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The therapeutic effects of electroacupuncture (EA) on the comorbidity of visceral pain and
anxiety in patients with inflammatory bowel disease (IBD) is well known. It has been known
that the ventral hippocampus (vHPC) and the cannabinoid type 1 receptors (CB1R) are
involved in regulating anxiety and pain. Therefore, in this study, we determined whether EA
reduces visceral pain and IBD-induced anxiety via CB1R in the vHPC. We found that EA
alleviated visceral hyperalgesia and anxiety in TNBS-treated IBD mice. EA reversed over-
expression of CB1R in IBD mice and decreased the percentage of CB1R-expressed
GABAergic neurons in the vHPC. Ablating CB1R of GABAergic neurons in the vHPC
alleviated anxiety in TNBS-treated mice and mimicked the anxiolytic effect of EA. While
ablating CB1R in glutamatergic neurons in the vHPC induced severe anxiety in wild type
mice and inhibited the anxiolytic effect of EA. However, ablating CB1R in either GABAergic
or glutamatergic neurons in the vHPC did not alter visceral pain. In conclusion, we found
CB1R in both GABAergic neurons and glutamatergic neurons are involved in the inhibitory
effect of EA on anxiety but not visceral pain in IBD mice. EA may exert anxiolytic effect via
downregulating CB1R in GABAergic neurons and activating CB1R in glutamatergic
neurons in the vHPC, thus reducing the release of glutamate and inhibiting the anxiety
circuit related to vHPC. Thus, our study provides new information about the cellular and
molecular mechanisms of the therapeutic effect of EA on anxiety induced by IBD.
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1 INTRODUCTION

Inflammatory bowel disease (IBD), including Crohn’s disease
and ulcerative colitis, is a prevalent clinical problem
worldwide (Mittermaier et al., 2004; Molodecky et al.,
2012; Neuendorf et al., 2016). In addition to
gastrointestinal symptoms, patients with IBD also
experience emotion disorders, such as anxiety and
depression (Ng et al., 2017), which in turn exaggerate
gastrointestinal symptoms (Ananthakrishnan, 2015).
Several reports have shown that the comorbidity of
visceral pain and anxiety in IBD mice resulted from the
bidirectional communication between the gut microbiota
and the brain (Moloney et al., 2016; Banfi et al., 2021).
Electroacupuncture (EA) is an effective treatment for
gastrointestinal diseases, pain symptoms and mood
disorders through electrical stimulation of needles inserted
into specific acupoints (Wu et al., 1999; Errington-Evans,
2012; Lv et al., 2019; Smith et al., 2019; Song et al., 2019;
Wang et al., 2019). However, the underlying mechanism of
the therapeutic effects of EA on IBD remains largely
unknown.

Several pieces of evidence indicate that the ventral
hippocampus (vHPC) plays a key role in modulating anxiety-
like behaviors (Allsop et al., 2014; Bannerman et al., 2014; Shah
et al., 2021) and pain process (Fasick et al., 2015; Vasic and
Schmidt, 2017; Liu et al., 2018). Pathological anxiety and chronic
stress lead to structural degeneration and impaired function of
the hippocampus (Mah et al., 2016; Price and Duman, 2020). In
addition, the hippocampus plays an important role in the
development and maintenance of pain disorder (Fasick et al.,
2015; Vasic and Schmidt, 2017). It needs to be determined
whether EA attenuates IBD induced visceral pain and anxiety
via the vHPC.

Cannabinoid type 1 receptors (CB1R) are highly expressed in
the brain areas (Evans and Van’T, 1975; Tsou et al., 1998;
Fletcher-Jones et al., 2020) and are related to the control of
anxiety response (Haller et al., 2004; Rey et al., 2012) and pain
process (Padilla-Coreano et al., 2016; Wang et al., 2020), such as
vHPC in particular. CB1R are mainly located at presynaptic
terminals and inhibit the release of several classic
neurotransmitters, including glutamate and GABA (Egertova
et al., 1998; Lisboa et al., 2015). CB1R are preferentially
expressed in GABAergic neurons (Hill et al., 2013), but less
expressed in glutamatergic neurons (Katona and Freund,
2012). Moreover, CB1R in glutamatergic and GABAergic
neurons in the cortex have an opposing role in controlling
anxiety-like behaviors (Lafenetre et al., 2009; Haring et al.,
2011; Ruehle et al., 2013). However, little is known about the
role of CB1R in glutamatergic and GABAergic neurons in the
vHPC in visceral pain and anxiety in IBD. It is also unclear
whether EA attenuates these symptoms via CB1R expressed in
the vHPC.

Based on these pieces of evidence, the present study
investigated whether EA alleviate visceral pain and anxiety
in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced IBD
mice. Then, we observed the distribution of CB1R in

glutamatergic or GABAergic neurons in the vHPC before
and after TNBS and EA treatment. We determined whether
genetically ablating CB1R expressed in glutamatergic or
GABAergic neurons in the vHPC altered the effects of EA
on visceral pain and anxiety in IBD mice. Our findings
provide new evidence that CB1R expressed in the vHPC
might be involved in the effects of EA on IBD induced
anxiety, but not on IBD induced visceral pain.

2 MATERIALS AND METHOD

2.1 Animals
Adult male C57BL/6 mice (8 weeks old; 20—25 g) were raised
in home-cages in the environment of 23°C ± 2°C and a 12 h
light/dark cycle. The mice had free access to food and water.
All CB1R-flox mice (mCnr1flox/flox) and their wild-type
littermate (WT) mice (male, aged 8 weeks, and 18–21 g)
were bought from the Cyagen biosciences laboratory
(Nanjing, China). All animal procedures were approved by
the Institutional Animal Care and Use Committee at
Huazhong University of Science and Technology and
conformed to the ethical guidelines of the International
Association for the Study of Pain and Anxiety.

2.2 Viruses Constructs and Surgery
The Cre/loxP system (Kos, 2004) was used to delete CB1R in
GABAergic and glutamatergic neurons. The recombinant
adeno-associated viruses (rAAV)-mDIX-cre-WPRE-pA
viruses were used to delete CB1R in GABAergic neurons.
The rAAV-CaMKII-cre-WPRE-pA viruses were used to
delete CB1R in glutamatergic neurons. All viruses used in
this research were purchased from the Brain VTA scientific
and technical corporation (Wuhan, China).

Before microinjection, the mice received an intraperitoneal
injection (i.p.) of 100 mg/kg of tribromoethanol for anesthesia
and were fixed in the stereotaxic apparatus (RWD
Instruments, China). An incision with a length of 1.5 cm
was made along the midline of the skull and the periosteum
on the surface of the skull was removed. Then, a small hole was
grinded by ironic rotor. Viruses injection was performed based
on the coordinate of vHPC (2.95 mm backward from the
bregma, 2.75 mm lateral from the midline, and 3.75 mm
ventral to the skull) (Allsop et al., 2014). Designed viruses
vectors (200 nl) were injected into vHPC at a rate of 50 nl per
60 s. Data were excluded from analysis if the viruses infection
exceeded area of the vHPC.

2.3 IBD Model
IBD was induced in mice as described previously (Silva et al.,
2019). Mice were anesthetized with tribromoethanol. A PVC-
Fr4 catheter (Φ 2.7 mm, YN Medical Instrument, Yangzhou,
China) lubricated by corn oil was inserted into the anus to the
colon at a distance of 4 cm, and the other end of PVC-Fr4
catheter was attached with a 1 ml syringe. The TNBS intra-
rectal (IR) solution included 50 μl of 5% w/v TNBS solution
(Sigma-Aldrich, St. Louis, MO, United States) and 50 μl
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absolute ethanol, which was injected into the colon of
anesthetized mice. Mice of the vehicle control group
received an injection solution comprised of 50 μl distilled
water and 50 μl absolute ethanol. After injection, mice were
kept in an upside-down position for 5 min to prevent solution
leakage. The mice were placed on a heating pad until recovery
from anesthesia.

2.4 EA Treatment
EA treatment was applied to bilateral “Dachangshu” (BL25)
acupoints 1 day after TNBS injection. The BL25 acupoints
were located at both side of the waist and 7 mm lateral to the
fourth lumbar spinous. After mice were restrained by
specialized fabric equipment, acupuncture needles were
inserted into acupoints with a depth of 2.5 mm. Then,

FIGURE 1 | EA relieved the visceral hyperalgesia and anxiety-like behaviors of IBD mice. (A) Experimental flowchart. (B) Schematic diagram of Dachangshu points
(BL25) on the skin surface. (C,D) Visceral hyperalgesia was evaluated by CRD. (E) Anxiety-related behaviors were recorded as time in center zone in the OPF.
(F) Anxiety-related behaviors were recorded as time in open arms in the EPM. The data are expressed asmean ± SEM (n = 9mice). *represents p < 0.05 betweenmarked
groups.
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FIGURE 2 | EA reversed over-expression of CB1R and decreased the percentage of CB1R-expressed GABAergic neurons in the vHPC of IBD mice.
(A) Representative immunoblots of CB1R and GAPDH protein expression in the vHPC. (B) Densitometric analysis of CB1R protein normalized to the loading control.
(C) Immunofluorescence images showedCB1R (green) co-expressedwith GABA (red) in the vHPC. (D) Percentage of CB1R-expressed neurons co-labeledwith GABA,
which is (CB1R and GABA co-labeled neurons /total GABA neurons) *100%. Scale bar for merge images, 100 μm. Scale bar for high magnification images (high
mag), 20 μm. The data are expressed as mean ± SEM (n = 9 mice). *represents p < 0.05 between marked groups.
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acupuncture needles were connected to an EA stimulator
(Huatuo brand, Suzhou, China) and electrical stimulation
pulses (1 mA, 2 Hz, intermittent wave) were applied for
30 min.

As for sham EA, acupuncture needles only adhered to the
specific points, neither penetrated the skin nor received electrical
stimulation pulses. Half an hour after EA treatment, the related
behavior tests were performed.

2.5 Behavioral Tests
2.5.1 Measurement of Visceral Hyperalgesia
Measurements were made continuous 5 days after TNBS
injection. The colorectal distension (CRD) method was used to
obtain the abdominal withdrawal reflex (AWR) score of mice to
evaluate the degree of visceral hyperalgesia. The mice were placed
in a plexiglass compartment (20 cm × 20 cm × 10 cm) for 5 min.
The PVC-Fr4 catheter was inserted into the latex balloon (length

FIGURE 3 | TNBS and EA had no effect on the percentage of CB1R-expressed glutamatergic neurons in the vHPC of IBD mice. (A) Immunofluorescence images
showed CB1R (green) co-expressed with neurogranin (a marker of glutamatergic neurons, red) in the vHPC. (B) Percentage of CB1R-expressed neurons co-labeled
with neurogranin, which is (CB1R and neurogranin co-labeled neurons /total neurogranin neurons) *100%. Scale bar for merge images, 100 μm. Scale bar for high
magnification images (high mag), 20 μm. Ns represents p > 0.05 between marked groups.
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4–5 cm), and the end of the balloon was firmly tied to the test
catheter. The catheter is connected with one end of the disposable
medical three-way tubing, one end of the three-way tubing was
connected to a sphygmomanometer. The other end is connected
with 20 ml disposable syringe, and 20 ml of 20°C water was
injected into the syringe. The balloon was inserted into the

rectum until the catheter reached the colon (2 cm from the
end of the balloon). The balloon catheter was fixed to the
bottom of the tail to prevent it from sliding out.

The CRD test was performed in a step-by-step compression
mode (20/40/60/80 mmHg). Each pressure value was measured
twice. Each test lasted 30s with an interval of 4 min. The AWR

FIGURE 4 | Specific knockout of the CB1R in GABAergic and glutamatergic neurons in the vHPC. (A) After rAAV-mDIX-cre-WPRE-pA viruses were injected into
bilateral vHPC of CB1R-flox mice, immunofluorescence images showed CB1R (red) co-expressed with GAD67 (labeled GABAergic neurons, green) in the vHPC. Scale
bar for merge images, 200 μm. Scale bar for high magnification images (high mag), 40 μm. (B) After rAAV-CaMKII-cre-WPRE-pA viruses were injected into bilateral
vHPC of CB1R-flox mice, immunofluorescence images showed CB1R (red) co-expressed with neurogranin (a marker of glutamatergic neurons, green) in the
vHPC. Scale bar for merge images, 100 μm. Scale bar for high magnification images (high mag), 20 μm. (C) Summary data show the percentage of GABAergic neurons
whose CB1 receptors were knocked out (red). (D) Summary data show the percentage of glutamatergic neurons whose CB1 receptors were knocked out (red). Data are
expressed as the means ± SEM (n = 3 mice in each group).
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FIGURE 5 | Specific knock out of the CB1R in GABAergic neurons in the vHPCmimicked the anxiolytic but not analgesic effect of EA on IBDmice. (A) Experimental
flowchart. (B,C) Visceral hyperalgesia was evaluated by CRD. (D) Anxiety-related behaviors were recorded as time in center zone in the OPF. (E) Anxiety-related
behaviors were recorded as time in open arms in the EPM. The data are expressed as mean ± SEM (n = 8 mice). * represents p < 0.05 between marked groups, ns
represents p > 0.05 between marked groups.
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FIGURE 6 | Specific knock out of the CB1R in glutamatergic neurons in the vHPC reversed the anxiolytic but not analgesic effect of EA on IBD mice. (A)
Experimental flowchart. (B,C) Visceral hyperalgesia was evaluated by CRD. (D) Anxiety-related behaviors were recorded as time in center zone in the OPF. (E) Anxiety-
related behaviors were recorded as time in open arms in the EPM. The data are expressed asmean ± SEM (n = 8mice). *represents p < 0.05 betweenmarked groups, ns
represents p > 0.05 between marked groups.
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score was calculated based on Al-Chaer’s method (Al-Chaer et al.,
2000): no behavioral response to CRD was rated as 0 point, short
pauses in head or body movements during stimulation was rated
as 1 point; abdominal muscle contraction during stimulation was
rated as 2 point; abdominal lifting was rated as 3 point; body arch,
pelvic cavity or scrotum lifting was rated as 4 point.

2.5.2 Open Field Test
OFT was used to evaluate anxiety-related behaviors of mice
(Choleris et al., 2001). Mice were placed in the center of a
polystyrene enclosure (50 cm × 50 cm × 50 cm) and recorded
by videotape instrument for 5 min. The center area was defined as
the centric 25 cm × 25 cm area. The open field was cleaned with

FIGURE 7 | Hypothesis diagram of EA inhibiting IBD induced anxiety via CB1R in the vHPC. (A) In TNBS-induced IBD mice, CB1R was over-expressed in
GABAergic neurons in the vHPC, which was activated by endocannabinoid and the release amount of GABA was reduced. As a result, the release amount of glutamate
is increased because of decreased inhibition of GABA. The increased release of glutamate in the vHPC may excite anxiety-related neuronal circuits starting from vHPC,
thus inducing anxiety-related behaviors in IBD mice. (B) In TNBS-induced IBD mice with EA treatment, EA downregulated CB1R in GABAergic neurons in the
vHPC, which disinhibit the release of GABA. In turn, excessive GABA inhibited the release of glutamate. Meanwhile, CB1R in glutamatergic neurons can also be activated
by EA induced endocannabinoid, which can also decrease the release amount of glutamate. To sum up, EA may exert anxiolytic effect via downregulating CB1R in
GABAergic neurons and activating CB1R in glutamatergic neurons in the vHPC, thus reducing the release of glutamate and inhibiting the anxiety-related neuronal
circuits.
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75% ethanol between each trial and the track was analyzed using
LabState software (Xinruan information technology co., LTD,
Shanghai, China). Time spent in the center area was recorded.

2.5.3 Elevated Plus-Maze
Anxiety-related behaviors were also tested on an EPM apparatus,
which was comprised of 100 cm open arms and 100 cm close
arms (Campos et al., 2013). Free-moving mice were recorded by
videotape instrument for 5 min. The elevated plus-maze was
cleaned with 75% ethanol between each trial and the track was
analyzed using ANY-maze software (Xinruan information
technology co., LTD, Shanghai, China). Time spent in the
open arm was recorded.

2.6 Immunofluorescence Labeling
Mice were deeply anesthetized with tribromoethanol and were
transcardially perfused with 100 ml of 37°C normal saline
followed by 50 ml of 4% paraformaldehyde in 0.1 M phosphate
buffer (PBS, pH 7.4) at 4°C for fixation. The brain tissues were
quickly separated and post-fixed for 6–8 h in the same fixative
solution and dehydrated in 20% sucrose in 0.1 M PBS for 24 h and
30% sucrose in 0.1 M PBS for 24 h at 4 C. The brain were removed
immediately and post-fixed in PFA. The optimal cutting
temperature compound (OCT) embedded blocks were
sectioned to 30 μm thickness.

Sections from each group were rinsed in 0.01M PBS and
blocked for 2 h with blocking solution (5% donkey serum and
0.2% Tween 20 in 0.01 M PBS) at room temperature. The sections
were incubated with the following antibodies: rabbit anti-CB1R
(1:500, Santa Cruz, United States), mouse anti-neurogranin (1:
1000, Abcam, United States), guinea pig anti-GABA (1:1000,
Abcam, United States) and mouse anti-GAD 67 (1:500, Abcam,
United States). Subsequently, the free-floating sections were
washed with 0.01M PBS 3 times and incubated with following
secondary antibodies for 2 h: donkey anti-rabbit IgG conjugated
with Dylight 594 (1:500, Abcam, United States), donkey anti-
rabbit IgG conjugated with Dylight 488 (1:500, Abcam,
United States), donkey anti-mouse IgG conjugated with
Dylight 594 (1:500, Abcam, United States), goat anti-mouse
IgG conjugated with Dylight 488 (1:500, Abcam,
United States), and goat anti-guinea pig IgG conjugated with
Dylight 594 (1:500, Abcam, United States). The sections were
washed 3 times in 0.01M PBS and then cover-slipped.
Olympus BX51 fluorescence microscope was used to view
the sections, and images were captured using Qimaging
Camera and QCapture software. Images were analyzed
using the NIH Image J software (Bethesda, MD,
United States). The layouts of the images were based on
Photoshop CS5 (ADOBE Company, United States).

2.7 Western Blotting
Mice were deeply anesthetized with tribromoethanol and were
transcardially perfused with 100ml of 37°C normal saline. The
brain tissues (vHPC regions) were immediately removed and stored
at -80°C. The tissues were lysed by adding 40mg/ml RIPA lysis buffer
(Biosharp, China) and 40mg/ml phenylmethyl sulfonyl fluoride
(Biosharp, China) to the samples for 30min. The lysed tissues were

centrifuged at 12,000 rpm for 15min at 4°C and supernatant liquids
were collected. The protein contents were quantified by using the
Enhanced BCA Protein Assay Kit (Beyotime Biotechnology, China).

The protein (40 mg) was denatured in loading buffer at 95°C
for 5 min, separated on a 10%/12% glycine-SDS-PAGE gel
(Beyotime Biotechnology, China), and then transferred onto a
PVDF membrane (Millipore Immobilon-P, United States). The
membranes were blocked with 5% BSA (Beyotime Biotechnology,
China) at room temperature for 1 h, followed by incubation with
primary antibodies at 4°C overnight: rabbit anti-CB1R antibody
(1:500, Santa Cruz, United States) and rabbit anti-GAPDH
antibody (1:1000, Thermo Scientific, United States). The
membranes were washed in 0.01M Tris-HCI buffer salt
solution and 0.2% Tween 20 (TBST) 6 times and incubated
with following secondary antibodies for 2h: goat anti-rabbit
IgG (1:5000, Abcam, United States). The signals were recorded
using Super Signal West Pico chemiluminescent substrate
(Thermo Scientific, United States). The densitometric analysis
of the protein band images was performed using the NIH Image J
software (Bethesda, MD, United States).

2.8 Statistical Analysis
The analysis for behavioral tests was performed by experimenters
who were blinded to the treatment. All data were presented as
mean ± standard errors of means (s.e.m.), unless otherwise
specified. Each data set was firstly tested for normal
distribution and those fitted Gaussian distribution were used
for parametric analysis. Student t-test (paired or unpaired) was
used for comparison between two groups and one-way analysis of
variance was used to analyze the difference among more than two
groups, followed by Tukey post-hoc comparison. When two
independent variables were considered, two-way ANOVA was
used. For those data that did not fit the Gaussian distribution,
Wilcoxon matched-pairs rank test was used for paired
comparison and Kolmogorov-Smirnov test was employed to
compare between two independent samples. A statistical
significance was defined as p < 0.05. All statistical analysis and
data plotting were performed by GraphPad Prism ver8.0
(GraphPad Inc, United States).

3 RESULTS

3.1 EA Alleviated Visceral Hyperalgesia and
Anxiety in TNBS-Treated IBD Mice
Five days after TNBS injection, the AWR score of CRD in TNBS
group was significantly increased compared with vehicle control
mice (Figures 1A–D, p < 0.05), suggesting the presence of visceral
hyperalgesia. Treatment with EA dramatically lowered the
increased AWR score in TNBS-treated mice (Figures 1A–D,
p < 0.05). These results support the analgesic effect of EA on
visceral hyperalgesia in TNBS-treated IBD mice.

In addition, compared with the vehicle control group,
TNBS-treated IBD mice spent much less time in the center
zone of OPF and the open arms of EPM. However, EA-treated
mice spent more time in the center zone of OPF and the open
arms of EPM than TNBS-treated mice (Figures 1E,F,
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p < 0.05). These results suggest that EA can reduce anxiety
behaviors of TNBS-treated IBD mice. Of note, sham EA had
no effects on pain and anxiety behaviors in TNBS-treated
IBD mice.

3.2 EA Reversed Over-Expression of CB1R
in GABAergic Neurons But Not
Glutamatergic Neurons in the vHPC of IBD
Mice
The CB1R is associated with chronic pain and associated
emotion disorders, such as anxiety (Davis, 2014; Patel et al.,
2017; Yin et al., 2019). However, it is not clear whether CB1R
in the vHPC play a role in the inhibitory effects of EA on
anxiety and visceral hyperalgesia. To explore this question,
we compared the expression of CB1R in the vHPC of TNBS-
treated mice and vehicle control mice. Our results
showed that the protein level of CB1R in the vHPC of the
TNBS group was higher than that of the vehicle control
group. EA reduced the protein level of CB1R in TNBS-
treated IBD mice (Figures 2A,B, p < 0.05). These data
suggest that EA reversed CB1R upregulation. However, EA
have no effect on the protein level of CB1R in the amygdala
(Supplementary Figures S1A,B).

To dissect the roles of CB1R in GABAergic or glutamatergic
neurons in the vHPC, we investigated the co-localization of
CB1R and GABA or neurogranin (a marker of glutamatergic
neurons) (Xiang et al., 2020). Our results showed that the
percentage of CB1R-expressed GABAergic neurons in the
vHPC of TNBS-treated group was significantly higher than
that of vehicle control group. Compared with TNBS-treated
IBD mice, EA significantly reduced the percentage of CB1R
and GABA co-labeled neurons (Figures 2C,D, p < 0.05).
However, there were no difference in the percentage of
CB1R-expressed glutamatergic neurons in the vHPC among
four groups (Figures 3A,B).

3.3 Ablating CB1R in GABAergic Neurons in
the vHPC Alleviated Anxiety in
TNBS-Treated Mice and Mimicked the
Anxiolytic Effect of EA
Based on the above findings, we further determined whether EA
may reduce visceral pain and anxiety associated with IBD by
acting on CB1R in GABAergic neurons in the vHPC. The rAAV-
mDlX-CRE-WPRE-pA viruses were bilaterally injected into the
vHPC of CB1R-flox mice to ablate CB1R in GABAergic neurons
in the vHPC (Figure 5A). Four weeks after viruses injection, the
percentage of CB1R and GAD67 co-labeled neurons in the vHPC
was decreased in the CB1R-flox mice compared with wild type
mice (Figure 4A) and the knockout efficiency was 82.2%
(Figure 4C). Ablating CB1R in GABAergic neurons in the
vHPC had no effect on the AWR score and can’t reverse the
effect of EA on visceral hyperalgesia (Figures 5A–C).

In the OPF and EPM test, CB1R deletion in GABAergic neurons
in the vHPC increased the time of mice staying in the center zone
and open arms in the TNBS group, compared with TNBS-treated

wild type mice (Figures 5D,E, p < 0.05). However, there was no
difference in the time of mice stayed in center zone and open arms
between the TNBS group and the EA group after ablating CB1R in
GABAergic neurons in the vHPC (Figures 5D,E). It is possible that
the anxiolytic effect of ablating CB1R in GABAergic neurons in the
TNBS group had reached a peak and could not be further increased
by EA. Thus, inhibiting the expression of CB1R in GABAergic
neurons in the vHPC likely mediates the anxiolytic effect of EA.

3.4 CB1R in Glutamatergic Neurons in the
vHPC Participated in the Anxiolytic Effect
of EA
In order to determine the role of CB1R in glutamatergic
neurons in the analgesic and anxiolytic effects of EA, the
rAAV-CaMKII-CRE-WPRE-pA viruses were bilaterally
injected into the vHPC of CB1R-flox mice to ablate CB1R in
glutamatergic neurons in the vHPC (Figure 6A). The
percentage of CB1R and neurogranin (a marker of
glutamatergic neurons) co-labeled neurons was decreased in
CB1Rf/f:CaMKII-cre mice compared with wild type mice
(Figure 4B) and the knockout efficiency was 90.9%
(Figure 4D). Ablating CB1R in glutamatergic neurons in the
vHPC did not affect AWR score and can’t reverse the effect of
EA on visceral hyperalgesia (Figures 6A–C).

In the OPF and EPM tests, the time of mice stayed in the
center zone and open arms was decreased in the vehicle
control group but not TNBS group in CB1Rf/f:CaMKII-cre
mice, compared with the corresponding groups in wild type
mice (Figures 6D,E, p < 0.05). Moreover, after CB1R deletion
in glutamatergic neurons in the vHPC, there was no
difference between the vehicle control group and the
TNBS group (Figures 6D,E). It is possible that vehicle
control mice with CB1R deletion in glutamatergic neurons
showed a high level of anxiety, which could not be further
increased by TNBS treatment. The time of mice stayed in
center zone and open arms in the EA group was not
significantly different with the TNBS group of CB1Rf/f:
CaMKII-cre mice, but was significantly lower than the EA
group of wild type mice (Figures 6D,E, p < 0.05). These data
suggested that EA attenuates anxiety via activation of CB1R
in glutamatergic neurons in the vHPC.

4 DISCUSSION

Patients with IBD have several chronic visceral disorders,
including abdominal pain, rectal bleeding, and diarrhea
(Gracie et al., 2018). In addition, these patients often have
mood disorders, such as anxiety or depression (Walker et al.,
2008; Neuendorf et al., 2016; Gracie et al., 2018). Our study
found that TNBS-treated IBD mice displayed visceral
hyperalgesia and anxiety-like behaviors. Several reports
showed that EA relieved mechanical allodynia and visceral
hyperalgesia associated with IBD (Ji et al., 2013; Lv et al.,
2019; Wang et al., 2019). In addition, EA had an anxiolytic
effect (Errington-Evans, 2012; Yue et al., 2018). Our present
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study showed that EA is effective in reducing visceral
hyperalgesia and anxiety in a mouse model of IBD.

The hippocampus is not only a key region for memory and
learning but also is closely involved in chronic pain and anxiety
(Jones and Gebhart, 1986; Covey et al., 2000; Li et al., 2017; Parfitt
et al., 2017). Direct manipulation of the hippocampus alters
nociceptive behaviors (Lathe, 2001; Reckziegel et al., 2021).
Moreover, hippocampus, especially vHPC has been viewed a
target to treat anxiety (Li et al., 2017; Parfitt et al., 2017). The
CB1R play a role in the regulation of mood disorder and chronic
pain processes (Jones and Gebhart, 1986; Davis, 2014; Seltzman
et al., 2016; Yin et al., 2019). In this study, EA reduced the protein
level of CB1R in the vHPC of TNBS-treated IBD mice. We
wonder whether CB1R in the vHPC may be involved in
analgesic or anxiolytic effect of EA.

Peripherally restricted CB1R agonists may hold promise as a
viable treatment for visceral pain (Di Sabatino et al., 2011). Also,
CB1R in the hippocampus may be targeted for treating anxiety
disorders (Jiang et al., 2005; Lisboa et al., 2015). In the
hippocampus, the CB1R is present on both GABAergic and
glutamatergic axon terminals (Marsicano and Lutz, 1999).
Deletion of CB1R in GABAergic neurons decreases
hippocampal long-term potential (LTP). In contrast, ablating
CB1R in glutamatergic neurons seems to enhance
hippocampal LTP (Monory et al., 2015). In order to
distinguish the different effects of CB1R of excitatory and
inhibitory neurons on EA, we observed the distribution of
CB1R and the influence of conditional deletion of CB1R in
analgesic and anxiolytic effects of EA. We found that EA
reversed the upregulation of CB1R in GABAergic neurons but
not glutamatergic neurons in the vHPC.

In addition, our study showed that ablating CB1R of
GABAergic neurons in the vHPC alleviated anxiety in TNBS-
treated IBD mice and also mimicked the anxiolytic effect of EA.
Previous study found that stimulating CB1R in GABAergic
neurons in the vHPC can lead to an anxiogenic response via a
decreasing GABAergic transmission (Roohbakhsh et al., 2009).
We hypothesized that in TNBS-induced IBD mice, CB1R was
over-expressed in GABAergic neurons in the vHPC, which was
activated by endocannabinoid and reduced the release amount of
GABA. Since glutamatergic neurons in the brain are usually
regulated by inhibitory GABAergic neurons, the release
amount of glutamate is increased because of decreased
inhibition of GABA (Katona and Freund, 2008). The increased
release of glutamate in the vHPC may excite anxiogenic neuronal
circuits starting from vHPC, to basolateral amygdala (BLA)
(Allsop et al., 2014) or the medial prefrontal cortex (mPFC)
(Adhikari, 2014), thus inducing anxiety-related behaviors in IBD
mice (Figure 7A). Interestingly, EA may exert anxiolytic effect by
downregulating CB1R in GABAergic neurons in the vHPC,
which in turn increased release of GABA and subsequently
inhibited the release of glutamate, thus alleviating anxiety-like
behaviors (Figure 7B).

In contrast, ablating CB1R in glutamatergic neurons in the
vHPC only induced severe anxiety in vehicle control mice, but did
not deteriorate anxiogenic response of TNBS-treated IBD mice.
Since the CB1R in glutamatergic terminals may reduce the release

amount of glutamate (Marsicano and Lutz, 1999), the reason of
anxiety in vehicle control mice may be that the absence of CB1R
in glutamatergic neurons in the vHPC induces excessive
glutamate release, thus exciting the neuronal circuits for
anxiety. Since the level of anxiety in vehicle control mice has
reached a peak, it would not further increase after TNBS injection
(Figure 7A). Moreover, CB1R deletion in glutamatergic neurons
also inhibited the anxiolytic effect of EA. It suggested that EAmay
exert anxiolytic effect via activation of CB1R in glutamatergic
neurons in the vHPC, thus reducing the release of glutamate and
inhibiting the activation of neuronal circuits of anxiety
(Figure 7B).

To our surprise, ablating CB1R in either GABAergic or
glutamatergic neurons in the vHPC did not alter visceral
hyperalgesia. It suggested that CB1R in the vHPC may not
contribute to visceral pain. In our previous study, we found
that EA can increase the level of endocannabinoid 2-
arachidonoylglycerol in the midbrain in chronic pain, which
can bidirectionally regulate GABAergic and glutamatergic
neurons via the CB1R in the vlPAG to produce analgesic
effects (Yuan et al., 2018; Zhu et al., 2019). In our study,
CB1R in other brain region, such as vlPAG, may be
responsible for the analgesic effect of EA in IBD induced
visceral pain.

In conclusion, our findings reveal that CB1R expressed on
GABAergic and glutamatergic neurons are involved in the
inhibitory effect of EA on anxiety in IBD mice. EA may exert
anxiolytic effect via downregulating CB1R in GABAergic
neurons and activating CB1R in glutamatergic neurons in
the vHPC, thus reducing the release of glutamate and
inhibiting the anxiogenic neuronal circuits related to
vHPC. Thus, our study provides new information about the
cellular and molecular mechanisms of the therapeutic effect of
EA on anxiety induced by IBD.
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