological intra-host variant

noise simulation 3%/Q, and repeated 500 times for each category. LA is defined as

Levenshtein distance of a classified sequence sc to original mutated sequence sm,

minus the distance of the original mutated sequence sm to the original non-mutated

reference sequence so. Outliers are indicated as diamonds. Performance of VAPOR

was generally equivalent to that of BLAST. For both of these tools, classification

most often resulted in none, or a few extra incorrect bases
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that mapping with pre-classification is robust to sequences of non-
human origin.

3.5 Detection of reassorted strains directly from reads
In order to assess the application of read pre-classification to reas-
sortment detection directly from reads, 250 simulated reassortment
events with zoonotic strains were mixed with 250 complete genome
sets, reads simulated, then classified by VAPOR. A simple reassort-
ment classifier was used on the output of VAPOR, which compared
the minimum pairwise PID of the HA sequences of the eight strains
assigned by VAPOR to each segment; if this PID was below a given
parameter v, a reassortment was called. A receiver operating charac-
teristic curve is shown in Supplementary Figure S6, illustrating the
performance of this classification strategy. Simulated zoonotic reas-
sortments were detected with 97.2% true positive rate and 0.08%

false positive rate for a v of 91.35%. This is expected because, as
previously shown, VAPOR generally was able to classify strains to
within a few base-pairs; randomly chosen zoonotic strains generally
had PIDs of <90% to human strains, depending on origin. We note
that, given the database used, some avian strains may have been iso-
lated from humans, and labelled as human; as such, perfect classifi-
cation with this dataset may be impossible. In order to provide a
more difficult reassortment detection task, the same experiment was
performed between human H3N2 sequences. We found at a PID
threshold of 96.3%, a true positive rate of 76.8% could be achieved
at a false positive rate of 10.8%. This result was expected given that
sequences from different H3N2 strains generally have a PID within
a few percent. In total, these results provide evidence that reassort-
ments with zoonotic strains can be detected directly from reads with
reasonable accuracy, but that intra-lineage reassortments may be
more difficult.

3.6 Run-time and computational requirements
For benchmarking performed on the CLIMB VM, VAPOR per-
formed all benchmarks within 11 min. As expected, using BLAST to
query all reads was too slow for general application to these data-
sets, as shown in Supplementary Figure S7. For the 2 000 000 read
samples, BLAST took over 20 h in the worst case, excluding both
pre- and post-processing of results. For the laptop computer,
VAPOR classified samples with a mean of 6 600 000 total reads in a
mean time of 3.73 min and mean peak memory consumption of
2.78 Gb.

4 Discussion

4.1 Mapping approaches and improvement with

VAPOR
We provide evidence that, in the best case, approaches for influenza
virus analysis that use mapping to a single reference may result in
data loss due to biological variation and noise. As shown in
Supplementary Figures S2 and S3, influenza strains continually ac-
cumulate substitutions relative to a single reference (�5 substitu-
tions per year for H3N2) and reads may have a high error rate
ð> 2%Þ. Often, mapping to a single reference may be most unreli-
able for important samples, such as zoonotic transmission events. In
the worst cases, mapping may fail completely, when usable data are
present, requiring time and expertise to resolve with more complex
methods. Our approach largely avoids these pitfalls altogether,
allowing simpler pipelines and retaining the advantages of using a
mapping-based approach for analysis. We chose Minimap2, BWA-
MEM, NGM and Hisat2 in order to represent a range of mapping
softwares. BWA has found use in general for influenza read mapping
(Borges et al., 2018; Imai et al., 2018; Jonges et al., 2014; Leonard
et al., 2016; Rutvisuttinunt et al., 2013; Wu et al., 2014; Yu et al.,
2014). In some cases, references were chosen by mapping-based
approaches for selection (Yu et al., 2014). Of these softwares, only
NGM was developed with specific robustness to variation.
Furthermore, the experiments reported were not intended as com-
plete evaluations of the programmes, since such an evaluation must
also include mapping quality. Our data, however, does demonstrate
that pre-classification with raw reads provides a broad strategy to
improve robustness of pipelines and achieve faster results. For the
chosen references, A/Perth/16/2009 (H3N2) and California/07/2009
(H1N1) were chosen as vaccine strains recommended by the WHO
multiple times, and have also been used previously as references
(Rutvisuttinunt et al., 2013; Simon et al., 2019). In other cases, dif-
ferent single references have been used (Meinel et al., 2018). We do
not believe that using different individual strains would affect the
trends demonstrated.

We note that alternative approaches exist, including mapping to
a large sequence database, but this does not easily allow for visual-
ization of an alignment to a single reference, and subsequent analysis
such as characterization of point mutations. We note that in prin-
ciple, pre-classification with any software could work reasonably
well. MASH performed well in simulations. However; using an

Fig. 5. Scatterplots showing PIDs of VAPOR read classifications versus BLAST con-

tig classifications with respect to assembled contigs for all eight major segment cod-

ing sequences. Black lines indicate x ¼ y. Points that fall below this line were

classified better from reads with VAPOR. Points above the line were classified better

with BLAST from contigs. VAPOR is capable in general of performing classification

of reads to within 1% of the correct sequence. The mean PID of VAPOR classifica-

tions for all segments was 99.82%. For datapoints under 98% PID, BLAST was

generally also not able of providing a better classification given the reference

database

Fig. 6. Additional number of reads mapped by Minimap2 with VAPOR pre-classifi-

cation for 257 real.fastq file pairs. Pre-classification with VAPOR on average

resulted in 7816.03 more mapped reads. Several samples gained more than 50 000

reads by choosing a suitable reference. For one sample, representing a possible coin-

fection, 5221 fewer reads mapped when using a single reference chosen by VAPOR
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optimal reference is ideal, since for later advanced applications, such
as transmission events, or study of intra-host variation, the closest
possible reference may be necessary. Furthermore, VAPOR permits
simultaneous filtering out of any non-human or bacterial reads with
optimal reference selection. Whilst BLAST performed well for indi-
vidual read classification, it is often too slow for general application.
Furthermore, assembly of virus genomes can be slow, often taking
several days for a single sample when contaminant reads, such as
human DNA, are present. Finally, misassembly can occur (Wymant
et al., 2018), which potentially occurred in several of our samples.

In all but one of our real-data cases examined, pre-classification
with VAPOR resulted in a greater number of mapped reads than
mapping to four reference strains from A/H3N2, A/H1N1, B/
Victoria and B/Yamagata. However, for a single sample, which con-
tained influenza sequences from two clades, the number of mapped
reads was reduced. Although VAPOR can report the number of in-
fluenza sequences detected in total, future study should be utilized
to develop methods of coinfection detection. In these relatively rare
cases, a single reference is not sufficient for mapping.

4.2 VAPOR algorithm and performance
We have presented a novel approach to virus classification from
short-reads data using DBGs. In future study, as public sequence
data accumulates, our algorithm may show promise in WGS
approaches for other RNA viruses with small genomes, such as mea-
sles virus, human immunodeficiency virus or Ebola virus. Several de-
fault parameters were explored during development, but not
exhaustively. A k-mer size of 21 was utilized, as this was also able to
perform read pre-filtering from contaminating sequences, without
addition of a separate parameter. Similarly, parameters controlling
the minimum fraction of required k-mers for seed extension, as well
as the top percentile of seeds chosen for extension could be adjusted,
possibly to improve speed. However, in the read sets examined, the
default parameters were generally sufficient to ensure matches were
found and did not appear to exclude potentially optimal matches.
However, for novel strains that differ greatly from all strains previ-
ously observed, more sensitive parameterizations may be required.

4.3 Real-data classification
As shown in Figure 4, we note that the BLAST contig classification
strategy we used performed poorly on NS1. This was due to sorting
by e-value, bit-score and length over PID, combined with the pres-
ence of some NS1 sequences in the database which were longer than
the required coding region. Since in general usage we do not wish to
exclude sequences with longer 30 UTRs, we opted to include this re-
sult to illustrate a potential pitfall that can occur with automated
BLAST classification, as well as the trade-off between length and
PID. Although sorting by PID may alleviate this problem, it may
also yield shorter, incomplete alignments. For some samples, neither
BLAST nor VAPOR could retrieve a sequence closer than 96% to
the assembled contig. For some samples, this was due to large dele-
tions present in the assembled contig. Although some of these dele-
tions may be present in the true biological sequences, for at least
one, this was due to suspected misassembly. These assemblies were
also included to draw attention to potential problems that may be
encountered during analysis.

5 Conclusion

Here we demonstrate that influenza sequence pre-classification with
VAPOR minimizes data loss, reduces pipeline complexity, and
allows for classification of zoonotic strains and reassortments direct-
ly from reads. We believe that the simplicity of our approach has po-
tential to alleviate several difficulties associated with current
bioinformatics pipelines and could reduce workloads in public
health surveillance. Lastly, whilst we have tested VAPOR extensive-
ly for use with influenza, we believe our approach may be more
broadly applicable to other sequence data, particularly small RNA
and DNA viruses.
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