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Abstract: Vineyard soils show an increased risk of degradation due to being intensively cultivated.
The preservation of soil integrity and fertility is a key concept of organic and biodynamic farming.
However, both systems are also subject to criticism due to their higher amount of plant protection
products used and their increased traffic intensity compared to integrated viticulture, both detrimental
to soil quality. The aim of this study was therefore to assess long-term effects of these three management
systems on chemical and physical soil quality parameters. For this purpose, topsoil samples were
taken in a long-term field trial vineyard at different positions and examined for bulk density,
available water capacity (AWC), soil organic carbon (SOC), N, pH, and for total and bioavailable
copper (Cu) concentrations. Biodynamic plots had a lower bulk density and higher SOC concentration
than the integrated ones, which is probably due to the species-rich cover crop mixture used in
the inter-row. However, organic and biodynamic farming showed an accumulation of copper in
the under-vine area and in the tractor track, which is problematic for soil fertility in the long-term.
Therefore, alternatives for copper in plant protection are necessary to ensure sustainable soil quality
through organic and biodynamic viticulture.
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1. Introduction

The quality of agricultural soils is mainly measured by their productivity, i.e., the yield and
nutritional value of the crops grown on them [1]. This productivity depends on the physical, chemical,
and biological soil parameters and their various interactions [2]. Since soil biology is difficult to record,
and its effect on plant production has only partially been unraveled by now, the chemical and
physical parameters have traditionally been given greater importance in soil evaluation [2]. Among the
most important chemical soil parameters are the pH value, the mineral and organic composition
of soils. Physically important parameters are the particle size distribution, the bulk density, and the
pore structure, which in interaction are decisive for the air and water balance of the soil [1].

However, soil quality—just like the parameters that determine it—is not a static condition, but is
influenced and changed by land use and management [1]. In agricultural soils, erosion, nutrient losses,
decline in organic matter, compaction, and contamination inputs are the main threats that can lead to a
loss of soil quality [3]. The soils of permanent crops, such as grapes are particularly at risk of a reduction
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in quality, as they are degraded more than arable or grassland areas due to intensive cultivation and the
comparatively high use of plant protection products [4,5]. At the same time, the long-term productivity
of such crops depends crucially on the permanent safeguarding of soil quality [6,7].

Viticulture in temperate growing regions is usually carried out as a spatial culture in the form
of rows, with the inter-row space serving as tramlines for mechanical cultivation with tractors [8].
This results in a high risk of compaction for the lane due to the frequent passes with heavy machines [9].
An attempt is made to counteract this danger by greening the inter-row space. In contrast, the under-vine
area is usually kept free of vegetation in order to ensure good aeration of the grape zone, which results
in highly differentiated soil management on a small scale.

The most widespread management system in viticulture is integrated cultivation, which is
based on a combination of biological, biotechnical, plant breeding, and cultivation techniques [10].
Over the past 15 years, there has been an increasing trend towards organic or biodynamic viticulture.
In the European Union, 340,000 hectares (8.7% of the total area under vines) are currently managed
organically (status 2018) [11]. Organic farming systems differ from integrated viticulture in the use
of copper (Cu), sulfur, and plant strengtheners instead of synthetic fungicides, in the use of organic
instead of mineral fertilizers, and in the absence of chemical herbicides [12,13]. Furthermore, the use
of species-rich cover crop mixtures is intended to increase biodiversity and promote soil fertility
by building up organic matter. Biodynamic viticulture also follows an anthroposophical approach,
in which additional plant and animal preparations are used [14].

On the one hand, organic farming systems, which aim to achieve a more environmentally friendly
and sustainable production by exclusively using products of natural origin, have been shown to have
increased soil microbial activity and a modified community composition, compared to integrated
cultivation [15–17]. The positive effects of organic and biodynamic viticulture on soil microbial
properties are reported to increase over time since conversion [18].

On the other hand, organic viticulture is also criticized for its use of Cu with regard to soil protection.
As a heavy metal, Cu is not degraded or leached off the soil, but is predominantly bound to organic
matter and clay minerals and thereby immobilized [19]. Regular application leads to an accumulation
in the topsoil [20]. As a result of immobilization, the bioavailability and thus the toxicity of Cu in the
soil is reduced [21]. Therefore, in addition to the total Cu concentration, the amount of bioavailable Cu
is of great ecological and agronomic importance [22,23]. The bioavailability of Cu highly depends on
the distribution of Cu among soil components and their ability to adsorb or desorb Cu on one hand,
and chemical soil parameters, such as the content and nature of organic matter, clay minerals,
metal oxides, cation exchange capacity, redox potential, and pH [23]. In order to determine the
bioavailability of copper, weak chemical extraction agents are used to simulate the extraction capacity
of roots. Common extraction agents for this purpose are ethylenediaminetetraacetic acid (EDTA),
diethylenetriaminepentaacetic acid (DPTA), calcium chloride (CaCl2) or a calcium chloride/DPTA
mixture (CAT). To reduce the toxic effect of high Cu concentrations on soil organisms and plants,
there is a legal upper limit for the use of Cu in plant protection in the European Union [24–26].
In organic viticulture, the use of Cu in plant protection against downy mildew (Plasmopara viticola)
is restricted to 6 kg ha−1 a−1 [13]. Beyond this, Cu application in viticulture in Germany is limited
to 3 kg ha−1 a−1 due to the application instructions in the registration reports of copper-containing
fungicides [27,28]. The amounts of Cu used in plant protection are generally higher in organic
compared to integrated management, since the latter mostly relies on synthetic fungicides. Nonetheless,
several studies comparing Cu contents in soils of organically and conventionally managed vineyards
did not detect differences among the systems [18,29–31]. This might be because Cu contents in vineyard
soils have accumulated over the past century, thereby, masking recent management effects [18,30,32].
On the other hand, Cu accumulation in the soil is a gradual process and might only be detected in
the long-term. One study comparing organic and conventional management over nine years in Italy
detected higher Cu contents in organically managed soils underlining the necessity of long-term field
trials assessing soil quality in organic viticulture [33].
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The lower effectiveness of the pesticides used in organic viticulture, as well as the under-vine
weed control by mechanical means also requires a higher number of tractor passes, exposing the tractor
track to a higher load than in integrated viticulture [9]. Compacted soils are difficult to root through
and have a poor water and gas balance [34].

Although, there are numerous publications on individual effects of Cu, herbicide, or fertilizer
application on soil quality parameters, holistic assessments regarding the effects of management
systems on physical and chemical soil parameters are still rare. Such assessments are hampered by
the fact that effects such as Cu accumulation, soil compaction or the build-up of organic matter only
develop in the long-term [26,35].

Several studies comparing organic and conventional viticulture found contents of soil organic
carbon (SOC) and total N not to be different [18,36,37]. Gutiérrez-Gamboa et al. [38], in contrast,
found N content in organically managed soils in Chile to be higher compared to integrated and
conventional management, respectively. Researchers in south of France found a long-term increase
in organic carbon and nitrogen due to organic farming, but no increase in bioavailable Cu [29].
Characteristic effects of organic and biodynamic viticulture are higher cumulative soil respiration,
higher content of microbial biomass C, and a higher ratio of microbial biomass C to organic C indicating
higher soil microbial activity [18,29,37,39–41]. In regards to soil physics, Coll et al. [29] reported a
higher bulk density and thus increased soil compaction, as a result of organic farming. However,
their experimental design consisted of various plots managed by different owners, and only inter-row
soil was sampled. Furthermore, it is to be expected that positive or negative treatment effects will
not show up over the whole area, but spatially differentiated due to the row-shaped vineyard design.
Such spatial variability has repeatedly been reported for soil compaction in vineyard soils [9,35,42],
and a comparable zoning can be expected for Cu accumulation, due to drip losses and leaf fall.

The aim of this study was therefore to assess spatial long-term effects of the different
management systems in viticulture on physical and chemical soil quality parameters. For this purpose,
bulk density and plant-available water capacity (AWC), soil organic carbon (SOC) and nitrogen (N),
as well as the concentrations of total and bioavailable Cu were recorded, spatially separated into
under-vine area, tractor track, and the middle of the greened inter-row within a unique long-term
field experimental vineyard. The results provide an insight into the underground variability in
permanent crops and improve the data basis for a thorough evaluation of integrated, organic,
and biodynamic viticulture.

2. Results

Analyses of variance revealed a significant effect of the management system as well as of the
row position on mean bulk density (Table 1). Mean bulk density was highest in the soil of integrated
plots (1.53 g/cm3) and differed significantly from biodynamic management (contrast p = 1.46 × 10−2),
which had the lowest mean bulk density (1.47 g/cm3). The organically managed soil ranged between
them (mean 1.51 g/cm3) without a statistical difference. Bulk density varied significantly among
all three positions. The highest soil compaction was found in the tractor track (mean 1.57 g/cm3),
followed by the middle of the greened inter-row (mean 1.51 g/cm3). The under-vine area showed the
lowest bulk density (1.41 g/cm3 in average). None of the tested physical or chemical soil parameters
showed a significant interaction effect among management systems or positions (Table 1).
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Table 1. Effect of management system, alley position and their interaction on the investigated physical and chemical soil parameters.

pmanagement Integrated Organic Biodynamic pposition Under-Vine Tractor Track Inter-Row pmanagement:position

Bulk density (g cm−3) 0.042 * 1.53 ± 0.09 a 1.51 ± 0.07 ab 1.47 ± 0.1 b 2.40 × 10−5 * 1.43 ± 0.09 c 1.57 ± 0.03 a 1.51 ± 0.07 b 0.324
AWC (%) 0.179 15 ± 1.25 14.9 ± 1.68 15.9 ± 1.99 8.88 × 10−3 * 14.8 ± 1.4 b 14.6 ± 1.6 b 16.4 ± 1.6 a 0.107

pH 0.257 7.13 ± 0.32 7.23 ± 0.13 7.15 ± 0.08 0.32 7.19 ± 0.22 7.21 ± 0.19 7.12 ± 0.21 0.992
N (%) 0.6 0.11 ± 0.02 0.12 ± 0.05 0.12 ± 0.05 0.357 0.11 ± 0.05 0.11 ± 0.02 0.13 ± 0.02 0.867

SOC (%) 5.23 × 10−3 * 1.09 ± 0.24 b 1.15 ± 0.24 b 1.41 ± 0.24 a 0.071 1.13 ± 0.31 1.17 ± 0.22 1.35 ± 0.25 0.564
C/N 0.073 10.15 ± 1.36 10.2 ± 2.39 12.31 ± 2.99 0.853 10.76 ± 3.57 11.22 ± 1.98 10.68 ± 1.73 0.943

Total Cu
(mg kg−1 soil) 1.52 × 10−4 * 74.3 ± 20.4 b 87 ± 16.9 a 87.4 ± 18.9 a 7.01 × 10−3 * 88.5 ± 18.9 a 78.5 ± 22.1 b 81.1 ± 16.6 b 0.879

Bioavailable Cu
(mg kg−1 soil) 1.33 × 10−3 * 19.2 ± 6.5 b 24.6 ± 5.3 a 22.3 ± 5.3 a 1.28 × 10−2 * 24.5 ± 6.1 a 20.6 ± 6.6 b 21.1 ± 4.7 b 0.992

Analyses of variance were calculated based on linear mixed models. Significant factor effects (with α = 0.05) are marked with a *. Average values ± standard deviation are given per
management system and position, respectively, and different superscript letters indicate statistically significant differences among factor levels in case of a significant management or
position effect.
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The amount of plant-available water was affected solely by the position and did not differ among
management systems (Table 1). The soil of the greened inter-row had a significantly higher available
water capacity (AWC) (16.4% on average) compared to both the under-vine area (p = 0.012) as well as
the tractor track (p = 0.044). Under-vine area and tractor track were almost 2% lower in AWC and did
not differ from each other (p = 0.668).

The pH of the soil samples ranged between 7.12 and 7.23 on average and no difference was found
between the different treatments or positions. (Table 1).

Soil N did not differ neither among management systems nor among positions. Mean values
ranged between 0.11% and 0.13% (Table 1).

The amount of soil organic carbon (SOC) was affected by the management system, but not by the
position within the vineyard (Table 1). SOC was shown to be significantly higher in the biodynamically
managed plots (mean 1.41%) compared to both the integrated (mean 1.09%) and organic management
(mean 1.15%). No statistical difference was detectable between the integrated and the organic system.
In the inter-row SOC was slightly higher (mean 1.35%) compared to the under-vine area (mean 1.13%)
and the tractor track (mean 1.17%), but results were not significant.

The C/N ratio did not show neither a significant position effect nor a significant management effect.
However, as a consequence of the results on N and SOC, the biodynamic treatment (12.31) tended to
have a slightly higher C/N ratio than the organic (10.2) and the integrated system (10.15) (Table 1).

The total Cu concentration in the soil samples ranged from 30.6 to 119.8 mg/kg soil, but only four
samples had a value greater than 100 mg/kg. Analyses of variance revealed a significant effect of the
management system as well as of the alley position on the total and bioavailable Cu concentration
(Table 1). The concentrations of total, as well as of bioavailable copper were significantly higher in the
soils of the organically and biodynamically managed plots compared to the integrated management.
Mean values of total Cu were 74, 87, and 87 mg/kg soil and mean values of bioavailable Cu were 19, 25,
and 22 mg/kg soil for the integrated, organic, and biodynamic management, respectively. The ratio of
bioavailable to total Cu in soil was similar in all management systems and ranged between 25 and 28%.
In relation to the position, the concentrations of both total and bioavailable Cu were significantly
increased in soils of the under-vine area (Table 1). Mean values of total Cu were 88.5, 78.5, and 81.8 mg/kg
soil for the under-vine, tractor track, and inter-row position, respectively. The mean values for
bioavailable Cu per position amounted to about 26% of the total Cu values. Concentrations of total,
as well as bioavailable Cu did not differ between tractor track and inter-row space.

Spatial Differentiation of Management Effects

Soil physical and chemical parameters, which showed a significant management effect (as was
the case for bulk density, SOC, and total and bioavailable Cu), were further examined on spatially
differentiated scale. The aim of the differentiation was to localize more precisely positive and negative
impacts of long-term integrated, organic, and biodynamic viticulture on the soil. This is important to
provide guidance for the different management systems.

Bulk density under integrated management was significantly higher compared to biodynamic
management (Table 1). In relation to the spatial variability within the management systems, bulk density
was lowest in the under-vine area and highest in the tractor track for all three management systems
(Figure 1). Integrated management showed the highest mean density in the tractor track and
the inter-row, and the median was highest at all three positions. In contrast, biodynamic farming,
which in average had a significantly lower bulk density compared to integrated farming across all
three positions, tended to have a lower bulk density in the under-vine area and the inter-row space.
Nevertheless, none of the three examined positions showed a significant management effect in their
individual consideration.



Plants 2020, 9, 1361 6 of 15

Figure 1. Bulk density of vineyard soil under integrated, organic and biodynamic management,
separated by the row positions under-vine area, tractor track and middle of the greened inter-row.

Soil organic carbon was significantly higher in soils of biodynamic management and tended
to show higher values in the inter-row space compared to the under-vine area (Table 1). In the
under-vine area, SOC was highest for the biodynamic treatment and differed significantly from the
integrated treatment (Figure 2). Moreover, the biodynamic treatment showed the highest SOC values
in all three positions within the vineyard.

Figure 2. Soil organic carbon of vineyard soil under integrated, organic and biodynamic management,
separated by the row positions under-vine area, tractor track and middle of the greened inter-row.
Management systems with different letters on top differ significantly with α = 0.05 according to least
significant difference test (n = 4).

The generally increased total Cu concentrations in the soil of the organic and biodynamic
management system thereby showed to base on significantly higher Cu levels in the under-vine area
(p = 5.2 × 10−3) and in the tractor track (p = 0.039) (Figure 3A). Mean total Cu concentrations of the
organic and the biodynamic treatment exceeded the integrated average value by 10 and 15 mg per kg
soil in the under-vine area, and by 13 mg per kg soil in the tractor track. By contrast, no difference
among the management systems was detected for the inter-row position (p = 0.133), although the total
Cu level of the organic and biodynamic samples also tended to be slightly higher than the one of the
integrated soil.
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Figure 3. Total Cu (a) and bioavailable Cu (b) of vineyard soil under integrated, organic and
biodynamic management, separated by the row positions under-vine area, tractor track and middle
of the greened inter-row. Management systems with different letters on top differ significantly with
α = 0.05 according to least significant difference test (n = 4).

Even though the bioavailable Cu concentration—averaged across all management systems—was
highest in the under-vine soil, the spatially separated results solely showed a significant differentiation
among the management systems in the tractor track (p = 0.043) (Figure 3B). The mean bioavailable Cu
values of the organic and biodynamic soils also tended to be higher in the under-vine area as well as
the inter-row section, but treatments did not differ significantly (p = 0.119 | p = 0.088).

3. Discussion

Repeated tractor passes in the experimental vineyard led to considerable soil compaction in the
tractor track. Therefore, our results are basically in line with the reports of various other research
groups who also found compaction in the wheel track of tractors in agricultural soils [34,35,42,43].
In comparison of the farming systems, however, organic and biodynamic farming did not lead to
higher soil compaction, although both systems had an average of one more tractor pass per year
and row compared to the integrated treatment for the years 2006 to 2018. Rather, the soil of the
biodynamic management even had a lower bulk density than the one of the integrated treatment,
which is contrary to the findings of Coll et al. [29]. The differences in soil bulk density among the
treatments were presumably due to the difference in cover crop vegetation. A positive effect of
greening on soil structure, which is based on a combination of aboveground cushioning effect of
the plant biomass, a soil aggregate stabilization effect by the root system, and a regular input of
organic carbon is widely recognized [44,45]. Our results show that a diverse vegetation cover is more
effective than sward in preventing soil compaction. This is demonstrated firstly by the results of an
evaluation of the cover crop vegetation in the experimental vineyard in 2019, in which plant diversity,
maximum height, and percent coverage of the soil of the cover crop biomass were recorded at three
dates during the growing season (June, July, August) (Table S1). While no difference in the coverage of
the soil was found, the maximum growth height of the cover crop biomass was significantly higher
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(p = 4.86 × 10−4) in the organically (mean 32.0 cm) and biodynamically (mean 24.3 cm) managed plots
compared to the integrated management (mean 12.6 cm), giving them a higher cushioning ability.
Furthermore, diverse cover crop mixtures usually have a denser and deeper root system than grass,
thereby increasing their soil-stabilizing effect [46]. In addition, a larger plant biomass and a more
intensive root system lead to a higher input of organic carbon into the soil. In agreement with this,
the organic and biodynamic treatment tended to show higher SOC values in the inter-row area than the
integrated treatment. This is in accordance with findings of Coll et al. [29]. Averaged over all positions,
SOC was significantly higher in the biodynamic compared to the integrated treatment. Taken together,
the use of species-rich cover crop mixtures can effectively counteract the risk of soil compaction due to
frequent tractor passes in organic and biodynamic viticulture.

The significantly higher SOC concentration of the biodynamic treatment was—as already
mentioned—presumably caused by its cover crop mixture. In the 2019 cover crop evaluation,
the biodynamically managed plots did not only show an increased maximum plant height compared
to sward in the integrated treatment, as did the organic plots, but also showed a significantly higher
number of plant species (Figure S1), compared to the organic and integrated treatment (p = 8.21 × 10−5).
The average number of species within the cover crop in the biodynamic plots was 13.3 compared to 6.3
in the integrated, and 9.5 in the organic plots, respectively. Plant species differ in terms of their carbon
input to the soil due to their shoot/root ratio and their rooting depth, and a positive correlation has
been found between plant functional diversity and SOC concentration [47–49]. However, in terms of
spatial differentiation analysis, the higher SOC level of the biodynamic treatment was most evident in
the under-vine area. The mechanical under-vine cultivation of the organic and biodynamic treatment
presumably left more vegetation than the glyphosate treatment of the integrated plots, resulting in
a comparatively higher input of organic carbon in these treatments. It should be noted, however,
that the biodynamic treatment even showed more SOC than the organic treatment, although they
did not differ in terms of cover crop mixture and under-vine management. Biodynamic preparations,
especially horn manure and compost preparations, may be involved in enhancing root growth and
biomass development of cover crops sown [50], but the mode of action still remains unclear.

Soil compaction in the lane is presumably also responsible for the reduced AWC of the soil within
the lane zone, as compacted soils possess less pore volume [51]. Although the under-vine areas of all
three management systems were characterized by the lowest bulk density, its AWC only corresponded
to that of the rather compacted tractor track. Therefore, it can be assumed that the low bulk density is
mainly due to a high proportion of coarse pores, which play virtually no role in the water supply of
the plant. The inter-row samples on the other hand tended to have a higher AWC, indicating a higher
proportion of medium pores that are important for the water storage capacity of soils.

In general, the fertility and productivity of agricultural soils strongly correlates with their
SOC concentration [52,53]. SOC promotes the formation of clay-organic matter complexes and
thereby aggregate stability in the soil [54]. Plant nutrients are released during the mineralization
of organic matter, and humic substances can reversibly adsorb nutrients [51]. Organic matter also
possesses a high water holding capacity [51], which apart from the better soil structure, can provide an
explanation for the generally higher AWC in the inter-row zone of all treatments. This result is in line
with that of a long-term farming comparison of arable soils [55]. In addition, SOC as the primary food
of soil microorganisms affects the microbial community composition and activity, and corresponding
differences among management systems have already been demonstrated in the same experimental
vineyard as well as in other studies [15,16,55,56]. It should be noted that management effects on
the SOC balance of soils in field experiments can be expected after five years at the earliest [57],
which underlines the importance of long-term experiments like the current one.

In contrast to the differences in SOC concentration, no difference was found for N among
the systems. The reason for this is probably the balanced experimental design with regard to
nutrient applications in the three systems and the overall low N inputs by fertilizer applications.
Mineralized N contents in the soil in the same trial after conversion revealed higher values for organic,
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and biodynamic management, respectively. Yeast-available N in ripe wine grapes and in juices from
the same trial also showed higher values in the organic and the biodynamic treatments [58].

Although management systems differed in SOC in the current trial, no difference in the C/N ratio
was detected among the systems. The biodynamic treatment having a significantly higher SOC content
showed a slightly higher C/N ratio compared to organic and integrated management, but the balanced
experimental setup did not lead to major differences in the C/N ratio.

The elevated total and bioavailable Cu concentrations in the soil of the organic and biodynamic
plots reflect the use of Cu in crop protection in these two treatments. However, the integrated
plots also showed total Cu values above the normal range for unpolluted soils [59,60]. Although,
the total Cu concentrations were in all soil samples below the European Union’s critical limit of
140 mg/kg soil [24], only one sample was below the precautionary value of 40 mg/kg in Germany [61].
Other studies on Cu-contaminated vineyard soils, however, revealed in part even substantially higher
Cu contaminations [19,59,62,63]. The average difference of 13 mg/kg total Cu between integrated
and organic, or biodynamic plots, respectively, based on a trial period of 13 years, corresponds to an
annual increase in total Cu concentration of about 1 mg/kg. This result is in line with the theoretical Cu
input into the topsoil by plant protection measures, calculated on the basis of the maximum annual
application rate of 3 kg Cu per ha as permitted in Germany [27,28]. The Cu input in the current trial
was 2.5 kg ha−1 a−1 on average.

As the spatial differentiation analysis reveals, the increased total Cu levels were located particularly
in the under-vine area and the tractor track, which is also the eaves zone of the grapevine canopy. As Cu
is quickly attached to organic matter and clay minerals when entering the soil [64], the accumulation
of Cu in these areas may be explained by dripping pesticides and leaf fall residues from the canopy.
The spatial variability of Cu accumulation as found in our study may also explain the contradicting
results to the study of Coll et al. [29], who did not find a significant increase in the available Cu
concentration in the soil of organically farmed vineyards in southern France, but only sampled the
middle of the inter-row.

Unlike the case of total Cu, a significant difference in bioavailable Cu among the management
systems occurred solely in the tractor track between integrated and organic plots. As the availability
of Cu in soil depends on numerous factors like pH, redox potential, cation exchange capacity,
organic matter, particle size, and the presence of manganese and iron oxides [65–67], the ageing of the
deposited Cu may vary among row positions. In relation to the ratio of bioavailable to total copper,
the CAL extraction of our study with an average of 26% gave comparable results to the extraction
agents EDTA or DPTA used in many other studies [26,63,68].

Taken together, the three forms of vineyard management differ with regard to various physical
and chemical soil parameters. In this respect, our study shows a spatial soil differentiation with closely
spaced zones of better or worse soil quality, which is responsible to varying degrees for long-term
position and management effects. Despite a higher number of tractor passes, organic and biodynamic
farming did not lead to a higher soil compaction, rather the opposite was the case due to the positive
effects of their cover crop mixture. The biodynamic treatment shows particularly positive effects having
the lowest bulk density and the highest SOC concentration together with the highest biodiversity of
cover crops in the current study. On the other hand, the organically and biodynamically cultivated
vineyard soils show a constant accumulation of Cu, which is problematic for soil fertility in the
long term. Consequently, research into alternative plant protection agents should be intensified or the
cultivation of disease-tolerant varieties, for whose protection less Cu is needed, should be promoted.

4. Materials and Methods

4.1. Experimental Site

The field experiment was set up in a vineyard located in Geisenheim, Germany (49◦59′22.0” N;
7◦57′00.8” E). The vineyard was planted in 1991 (Vitis vinifera cv. Riesling, clone Gm 198–30, grafted on
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Vitis berlandieri Planch. × Vitis riparia Michx. cv. SO4 and Vitis riparia Michx. × Vitis cinerea Engelm. cv.
Börner rootstock, respectively) and was 0.8 ha in size. It had a row spacing of 2 m, a vine spacing of
1.2 m and was trained as a single Guyot in a vertical shoot positioning (VSP) system. Until the end
of 2005, the whole vineyard was managed according to the Good Agricultural Practice. Since 2006,
the organic and biodynamic vineyard plots were managed according to Regulations (EC) No 834/2007
and (EC) No 889/2008, and according to ECOVIN- and Demeter-Standards, respectively, whereas the
integrated management still followed the Good Agricultural Practice.

The experimental site was set up as a complete block design with four field replicates, each of
which included the three factor levels of the main effect management system. Each main plot per field
replicate and management consisted of 4 rows with 32 vines each. The two outer rows per plot were
considered as buffer rows, thus sampling just took place in the inner rows of each plot.

In the organic and biodynamic plots, the Wolff-Mixture® (for the composition, please see Table S3 of
Döring et al. [58]) was used as cover crop and a mechanical under-vine management was implemented
(Table 2). In the integrated plots, a grass mixture (Lolium perenne 20% and Poa pratensis 80%) was
established as cover crop between the rows, and weeds in the under-vine area were controlled by
herbicide application in average twice per year. Sowing of the respective cover crop mixtures in
all the treatments occurred on 05/10/2006, 04/04/2007, 04/28/2008, 04/11/2011, 07/18/2014, 10/25/2015,
and 05/18/2017 according to seasonal conditions. In all three treatments, every second row was
ploughed shortly before bloom. Considerable nitrogen introductions in the organic and the biodynamic
treatment due to the ploughing of the legumes-rich Wolff-Mixture were compensated by mineral
fertilization of the integrated plots (25 kg N ha−1 on 07/06/06, 50 kg N ha−1 on 06/26/10, 25 kg N ha−1

on 07/05/12, and 25 kg N ha−1 on 06/16/14). To control Erysiphe necator and Plasmopara viticola
(powdery and downy mildew), systemic fungicides were used in the integrated plots, and copper,
sulfur, and plant strengtheners in the organic and the biodynamic treatments. Both, organic and
biodynamic treatments received identical soil and vine management practices except that biodynamic
preparations (horn manure, horn silica) were additionally applied to the biodynamic plots. All three
treatments received compost in 2006, 2007, and 2016. After analysis of the composts the same amount
of nitrogen equivalents were applied to every treatment (50 kg N ha−1 on 08/24/06, 25 kg N ha−1

on 10/24/07, and 7.5 kg N ha−1 on 08/24/16). Green waste compost was used for the integrated plots and
farmyard manure originating from organic farming was used for organic and biodynamic treatments,
respectively. In addition, the biodynamic compost preparations 502–507 were applied to the compost
of the biodynamic treatment. For a brief description of the experimental vineyard and the applied
management practices, see Döring et al. [58].

Table 2. Overview of the general management in the integrated, organic, and biodynamic plots.

Integrated Organic Biodynamic

cover crop sward (every 2nd row
cultivated) multi-species mixture (every 2nd row cultivated)

under-vine-management herbicides mechanically

fertilization

green waste compost +
mineral fertilizers
(according to Nmin

analysis)

farmyard manure +
rolling or cultivation of

cover crop

farmyard manure with
biodynamic preparations

(or cow pat pit
preparation) + rolling or
cultivation of cover crop

plant protection
systemic fungicides

botryticides
copper (max. 3 kg/ha and year), wettable sulfur

plant resistance improvers

mating disruption method against grape berry moth

biodynamic preparations - - horn manure, horn silica
compost preparations
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From 2006 until 2018 the organic and the biodynamic plots had 9.44 tractor passes per row and
year on average due to soil management, hedging, and plant protection, whereas the integrated plots
had 8.33 tractor passes per row and year on average. The average Cu application from 2006 to 2018 in
the organic and the biodynamic plots was 2.5 kg ha−1 a−1.

4.2. Soil Sampling

Disturbed soil samples for the copper analysis were taken in July 2018 from topsoil (0 to 30 cm)
using a Pürckhauer soil sampler. Undisturbed soil samples for the soil physical analyses were collected
in March 2019 within the topsoil as well using stainless steel metal rings (100 cm3). The metal rings
were hammered into a freshly exposed soil profile with the assistance of a sampling head, then dug
out and excessive soil was removed using a sharp knife.

Both the disturbed and the undisturbed sampling were carried out at three different positions
within each block (Figure 4). The three positions were defined as follows:

• in the under-vine area which has been kept free of vegetation by herbicide or mechanical means
• in the tractor track of the cover cropped inter-row (which was also the draining zone of the canopy)
• in the middle of the cover cropped inter-row between the two main tractor tracks.

Figure 4. Positioning of disturbed and undisturbed soil sampling between the rows of vines.

The disturbed samples were generated as mixed samples consisting of four drillings per
management block × position combination. For the undisturbed samples, one trench covering
all three positions was dug out per management block. For each position within a trench, four samples
were taken, analyzed separately and finally averaged to ensure representativeness.

4.3. Soil Physical Analysis

Soil moisture retention capacity was analyzed using a pressure plate apparatus. First,
the undisturbed samples within the metal rings were covered with a parchment paper, saturated with
distilled water and then placed on a waterlogged ceramic plate within the pressure vessel. Soil water
tension levels were adjusted by pressurizing the vessel, and water retention of the samples at pF 2.5
and pF 4.2 was measured gravimetrically at equilibrium. The plant-available water content (AWC)
was calculated as pF 2.5–pF 4.2. Bulk density was calculated as sample dry weight per sample
volume (=100 cm3).
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4.4. Chemical Parameter Analysis

Soil total carbon (C) and nitrogen (N) were analyzed according to DUMAS and soil organic carbon
(SOC) was determined by subtracting carbonate carbon (determined according to SCHEIBLER) from
total carbon.

Total copper was extracted with aqua regia, bioavailable copper was extracted using CAT
(c(calcium chloride) = 0.01 M, c(diethylenetriaminepentaacetic acid) = 0.00002 M) and both were
measured via ICP-OES. A detailed description of the analytical methods used can be found in
Hendgen et al. [15].

4.5. Statistics

Statistical analyses were carried out using the R software and the RStudio graphical user
interface [69,70]. Analyses of variance were calculated based on a linear mixed model with management
and position as fixed and block as random factor. Soil parameters that were significantly affected by
the management system or the position were subjected to least significant difference as post-hoc test.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/10/1361/s1,
Table S1: Effects of management system on maximum height of the cover crop biomass and soil coverage [%]
in 2019, Figure S1: Biodiversity of cover crops in 2019 expressed as species richness.
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vineyard soils under organic and conventional farming systems. Turk. J. Agric. For. 2009, 33, 413–423.

41. Freitas, N.d.O.; Yano-Melo, A.M.; Silva, F.S.B.d.; de Melo, N.F.; Maia, L.C. Soil biochemistry and microbial
activity in vineyards under conventional and organic management at Northeast Brazil. Sci. Agric. 2011,
68, 223–229. [CrossRef]

42. Van Dijck, S.J.E.; van Asch, T.W.J. Compaction of loamy soils due to tractor traffic in vineyards and orchards
and its effect on infiltration in southern France. Soil Tillage Res. 2002, 63, 141–153. [CrossRef]

43. Barik, K.; Aksakal, E.L.; Islam, K.R.; Sari, S.; Angin, I. Spatial variability in soil compaction properties
associated with field traffic operations. CATENA 2014, 120, 122–133. [CrossRef]

44. Hartwig, N.L.; Ammon, H.U. Cover crops and living mulches. Weed Sci. 2002, 50, 688–699. [CrossRef]
45. Danso, S.K.A.; Curbelo, S.; Labandera, C.; Pastorini, D. Herbage yield and nitrogen-fixation in a triple-species

mixed sward of white clover, lotus and fescue. Soil Biol. Biochem. 1991, 23, 65–70. [CrossRef]
46. Kutschera, L. Wurzelatlas Mitteleuropäischer Ackerunkräuter und Kulturpflanzen. 1. Band der Wurzelatlas-Reihe;

DLG-Verlag: Frankfurt, Germany, 1960.
47. Ampleman, M.D.; Crawford, K.M.; Fike, D.A. Differential soil organic carbon storage at forb- and

grass-dominated plant communities, 33 years after tallgrass prairie restoration. Plant Soil 2014, 374, 899–913.
[CrossRef]

48. Carter, M.R.; Gregorich, E.G. Carbon and nitrogen storage by deep-rooted tall fescue (Lolium arundinaceum)
in the surface and subsurface soil of a fine sandy loam in eastern Canada. Agric. Ecosyst. Environ. 2010,
136, 125–132. [CrossRef]

49. Kay, B.D. Soil structure and organic carbon. A review. In Soil Processes and the Carbon Cycle; Lal, R.,
Kimble, J.M., Follett, R.F., Steward, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 1998; pp. 169–197.

50. Reeve, J.R.; Carpenter-Boggs, L.; Reganold, J.P.; York, A.L.; Brinton, W.F. Influence of biodynamic preparations
on compost development and resultant compost extracts on wheat seedling growth. Bioresour. Technol. 2010,
101, 5658–5666. [CrossRef]

https://www.bvl.bund.de/SharedDocs/Downloads/04_Pflanzenschutzmittel/01_zulassungsberichte/006896-00-00.pdf?__blob=publicationFile&v=4
https://www.bvl.bund.de/SharedDocs/Downloads/04_Pflanzenschutzmittel/01_zulassungsberichte/006896-00-00.pdf?__blob=publicationFile&v=4
http://dx.doi.org/10.1016/j.apsoil.2011.07.013
http://dx.doi.org/10.5073/JFK.2011.05.01
http://dx.doi.org/10.1016/j.agee.2014.04.008
http://dx.doi.org/10.5073/JFK.2009.04.02
http://dx.doi.org/10.1016/0167-1987(95)00475-8
http://dx.doi.org/10.1016/j.still.2004.10.003
http://dx.doi.org/10.3390/agronomy9020064
http://dx.doi.org/10.1590/S0103-90162011000200013
http://dx.doi.org/10.1016/S0167-1987(01)00237-9
http://dx.doi.org/10.1016/j.catena.2014.04.013
http://dx.doi.org/10.1614/0043-1745(2002)050[0688:AIACCA]2.0.CO;2
http://dx.doi.org/10.1016/0038-0717(91)90163-E
http://dx.doi.org/10.1007/s11104-013-1916-5
http://dx.doi.org/10.1016/j.agee.2009.12.005
http://dx.doi.org/10.1016/j.biortech.2010.01.144


Plants 2020, 9, 1361 15 of 15

51. Scheffer, F.; Schachtschabel, P.; Blume, H.-P.; Brümmer, G.W.; Horn, R.; Kandeler, E.; Kögel-Knabner, I.;
Kretzschmar, R.; Stahr, K.; Thiele-Bruhn, S.; et al. Lehrbuch der Bodenkunde, 16. Auflage; Spektrum
Akademischer Verlag: Heidelberg, Germany, 2010; ISBN 9783827414441.

52. VandenBygaart, A.J.; Gregorich, E.G.; Angers, D.A. Influence of agricultural management on soil
organic carbon: A compendium and assessment of Canadian studies. Can. J. Soil Sci. 2003, 83, 363–380.
[CrossRef]

53. Kern, J.S.; Johnson, M.G. Conservation tillage impacts on national soil and atmospheric carbon levels. Soil Sci.
Soc. Am. J. 1993, 57, 200–210. [CrossRef]

54. Golchin, A.; Oades, J.M.; Skjemstad, J.O.; Clarke, P. Soil structure and carbon cycling. Soil Res. 1994, 32, 1043.
[CrossRef]

55. Hartmann, M.; Frey, B.; Mayer, J.; Mäder, P.; Widmer, F. Distinct soil microbial diversity under long-term
organic and conventional farming. ISME J. 2015, 9, 1177–1194. [CrossRef] [PubMed]

56. Hartmann, M.; Fliessbach, A.; Oberholzer, H.-R.; Widmer, F. Ranking the magnitude of crop and farming
system effects on soil microbial biomass and genetic structure of bacterial communities. FEMS Microbiol. Ecol.
2006, 57, 378–388. [CrossRef]

57. VandenBygaart, A.J.; Angers, D.A. Towards accurate measurements of soil organic carbon stock change
in agroecosystems. Can. J. Soil Sci. 2006, 86, 465–471. [CrossRef]

58. Döring, J.; Frisch, M.; Tittmann, S.; Stoll, M.; Kauer, R. Growth, yield and fruit quality of grapevines under
organic and biodynamic management. PLoS ONE 2015, 10, e0138445. [CrossRef]

59. Brun, L.A.; Maillet, J.; Richarte, J.; Herrmann, P.; Remy, J.C. Relationships between extractable copper,
soil properties and copper uptake by wild plants in vineyard soils. Environ. Pollut. 1998, 102, 151–161.
[CrossRef]

60. Baker, D.E. Copper. In Heavy Metals in Soils; Alloway, B.J., Ed.; Blackie and Son Ltd.: Glasgow, UK, 1990;
pp. 151–175. ISBN 9401045860.

61. Federal Soil Protection and Contaminated Sites Ordinance. BBodSchV, 2017; Federal Ministry of Justice and
Consumer Protection: Berlin, Germany, 2017.

62. Dell’Amico, E.; Mazzocchi, M.; Cavalca, L.; Allievi, L.; Andreoni, V. Assessment of bacterial community
structure in a long-term copper-polluted ex-vineyard soil. Microbiol. Res. 2008, 163, 671–683. [CrossRef]

63. Fernández-Calviño, D.; Soler-Rovira, P.; Polo, A.; Díaz-Raviña, M.; Arias-Estévez, M.; Plaza, C.
Enzyme activities in vineyard soils long-term treated with copper-based fungicides. Soil Biol. Biochem. 2010,
42, 2119–2127. [CrossRef]

64. Arias, M.; Lopez, E.; Fernandez, D.; Soto, B. Copper distribution and dynamics in acid vineyard soils treated
with copper-based fungicides. Soil Sci. 2004, 169, 796–805. [CrossRef]

65. McLaren, R.G.; Williams, J.G.; Swift, R.S. Some observations on the desorption and distribution behaviour of
copper with soil components. J. Soil Sci. 1983, 34, 325–331. [CrossRef]

66. Lagomarsino, A.; Marabottini, R.; Grego, S.; Stazi, S.R. Copper distribution among physical and chemical
fractions in a former vineyard soil. Agrochimica 2010, 54, 1–12.

67. Sims, J.T. Soil pH effects on the distribution and plant availability of manganese, copper, and zinc. Soil Sci.
Soc. Am. J. 1986, 50, 367–373. [CrossRef]
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