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Abstract

Background

Coronary artery disease is associated with a common mitochondrial DNA alteration, a 4977

bp deletion (mtDNA4977). The role of mtDNA4977 in ischemic stroke is unknown.

Methods

Real-time quantitative PCR was performed to quantify total mtDNA and mtDNA4977 in leuko-

cytes in 283 ischemic stroke cases and 135 controls. Ratios of mtDNA4977 to total-mtDNA

and total-mtDNA to nuclear-DNA were calculated. Nested PCR and Sanger sequencing

were used to confirm undetectable levels of mtDNA4977.

Results

For 191 patients and 74 control subjects in the male group and 92 patients and 61 control

subjects in the female group, there were no significant between-group differences in age,

cholesterol level, body mass index, stroke severity, or 4977 deletion. After adjusting for con-

founding factors, there was no correlation between mtDNA4977 amount and infarction risk,

recurrent stroke, or stroke severity. However, mtDNA4977 was undetected in 6.94% sub-

jects, and these individuals had a higher prevalence of stroke than those with detectable

mtDNA4977 (OR: 0.181, 95% CI 0.041–0.798, p = 0.024). Additionally, mtDNA4977 status

had no effect on stroke prognosis, including stroke severity and recurrent stroke.

Conclusion

In conclusion, there was no apparent association between mtDNA4977 deletion and cerebral

infarction. Undetectable mtDNA4977 may be a marker or risk factor for ischemic stroke.
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Introduction

Mounting evidence suggests that mitochondria dysfunction and the accumulation of mito-

chondria DNA (mtDNA) damage plays an important role in the development of atheroscle-

rotic lesions. MtDNA damage not only correlates with the severity of atherosclerotic lesions

but also precedes initial pathological processes [1–5]. The exact mechanism of this relationship

is not well understood, but may be related to the central role of mitochondria in cellular energy

homeostasis [5].

Evidence also suggests that somatic mtDNA alternations are associated with coronary

artery disease (CAD) and atherosclerosis. Ballinger et al. [6] showed that atherosclerotic

aortas had increased numbers of mtDNA oxidative lesions compared to normal aortas. Pre-

vious studies have shown that patients with CAD have an increased abundance of mtDNA

4977 bp deletions (mtDNA4977) in the heart and in circulating leukocytes [7, 8]. A signifi-

cantly higher prevalence of mtDNA4977 and higher relative amounts of the deletion were

identified in CAD patients compared to healthy control subjects (26.2% versus 4.5%;

p = 0.03 and 0.089 ± 0.02% versus 0.009 ± 0.009; p = 0.02) [9]. The accumulation of

mtDNA4977 has also been implicated in human aging [10]; in one study, the amount of

mtDNA4977 was positively associated with age, independent of traditional risk factors and

clinical parameters [11].

Stroke is the third leading cause of death worldwide and is associated with a 30-day disabil-

ity rate of 61.2% in Taiwan [12]. Atherothrombotic stroke, which is diagnosed when an ische-

mic lesion > 1.5 cm is identified on brain imaging and when there is arterial stenosis > 50% of

any carotid/cerebral artery, accounts for 20% of all stroke events [13]. Atherothrombotic

stroke and CAD share the same conventional risk factors, susceptibility genes, and pathophysi-

ology [13]. Additionally, several major risk factors for ischemic stroke are associated with

mitochondrial dysfunction such as that occurring in metabolic syndrome, cigarette smoke

exposure, and hypercholesterolemia [14–16].

Based on the earlier work mentioned in the Introduction section above, we hypothesized

that, similar to coronary artery disease, stroke is associated with a mtDNA4977 deletion.

Recently, a genome-wide study reported an association between mitochondrial respira-

tory chain complex I/IV dysfunction and ischemic stroke, especially for small vessel stroke

[2]. The common deletion mtDNA4977 occurred between nucleotides 8470 and 13459, in

which five genes for tRNA and seven genes for components of complex I (ND3, ND4,

ND4L, and a part of NAD5), IV (COXIII), and V of the respiratory chain (ATPase 6 and a

part of ATPase 8) were compromised [4]. Mitochondrial dysfunction, particularly involving

complexes I and IV, has been associated with cardiovascular disease [4], stroke [3, 8], Alzhei-

mer’s disease [17], Parkinson’s disease [17–20], and psychiatric disorders [21]. While it is

controversial how functions are altered by mtDNA4977 deletion, electron movement in the

respiratory chain of mtDNA4977 cells is still likely to lead to reactive oxygen species (ROS)

generation. Damaged mtDNA leads to the dysfunction of integral membrane protein com-

plexes of the respiratory chain, which consequently leads to apoptotic death and cellular

necrosis [3–5, 15]. Therefore, we hypothesized that the pathology of mitochondrial damage

in atherogenesis may be related to alterations in the generation of reactive oxygen species

and in ATP synthesis.

In the present study, we thus hypothesized that mtDNA4977 might play an important role in

ischemic stroke. To date, little research has examined the presence of mtDNA4977 deletions in

the cells and tissues of patients with stroke. Therefore, we evaluated mtDNA4977 in a cohort of

patients with stroke and examined relevant associations.

MtDNA4977 and ischemic stroke
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Materials and methods

Patients and control subjects

Study subjects were enrolled from Chang Gung Memorial Hospital. Each patient or her/his

legally acceptable representative was informed of the aim of the study. This study has been

cleared by Chang Gung Memorial Hospital Institution Ethics Review Board for human stud-

ies and patients or guardians provided written informed consent prior to study participa-

tion. Ischemic stroke and its subtypes were diagnosed and classified by two neurologists

based on clinical presentation and the available brain imaging data. This study enrolled

patients with atherothrombotic infarction or lacunar infarction. Subtypes of cerebral infarc-

tion were defined by the TOAST criteria with modifications as follows: (1) atherothrombotic

infarction was diagnosed when there was an ischemic lesion > 1.5 cm on brain imaging and

arterial stenosis > 50% of any carotid/cerebral artery; (2) lacunar infarction was diagnosed

when the brainstem or subcortical hemispheric ischemia was < 1.5 cm in diameter on brain

imaging, and when there was no clinical evidence of cerebral cortical or cerebellar dysfunc-

tion [22]. Patients with recent stroke (< 6 months) or a medical condition such as atrial

fibrillation, acute coronary syndrome, chronic renal disease, infection or inflammatory dis-

ease, other neurodegenerative disease, or cardioembolism/undetermined stroke type were

excluded. Healthy control subjects were recruited randomly from the community and had

no history of stroke (including hemorrhagic or ischemic stroke), neurological disease, or

overt medical disease such as chronic renal failure, myocardial infarction, atrial fibrillation,

and cancer.

Evaluation of mtDNA4977

Blood samples were collected and immediately (within 2 hours) processed for leukocyte isola-

tion. Samples were then frozen at -80˚C and stored until analysis. Leukocyte DNA was

extracted using a DNA Extraction Kit according to the manufacturer’s specifications (Agilent

Technologies, La Jolla, CA). Nested PCR was performed to detect the presence of mtDNA4977

[23]. The two pairs of nested primers used for the detection of mtDNA4977 are shown in Fig 1.

The PCR condition was set as Table 1. The PCR condition was set as pre-denaturation at 94˚C

for 5 min, 30 cycles at 94˚C for 10 secs, 58˚C for 45 secs and 72˚C for 50 secs, and a final exten-

sion at 72˚C for 10 min. We used the ratio of the absorbance at 260 and 280 nm (A260/280) to

assess the purity of nucleic acids. The DNA samples were all with good purity (260/280 = 1.7–

2.0). Then we run the DNA samples by standard protocol for performing 1% agarose gel

electrophoresis to detect other possible contaminants free RNA or faint smear. The samples

were run in triplicates. Products were sequenced by Sanger sequencing. The presence of

mtDNA4977 was indicated by the appearance of a 358-bp band and verified by sequencing

analysis.

Quantification of mtDNA4977

To quantify the relative ratio of mtDNA4977 to total mitochondria DNA, real-time quantitative

PCR (RTQ-PCR) was performed to quantify total mtDNA and mtDNA4977 molecules in leu-

kocytes. TaqMan1 Gene Expression Assays and the Sequence Detection system (ABI Prism

7900, Applied Biosystems) were used for quantification (Table 2). β-actin gene expression was

measured as an indicator of nuclear DNA concentration. The common mtDNA deletion of

4,977 bp had breaking points between nucleotides 8470 and 13347, with two direct 13-bp

repeats. The ND1 gene used for reference was located at nucleotides 3312 to 4122 on mtDNA

and provides one of the seven mitochondrial encoded subunits of NADH dehydrogenase.

MtDNA4977 and ischemic stroke
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Primers and TaqMan probes ordered with Applied Biosystems™ FAM ™ and VIC ™ dyes, used

to amplify mtDNA4977, ND1 gene and β-actin gene. The Ct method (ΔCt) was used to calculate

relative levels of mtDNA4977 between patients and control subjects. First, we normalized the

Ct endogenous control: ΔCt sample = Ct Target (4977 deletion)—Ct Endogenous Control

Table 1. Primers using sequencing for nested PCR.

Primer sequence (5’—>3’) Tm(˚C) PCR product size(bp)

4977del-1-F AACCACAGTTTCATGCCCATC 62.1 5472/495

4977del-1-R TGTTAGTAAGGGTGGGGAAGC 60.4 5472/495

4977del-2-F ACCCTATAGCACCCCCTCTAC 58.5 5335/358

4977del-2-R CTTGTCAGGGAGGTAGCGATG 62.1 5335/358

https://doi.org/10.1371/journal.pone.0193175.t001

Fig 1. Detection of mtDNA4977 and quantification of total and deleted mtDNA in leukocytes using real-time

quantitative PCR.

https://doi.org/10.1371/journal.pone.0193175.g001

Table 2. Primers and TaqMan probes for real-time quantitative PCR.

Assay ID Primers and VIC-probe

Forward Primer:

5'- GCCCACCATAATTACCCCCATAC-3'

4977BP-DELETED AIS09GS Reverse Primer:

5'-GAGTAGAAACCTGTGAGGAAAGGT-3'

Probe: FAM-CCTCATCACCCAACTAAAA-NFQ

(Product size: 5117/140 bp)

MT-ND1 Hs02596873_s1 VIC

β-actin Hs03023880_g1 FAM

Annealing temperature: 60˚C.

https://doi.org/10.1371/journal.pone.0193175.t002
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(ND1), ΔCt sample indicated the log2 ratio of mtDNA4977 vs mtDNA; and ΔCt reference = Ct

Target (modified β-actin)—Ct Endogenous Control (ND1 for β-actin), ΔCt reference

indiacted the log2 ratio of genomic DNA vs mtDNA. ΔCt sample and ΔCt reference values

were used to evaluate mtDNA4977 deletion levels.

The common mtDNA deletion of 4,977 bp had breaking points between nucleotides 8461

and 13347, with two direct 13-bp repeats. The fragment was the amplification target between

8461(1st repeat:acctccctcacca) and 13347 bp (2nd repeat:acctaaatcacca). The grey arrow at the

outer circle shows mtDNA deletion of 4,977 bp, and the grey arrow at the inner circle demon-

strates the product of the second nested PCR. In the presence of deletion, the amplification

product is 358 bp in size, while the wild-type mtDNA yields a product of 5335 bp, which shall

not be shown on sequencing. The left corner shows the Sanger sequence that proved the 2nd

nested PCR products and confirmed of the 4,977 bp deletions.

Statistical analysis

Pearson’s χ2-tests or t-tests were utilized to compare demographic data between the patient

and control groups; all significance tests were two-tailed. Association analyses were performed

first stratified by sex and then combined. Co-variables included age, sex, hypertension, diabe-

tes mellitus (DM), total cholesterol (TC) level, smoking, and alcohol use. A logistic regression

was performed to assess the relationship between mtDNA4977 and stroke outcome. All data

analyses were performed using IBM SPSS Statistics software version 20. The threshold for sta-

tistical significance was p< 0.05.

Results

Study group characteristics are presented in Table 3. A total of 283 patients and 135 control

subjects were included. In the male group, hypertension and smoking were significantly more

Table 3. Demographic data in patients with ischemic stroke and control subjects.

Characteristic Male group (n = 265) Female group (n = 153) p-value for infarct cases vs. control subjects

Infarct Control p-value Infarct Control p-value

Number 191 74 - 92 61 - -

Mean age (years) 66.43 ± 12.16 64.95 ± 12.79 0.628 68.40 ± 11.82 66.57 ± 12.56 0.362 0.287

Hypertension (n/%) 131 (68%) 42 (56%) 0.008 70 (76%) 34 (55%) 0.006 < 0.001

Diabetes mellitus (n/%) 63 (32%) 17 (22%) 0.068 44 (47%) 6 (9.8%) < 0.001 < 0.001

Alcohol use (n/%) 51 (26%) 14 (18%) 0.195 0 (0%) 0 (0%) - 0.046

Smoking (n/%) 101 (52%) 27 (36%) 0.016 3 (3.2%) 0 (0%) 0.278 < 0.001

Mean BMI (kg/m2) 25.46 ± 3.55 25.61 ± 3.15 0.779 24.81 ± 3.88 24.63 ± 5.39 0.812 0.745

TC (mg/dl) 178.2 ± 34.40 177.7 ± 34.17 0.873 193.2 ± 42.20 202.4 ± 37.55 0.179 0.149

Initial GCS score� 9 6.1% - - 14.7% - - 0.375c

30-day MRS score� 3 40% - - 50% - - 0.042 c

4977 deletion (+) 174 (91.1%) 72 (97.3%) 0.079 82 (89.1%) 61 (100%) 0.008 0.002

ΔCta 2.24 ± 0.86 2.24 ± 0.84 0.998 2.22 ± 0.77 1.94 ± 0.92 0.049 0.155

ΔCt(4977-ND1)b 4.74 ± 2.50 4.92 ± 1.91 0.571 5.07 ± 2.30 5.31 ± 2.04 0.508 0.292

aΔCt = Ct Target (β-actin)–Ct Endogenous Control (ND1 for β-actin)
bΔCt (4977-ND1) = Ct Target (4977 deletion)–Ct Endogenous Control (ND1)
cp-value for males vs. females in the infarct group

Data are expressed as numbers or mean ± standard error. Comparisons between control subjects and infarction cases were analyzed using χ2-tests or t-tests where

appropriate. BMI, body-mass index; GCS, Glasgow coma scale; MRS, modified Rankin scale; TC, total cholesterol.

https://doi.org/10.1371/journal.pone.0193175.t003
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common in patients with stroke than in control subjects (p = 0.008 and p = 0.016, respec-

tively). In the female group, hypertension and DM were more common in patients with stroke

than in control subjects (p = 0.006 and p< 0.001, respectively). When the groups were com-

bined, patients with ischemic stroke showed higher prevalence of hypertension (p< 0.001),

DM (p< 0.001), smoking (p< 0.001), and alcohol consumption (p = 0.046) compared to the

control group. There were no significant differences in age, cholesterol level, body mass index,

initial Glasgow coma scale (GCS) scores (� 9), ΔCt samples, and ΔCt reference values between

the sexes. GCS scores were later dichotomized at 8, as this is the clinical cutoff point often used

for coma [24]. We thus used an initial GCS score of� 9 as an indicator of initial conscious

level and stroke severity. Additionally, higher percentages of mtDNA4977 were detected in the

control group than in the ischemic stroke group (male group: control vs. stroke, 97.3% vs.

91.1%; female group: control vs. stroke, 100% vs. 89.1%; ischemic stroke group vs. control

group, p = 0.002). The average intra -coefficient of variation (CV) and inter-CV of ΔCt

(mtDNA4977 -ND1) is 2.1% and 6.8%, respectively.

Of the study cohort subjects (29 study subjects), 6.94% did not carry mtDNA4977, including

27 patients with infarction and two healthy control subjects. In these patients, deletion of 4977

was undetectable using TaqMan quantification and confirmed by Sanger sequencing. There

was no difference in mean age, stroke risk factors, or ΔCt reference values between participants

with and without detectable mtDNA4977 (Table 4). Participants without detectable mtDNA4977

had a higher rate of infarction than patients with detectable mtDNA4977 (male group: 89.5%

vs. 70.7%, p = 0.079; female group: 100% vs. 57.3%, p = 0.008; ischemic stroke group vs. control

group, p = 0.002) (Table 4).

After adjusting for confounding factors, there was no correlation between mtDNA4977

amount and infarction risk (odds ratio [OR] = 0.983, 95% confidence interval [CI] = 0.881–

1.097, p = 0.762), recurrent stroke (OR = 1.106, 95% CI = 0.952–1.285, p = 0.187), and stroke

severity (OR = 0.953, 95% CI = 0.778–1.168, p = 0.645) (Table 5). Consistent with our initial

analysis, individuals who did not carry mtDNA4977 were more likely to have a stroke than indi-

viduals with detectable mtDNA4977 (OR = 0.181, 95% CI = 0.041–0.798, p = 0.024).

Table 4. Comparison of patients with and without the 4977 deletion.

Characteristic Male group (n = 265) Female group (n = 153) p-value for subjects with vs.

without the 4977 deletion

4977 deletion no 4977 deletion p-value 4977 deletion no 4977 deletion p-value

No. of Infarct/Patien 174/246, 70.7% 7/19, 89.5% 0.079 82/143, 57.3% 10/10, 100% 0.008 0.002

Mean age (years) 66.50 ± 12.30 72.74 ± 0.96 0.166 67.90 ± 12.16 64.40 ± 11.97 0.392 0.135

Hypertension (n/%) 173 (70.3%) 15 (78.9%) 0.425 95 (66.4%) 9 (90%) 0.129 0.123

Diabetes mellitus (n/%) 80 (32.5%) 6 (31.6%) 0.904 47 (32.9%) 3 (30% 0.840 0.836

Alcohol use (n/%) 65 (26.4%) 8 (42.1%) 0.130 0 (0%) 0 (0%) - 0.125

Smoking (n/%) 128 (52.0%) 10 (52.6%) 0.914 3 (2.01%) 0 (0%) 0.826 0.847

Mean BMI (kg/m2) 25.51 ± 3.44 25.18 ± 2.45 0.615 24.84 ± 4.58 22.83 ± 2.91 0.102 0.156

TC (mg/dl) 178.1 ± 34.26 182.7 ± 40.71 0.641 197.7 ± 40.36 184.8 ± 36.63 0.310 0.833

Initial GCS score� 9 6.1% 14% 0.423 14.7% 0 0.351 0.375

30-day MRS score� 3 40% 22% 0.254 50% 100% 0.021 0.462

ΔCt a −2.26 ± 0.86 −1.99 ± 6.80 0.166 −2.12 ± 0.86 −1.93 ± 0.64 0.377 0.098

aΔCt = Ct Target (β-actin)–Ct Endogenous Control (ND1 for β-actin)

Data are expressed as the number or mean ± standard error. Comparisons between subjects with and without the 4977 deletion were analyzed using χ2-tests or t-tests

where appropriate. BMI, body-mass index; GCS, Glasgow coma scale; MRS, modified Rankin scale; TC, total cholesterol.

https://doi.org/10.1371/journal.pone.0193175.t004
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Additionally, the presence or absence of mtDNA4977 had no effect on stroke prognosis (recur-

rent stroke: OR = 1.109, 95% CI = 0.279–4.411, p = 0.883; stroke severity: OR = 0.619, 95%

CI = 0.195–1.969, p = 0.417).

Discussion

The mtDNA4977 deletion is particularly relevant to the pathogenesis of atherosclerosis and has

previously been reported as a potential predictor of coronary artery disease and stroke; yet, the

relationship between mtDNA4977 and ischemic stroke remains unclear. This study found no

correlation between mtDNA4977 amount and infarction risk, recurrent stroke, or stroke sever-

ity in a cohort of patients with acute ischemic stroke. Additionally, the presence or absence of

mtDNA4977 had no effect on stroke prognosis, including recurrent stroke and stroke severity.

In our cohort of 283 patients and 135 control subjects, 6.94% of cohort subjects did not carry

mtDNA4977, and there was a significant higher prevalence of stroke in these individuals com-

pared to those with detectable mtDNA4977. In conclusion, there was no apparent association

between mtDNA4977 deletion and cerebral infarction. Undetectable mtDNA4977 may be a

marker or risk factor for ischemic stroke.

MtDNA4977 are related to ROS that arise as a by-product of oxidative phosphorylation in

mitochondria [25]. MtDNA4977 occur frequently in tissues of high oxygen demand and low

mitotic activity, e.g. neuron cell or myocytes [26]. However, mtDNA4977 can still be detected

in fast replicating cells, such as blood leukocytes, in much lower amounts [25, 26]. Botto et al.

reported that mtDNA4977 can be found in both samples of blood cells and atherosclerotic

lesions from patients with CAD [9]. Although mtDNA4977 in blood could not represent specif-

ically for cerebral infarction, it is still a biomarker for systemic burden of oxidative stress.

Because the brain tissue samples from stroke patients are difficult to access, biomarkers in

blood is relatively more applicable.

MtDNA is more susceptible to oxidative damage than nuclear DNA [6] because of a limited

mitochondrial capacity for DNA repair and the absence of histones for protection [8]. Numer-

ous studies have implicated mtDNA4977 in various forms of carcinogenesis [27] as well as in

aging [28]. mtDNA4977 is more frequent in the general population than previously thought; it

was recently demonstrated that mtDNA4977 was present in 98.3% of subjects in a cohort of

unrelated Chinese participants aged 5 days to 91 years, with an exponential increase in the fre-

quency of mtDNA4977 with age [18]. This is consistent with the observation of mtDNA4977 in

93.06% of subjects (389/418) in our study cohort. The discrepancy between earlier and these

current findings are likely related to cohorts of a wider age range as well as technological

improvements in DNA detection.

MtDNA 4977 in cardiac myocytes and smooth muscle cells in atherosclerotic lesions are

important contributors to pathogenesis of coronary artery disease (CAD) [29, 30]. Accumula-

tion of mtDNA4977 is particularly found in high oxygen demand and low mitotic activity

Table 5. Logistic regression models of mt4977 deletion and stroke prognosis.

Characteristic Infarction MRS� 3 Recurrent infarcts

OR (95% CI) p-value OR (95% CI) p-value OR (95% CI) p-value

ΔCt (4977-ND1)a 0.983 (0.881–1.097) 0.762 1.106 (0.952–1.285) 0.187 0.953 (0.778–1.168) 0.645

Presence of 4977b 0.181 (0.041–0.798) 0.024 0.619 (0.195–1.969) 0.417 1.109 (0.279–4.411) 0.883

aLogistic regression model for ΔCt (4977-ND1) and stroke prognosis, adjusting for age, sex, TC, diabetes mellitus, hypertension, and smoking.
bLogistic regression model for presence of the 4977 deletion and stroke prognosis, adjusting for age, sex, TC, diabetes mellitus, hypertension,and smoking. CI,

confidence interval; MRS, modified Rankin scale; OR, odds ratio; TC, total cholesterol

https://doi.org/10.1371/journal.pone.0193175.t005
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tissues. Regional accumulation of mtDNA4977 was higher in the left heart than in the right

because the left heart has a higher workload and thus requires higher energy demand [31].

Regarding the hypothetical relationship between mitochondrial damage in atherogenesis and

the generation of ROS and ATP synthesis, our data demonstrates that the presence of

mtDNA4977 did not vary in accordance with a history of ischemic stroke. Additionally,

mtDNA4977 levels were not significantly associated with recurrent stroke or stroke prognosis.

Our results do not support the notion that mtDNA4977 plays a major role in cerebral vascular

arthrosclerosis and cerebral infarction. In one study, mtDNA dysfunction and damage pre-

ceded early atherosclerotic changes, while oxidative markers remained normal, suggesting that

changes were probably independent of oxidative stress [5]. Moreover, stroke syndromes

caused by defects of mtDNA and nuclear DNA may be different, and recent clinical reports

suggest that small vessel diseases are associated with diverse nuclear genetic variants [2, 32].

Because accumulation of mtDNA4977 is found in high oxygen demand and low mitotic

activity tissues, such as neuron cells and myocytes, prior CAD models demonstrated increas-

ing mtDNA4977and ROS production in coronary artery, aorta, and cardiac myocytes. In con-

trast, leukocytes are fast replicating with high mitotic activity, which may cause insufficient

time for mtDNA4977 accumulation. Utilizing leukocytes from peripheral blood, our study

showed that undetectable mtDNA4977 in leukocytes may be a biomarker for ischemic stroke.

Because the brain tissue samples from stroke patients are difficult to access to confirm the link

between undetectable mtDNA4977 and stroke, further animal model for confirmation is

required before utilizing peripheral mtDNA4977 as a biomarker for ischemic stroke.

A meta-analysis of 38 studies found that proportions of mtDNA4977 were significantly

decreased in cancerous tissue compared to adjacent non-cancerous tissue [33]. Another previ-

ous study showed that the frequency of mtDNA4977 was significantly higher in normal tissue

compared to paired cancerous tissues including breast [34, 35], lung [36], esophageal squa-

mous cell carcinoma, gastric [37], and colorectal cancers [23]. The possible mechanism under-

lying this relationship may be that mtDNA4977 serves a protective function against the tumor-

promoting effects of other somatic mutations [38] or clonal expansion dilution of mtDNA4977

in tumor tissue during cancer progression. Moreover, mtDNA4977 might confer a metabolic

disadvantage to hyper-proliferating cells and thus eliminate these cells by leading to apoptosis

[29]. This may explain our finding that only a low percentage of individuals in our cohort

(6.94%) did not carry mtDNA4977, and the finding that stroke was more prevalent in these

individuals.

A limitation of the present study is that patients with cardiovascular problems such as atrial

fibrillation and acute coronary syndrome, as well as patients with severe stroke (initial GCS

score� 9; male: 6.1%, female: 14.7%) were excluded. Second, the small sample size is another

limitation of this study. Based on the values of mtDNA4977 in this study, at the level of 0.05, we

will need approximate 1,200 case-control pairs to achieve an adequate power of 80% to detect

differences in the level of mtDNA4977 between the ischemic cases and the control group.

Future work should include a larger and more generalizable cohort to examine correlations

between mtDNA4977 and clinical stroke occurrence or stroke outcome.

Conclusions

MtDNA4977 does not play a significant role in cerebral infarction. Inability to detect

mtDNA4977 may be a marker or risk factor for ischemic stroke.
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