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Highlights
What are the main findings?
• Sensor data fusion works—simpler sensors have higher accuracy.
• There is an increase in performance with sensor fusion in a hybrid mode compared to a

single-level fusion process.

What is the implication of the main finding?

• Robotic positions can be rectified using sensor data fusion.
• Typically, a sensor fusion level is focused at the third level of fusion according to the

provided classification.

Abstract: Robotic systems are becoming increasingly crucial in applications requiring
high precision. While a robot can operate using basic sensor feedback under controlled
conditions, achieving micro-level accuracy requires more comprehensive data integration,
especially in dynamic environments. The fusion of data from a variety of sensors is
necessary for improving the positioning accuracy of a robot because the accuracy of one
type of sensor is insufficient. The field of micro-positioning presents new challenges and
tasks that have been gradually explored in the recent literature published from 2015 to 2025.
Micro-positioning is a complex operation that involves factors such as mechanical drift,
environmental effects, and sensor signal errors. Hybrid fusion is a sensor fusion technique
that combines elements of fusion at different levels. For the effective deployment of robots
in such contexts, it is essential to integrate multiple sensors and ensure reliable data fusion
between them. This involves the use of different sensors, advanced fusion algorithms,
and accurate calibration methods through sensor fusion and sophisticated data processing
techniques. This literature review presents an analysis of the sensor data fusion methods
for precise robot micro-positioning. The focus is on the investigated sensors, the applied
synthesis methods, and the developed algorithms and their practical application to identify
the existing gaps for future system improvements. Finally, discussions and conclusions
based on the collected ideas are presented.

Keywords: sensor signal fusion; robotics; robot positioning; hybrid mode; fusion software

1. Introduction
One of the key challenges in the microrobot area is optimizing the methods for fusion

of data from different sensors. A main component to efficient operation in a variety of
fields, including automation, artificial intelligence, robotics, and microelectromechanical
systems (MEMSs), is precise positioning in multiaxial systems [1]. These systems are
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required to execute tasks with great precision and consistency since they operate along
multiple axes. Positioning errors can result in emergencies, poor efficiency, and even flawed
products. Securing precise and dependable positional data for each axis is among the most
significant challenges when dealing with multi-axis systems. Numerous elements such as
mechanical backlash, vibration, thermal deformation, and external influences make this
difficult. Individual sensors such as optical sensors, encoders, or inertial measurement
units (IMUs) have limitations and do not always provide the required accuracy on their
own [2]. The authors emphasize the importance of improving sensor technologies and
sensor fusion algorithms to achieve higher levels of autonomy and safety.

Different sensors, such as temperature sensors, are prone to accumulating errors over
time due to minor inaccuracies in measurements, resulting in what is known as “drift”,
which can greatly distort positional data in short durations [3]. The main goal of one study
was to build a thermal deformation prediction model using an artificial neural network
and implement real-time error compensation. Optical sensors, including laser rangefinders
and cameras, deliver high precision and resolution, but are influenced by environmental
conditions. Integrating data from various sensor types, or multi-sensor integration, helps to
overcome these constraints. When using data from IMUs and optical sensors, it is possible
to leverage the strengths of each. The IMUs provide high-frequency data with low latency
and the optical sensors provide high-precision information to correct IMU errors [4].

Robots equipped with combined sensor systems can position the end-of-arm tool
or gripper with minimal error. One study merged data from different sensors, which
reduced the robot positioning error to several micrometers, which significantly increased
the accuracy of its movements [5]. The developed system allowed for the early detection of
defects, which can lead to increased production efficiency and reduced costs, but it was
not fully automated. During the automated welding of large structures, it is important
to consider deformations of the material, but the system requires significant calibration
overhead that limits deployment flexibility. Using a combination of sensors to correct
inspection trajectories in real time could ensure the production of high-quality welded
seams. Research has indicated an enhancement in welding accuracy thanks to multi-sensor
integration [6].

Machining parts with a complex shape, such as implants, using computer numeri-
cal control (CNC) machines requires the coordination of movement along several axes.
The use of combined data from angular encoders, linear sensors, and vibration sen-
sors makes it possible to compensate for dynamic loads and vibrations, increasing the
processing accuracy.

The leading machine tool manufacturers use systems that combine data from different
sensors to optimize processes [7]. Fluctuations in temperature can lead to the expansion
or contraction of CNC machine components, affecting precision. Integrating data from
temperature and position sensors facilitates real-time adjustment of positional parameters.
A recent study showed that employing a temperature and position sensor data fusion
approach greatly reduces positioning errors [8].

In smartphones, cameras use MEMS actuators to counteract hand tremors. Combining
data from gyroscopes and optical sensors allows for the rapid adaptation to motion and
maintenance of image clarity. According to research, such systems can reduce image
blurring and improve picture quality [9]. In drones and portable devices, MEMS sensors
are often used for the generation of orientation and stabilization signals, which is further
used to control actuators. However, due to miniaturization, drones and portable devices
are lighter; therefore, noise and environmental vibrations create more disturbances. Using
algorithms such as the extended Kalman filter and integrating data from accelerometers,
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gyroscopes, and magnetometers can enhance navigation accuracy. Studies have shown that
multi-sensory integration in MEMS devices results in a reduction in orientation errors [10].

Producing parts that possess intricate geometry and detailed components using 3D
printers requires precise control of positioning along all axes. A high accuracy in directing
the extrusion head is achieved through the integration of data from stepper motors, linear
encoders, and optical sensors. To maintain the consistency of the first layer, a critical factor
in overall quality of the product, some companies have adopted active leveling systems for
print platforms that use data from various sensors [11].

The integration of data from optical sensors, accelerometers, and infrared (IR) sensors
allows for the monitoring of process parameters in real time, preventing defects and
ensuring printing quality, i.e., it reduces the number of printing defects per plane [12].

Sensor fusion technology is used in invasive surgery as well as instrument movement
should have extreme precision in this setting. Typically, by combining sensor signal
data from tactile sensors, optical trackers, and inertial sensors, haptic instrument control
generates the required feedback to the operating surgeon. Well-known systems such as the
da Vinci surgical system use multi-sensory data to filter hand tremors and scale movements,
increasing the safety and efficiency of operations [13].

Opting for the appropriate fusion method can greatly enhance the precision and
efficiency of systems in different industries. An illustrative example is the incremental
training of long short-term memory (LSTM) autoencoder models to detect anomalies in
CNC machine tools. Ref. [14] showed how such technology allows models to adjust to
changing operating conditions, which is crucial for the rapid detection and prevention of
real-time failures. Ref. [15] describes methods that can prolong the life of cutting tools and
reduce maintenance costs by implementing artificial neural networks and integrating data
from various sensors.

Equipment fault diagnosis also greatly benefits from the use of multi-sensor data
fusion techniques. The same methods allow faults to be detected and corrected in a timely
manner, thus improving the reliability and safety of production processes [16]. The use
of modern deep learning and data fusion methods is not limited to industry. This article
discusses various approaches that can significantly improve the detection and diagnosis of
problems in building structures, contributing to more efficient maintenance and increased
service life of objects.

The integration of sensor data fusion with artificial intelligence (AI) and machine
learning (ML) is gaining importance due to the rising complexity of data across various
fields. Sensor data fusion merges inputs from different sensors to improve precision and
reliability, while AI and ML provide strong tools for analyzing this combined data.

Combining various sensors, like IMUs, radar, and software-defined radios, has greatly
improved Human Activity Recognition (HAR) [17], overcoming the constraints of single-
sensor systems. Inspired by the human brain, neuromorphic computing has excelled in
accurately identifying specific actions with minimal data. Moreover, hybrid deep learn-
ing architectures that merge CNNs, LSTM, and self-attention mechanisms have attained
remarkable precision in interpreting data from wearable sensors [18].

The extensive connectivity of IoT networks, particularly in industrial settings, presents
intricate cybersecurity issues [19]. AI and ML, with an emphasis on anomaly detection
paired with sensor fusion, bolster system resilience by effectively spotting faults and threats.
Techniques like particle filters and algorithms such as XGBoost [20] have proven successful
in protecting critical infrastructure from cyber threats and operational issues.

The combination of AI, ML, and sensor data is revolutionizing healthcare by facilitat-
ing more personalized and proactive approaches. Methods like Multi-Armed Bandit that
employ multi-sensor setups have been used for precise sleep monitoring in the elderly [21].
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Digital Twins and integrated sensor-conversational AI systems deliver advanced, cus-
tomized insights and predictive abilities, significantly improving healthcare outcomes [22].

Sensor data fusion is also used for Earth observations. Earth observations increasingly
depend on fusing multi-modal data like Synthetic Aperture Radar (SAR) and multispectral
imagery for thorough environmental monitoring. Machine learning algorithms can adeptly
handle and analyze the complexity and scale of these datasets, although challenges persist
due to the limited availability of ML-ready SAR datasets. Initiatives to tackle these issues,
such as the development of the M3LEO dataset, mark the notable progress in AI-powered
Earth observation technologies [23].

In addition, the researchers in [24] focused on applying data fusion techniques to
improve precision and efficiency in CNC machining, especially in the development of
nanocomposites. The consolidation of data from multiple sensors significantly improved
the control of the process and the quality of the final products. Combining sensor data
and advanced analytical techniques aided in boosting the efficiency and reliability of the
mechanical production processes. Regardless of the specific application (in various CNC
machine tools, structural health monitoring, or predictive fault diagnosis), deploying data
fusion and machine learning increases productivity and ensures technological security. One
study reviewed several SFAs, including various Kalman filter modifications, compared
to a camera motion-capture system. SFA gains were enhanced through particle swarm
optimization and effective techniques to minimize estimation errors were identified, par-
ticularly during extended trials. This analysis of sensor fusion algorithms (SFAs) for 3D
orientation tracking employed magnetic and inertial measurement units (MIMUs). The
objective of the study was to contribute to establishing a comprehensive online repository
for SFAs. To improve positioning precision, a sensor fusion framework was suggested
for indoor localization utilizing smartphone inertial measurement unit (IMU) sensors and
Wi-Fi received signal strength indication (RSSI) measurements [25]. This framework inte-
grates Wi-Fi location fingerprinting, trilateration, and pedestrian dead reckoning (PDR) to
refine positioning accuracy, and achieved a maximum localization error of 1.17 m. In [26],
an adaptive heterogeneous fusion algorithm was introduced for real-time processing to
enhance the fusion of gyroscope, accelerometer, and magnetometer data for orientation and
heading estimation. The proposed algorithm achieved a faster dynamic response compared
to the extended Kalman filter (EKF), while requiring less computational time. In addition,
it supports a novel real-time calibration method using machine learning to compensate for
sensor thermal drift.

A proposed event-based multi-sensor fusion algorithm effectively handled dead zone
measurements by only transmitting significant data to the fusion host in [27]. This approach
uses a modified Kalman filter (KF) and its information form to manage the dead zone-like
measurements. The simulation results showed that the algorithm offers a good trade-off
between performance and communication bandwidth.

Ref. [28] outlines the obstacles faced in indoor localization due to the blockage of
Global Navigation Satellite System (GNSS) signals and stresses the importance of using
independent localization techniques such as odometry and simultaneous localization
and mapping (SLAM). It examined different sensors like Light Detection and Ranging
(LiDAR), IMUs, radar, and cameras along with their uses, covering the algorithms and
fusion frameworks for indoor odometry, while also discussing future opportunities.

Failures and inaccuracies in sensor measurements, particularly in autonomous systems
that are highly dependent on sensors, can have significant repercussions [2,25]. There is
a need for more durable sensors, as well as failure detection and compensation, to solve
these issues [2,26]. Combining data from diverse sensors, particularly those with varying
levels of accuracy and frequency, remains a difficult undertaking. More effective fusion
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algorithms that consider data uncertainty and redundancy are necessary. Proper sensor
calibration and synchronization are critical for the precise functioning of multi-sensory
systems [26,27], which is particularly vital in real-time applications. Multi-sensory systems
should be strong enough to withstand noise and data errors [26]. Techniques need to be
devised to ensure the reliability of the models in real-world scenarios [29,30].

This review effectively demonstrates the advantages of integrating multiple sensors
across various fields, such as robotics, CNC machining [8], surgical systems [31], and indoor
localization [25], by emphasizing how combining sensors like IMUs, optical devices, and
encoders greatly enhances precision, reduces errors, and increases reliability. It highlights
advanced techniques like Kalman filtering, neural networks, and incremental LSTM au-
toencoders [14], showcasing their flexibility, real-time performance, and computational
efficiency. While the benefits like improved accuracy and fault detection are well known,
the analysis would be strengthened through more explicit comparative benchmarks, a
clearer identification of the methods’ limitations, and additional validation details to boost
the overall analytical strictness and practical applicability.

The aim of this review is to analyze the existing methods of positioning error compen-
sation that are suitable for micrometer-scale manipulation processes and in microrobotics
using different sensor fusion methods.

The layout of the paper is organized as follows. Section 3 explores the technology
behind sensor fusion, detailing the integration of information from multiple sensors across
various levels (data, feature, and decision levels) and examines popular software frame-
works for fusion. Section 4 details the specific applications of sensor fusion in mobile
robotics, manufacturing processes, and specialized fusion algorithms, alongside localiza-
tion and position detection. Section 5 provides a thorough analysis of the core results,
emphasizing the key trends in adopting hybrid data fusion. Section 6 concludes the paper
by highlighting the main outcomes and proposing possible directions for future research.

2. Materials and Methods
This paper was prepared using different science databases such as the Google Scholar,

MDPI, IEEE Xplore, Web of Science, and SCOPUS bibliographic databases. Semantic
Scholar and an AI-powered research tool were used for the bibliographic research and
analysis. The following keywords were used: “sensor fusion”, “CNC machines”, “3D
printers”, “smartphones”, “production PCB”, “minimal invasive surgery”, “microposition”,
“sensor fusion algorithms”. A bibliographic map of the selected studies are graphically
shown in Figure 1.

The studies were selected based on the following:

• Titles;
• Research results;
• Methodology;
• Applications.

The keywords were chosen to cover a wide range of sensor fusion research in which
sensor technologies were applied in areas from industrial production to medical research.

During the investigation, 180 articles were obtained, of which, 104 publications were
considered valuable and high-quality papers and were selected for analysis. The inclusion
criteria included a clear methodology and significant results with validation. This paper
includes articles published from 2015 to 2025, which allowed us to cover new achievements
and approaches in this field.
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3. Technology of Sensor Fusion
Sensor fusion technology is centered on offsetting the limitations of individual sen-

sors to boost the overall system performance by merging data from multiple sensors to
deliver a more precise and reliable output than any single sensor alone. This method
maximizes the strengths of different sensors while mitigating their weaknesses, resulting
in enhanced measurement accuracy, improved stability, and greater situational awareness
across various applications.

3.1. Levels of Sensor Fusion

Data-level fusion occurs right after the collection of sensor data. This phase involves
the integration of raw data from various sensor sources even before any filtering or analyti-
cal processes are applied. The primary objective of sensor-level fusion is to process raw
data to improve accuracy, diminish noise, and improve the overall data quality. Common
techniques employed at this level include the Kalman filter, the complement filter, and the
weighted average. Data-level fusion allows for a deeper comprehension of the observed
process by combining raw data from different sensors, making it suitable for scenarios
where initial filtering and noise reduction are imperative [32].

At the feature-level fusion, the data have already undergone preprocessing and filter-
ing, and key features have been extracted from the raw data through various techniques.
These features are amalgamated into a generalized feature vector, offering a more thorough
representation of the process. The aim of this level is to minimize data redundancy and
dimensionality while retaining essential information. Principal Component Analysis (PCA),
Factor Analysis, and Dimensionality Reduction Methods like Multidimensional Scaling
(MDS) are the main techniques used for feature-level fusion. Feature fusion enables the
optimization and streamlining of the classification process, which is particularly beneficial
in applications with limited computational resources [32].

Decision-level fusion is a level of data fusion in which decisions made by independent
classifiers are combined to produce a result. The decision level already contains predictions
or classifications from several models, which are combined using methods such as majority
voting, Bayesian networks, Dempster–Shafer theory, and ensemble classification methods
(e.g., boosting and bagging). The main advantage of decision-level fusion is that it improves
the accuracy and robustness of the final classification as it compensates for errors made
by individual classifiers. This level is used in situations where robustness to errors and
high decision accuracy are important, especially when training data are insufficient, or
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uncertainty is high. Figure 2 shows the levels of sensory signal fusion and their structural
organization [32].
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The classification of the sensor fusion levels and their descriptions are provided in
Table 1. In a multilevel data-processing system, the information goes through a series
of stages, from cleaning the source data and identifying key characteristics (Level 0) to
determining the presence and classification of objects, as well as tracking their status
(Level 1). The system then analyzes the situation, identifying patterns and synthesizing the
data to form a holistic view (Level 2), after which, it predicts possible consequences and
assesses risks (Level 3). The final stages optimize the data collection and processing process
(Level 4) and establish interactions with the user to improve the system’s understanding
and decision making (Level 5) [29].

Table 1. Levels of sensor fusion (classification according to the Joint Directors of Laboratories model).

Levels of Fusion Description Ref.

Level 0: Sub-Object Data Assessment
Removal of noise and unwanted signals. Correction of
systematic measurement errors. Finding key characteristics
from data.

[33]

Level 1: Object Assessment
Determination of the presence of objects in data.
Determination of the type or category of an object. Monitoring
of the position and state of an object over time.

[29]

Level 2: Situation Assessment
Identification of patterns and anomalies in object actions.
Assessment of the environment and conditions. Combining
the data to create an overall picture of the situation.

[33]

Level 3: Impact Assessment The system predicts possible consequences of the current
situation and assesses risks [33]

Level 4: Process Refinement Adaptation and optimization of the data collection and
processing based on the results obtained. [29]

Level 5: User Refinement Interaction between the data fusion system and the user to
improve the system’s understanding and decision making. [33]



Sensors 2025, 25, 3008 8 of 25

Table 2 shows the methods for sensor data fusion and its applications in various fields.
This overview shows the development of data fusion technology and its contribution to
improving system performance.

The methods described in the study range from classical algorithms that are effective
in navigation and tracking, such as Kalman filters, to modern methods of machine learning
that can handle complex nonlinear data. Deep learning methods can extract high-level
features from raw sensor data, which is especially important for autonomous vehicles and
environmental monitoring.

Sensor data fusion plays an important role in robotics by improving perception and
differentiation, allowing for efficient navigation and interaction. In autonomous vehicles,
the combination of radar and camera data improves the accuracy of environmental per-
ception and safety. In environmental monitoring, data fusion improves the accuracy and
reliability of the data collected from different sensor networks that are needed to detect
changes and make informed decisions. Advanced data fusion algorithms can improve
the performance of wireless sensor networks. Special methods can improve navigation
in microrobotics [34]. In microelectromechanical systems [35], data fusion algorithms are
used for monitoring and tracking. Finally, in the Industrial Internet of Things (IIoT) and
equipment fault diagnosis, data fusion methods are used to evaluate efficiency and accu-
racy. Deep learning methods [36] are widely used in environmental sensor data analysis
and autonomous systems.

Table 2. Methods and application of sensor fusion.

Methods of Sensor Data
Fusion Application Achievement Ref.

Fuzzy logic-based data
fusion method

Robotics and
automation

Introduced a novel fuzzy logic-based
sensor data fusion method [37]

Sensor data fusion for
microrobot navigation Microrobot navigation

Proposed a method for improving
navigation in microrobots through
sensor data fusion

[34]

MEMS sensor data
fusion algorithms

Micro-electro-
mechanical systems

Developed data fusion algorithms for
MEMS sensors [35]

Kalman filters Navigation and
tracking systems

Demonstrated effectiveness of
Kalman filters in sensor data fusion [38]

Deep learning-based sensor
data fusion

Environmental
monitoring

Introduced a deep learning approach
to sensor data fusion for
environmental data

[39]

Machine learning-based data
fusion

Environmental
monitoring

Proposed a multi-sensor data fusion
method that uses machine learning [40]

Deep learning-based
multi-sensor data fusion Autonomous vehicles

Improved sensor data fusion in
autonomous vehicles using
deep learning

[36]

Survey of sensor data
fusion methods Autonomous driving

Performed comprehensive survey on
sensor data fusion methods in
autonomous driving

[41]

Sensor data fusion techniques
for IoT

Industrial Internet
of Things

Discussed sensor data fusion
methods that are applicable to
IoT environments

[42]

An important trend is that artificial intelligence and deep learning are becoming in-
creasingly integrated into sensor data fusion. This trend is driven by the need to extract
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large amounts of data efficiently and identify meaningful patterns that traditional methods
may miss. In addition, the use of machine learning-based methods shows that the appli-
cation complexity is increasing, and that more intelligent and autonomous systems are
needed. Focusing on applications such as the Internet of Things shows the importance of
sensor fusion in establishing a system of interconnection. As industries move towards more
connected and intelligent operations, the accurate integration of sensor data is essential for
real-time monitoring, predictive maintenance, and overall operational efficiency.

On the other hand, implementing machine learning technique requires multiple trials
and therefore takes time if the trials use real machines to learn feedback. In the case of
simulating the training of collected datasets, it can lead to uncertainties and cannot be
assumed to be accurate, and therefore the reliability still requires some special attention.

3.2. Sensor Fusion Software

There are specific software tools for measuring the performance of sensor fusion. This
section provides a brief overview of the existing software for sensor data fusion, comparing
the different solutions by functionalities, supported operating systems, achievements, and
current technology. Table 3 shows the software for the fusion of sensor data, which reflects
the diverse applications and requirements of modern engineering and science. The selection
of tools depends on the specific requirements of the project, such as the type of sensor used,
the performance requirements, and the availability of technical support [35–44].

Table 3. Sensor fusion software.

Software OS Features Ref.

ROS (Robot
Operating System)
and ROS 2 (all
distrbutions)

Linux
macOS

Windows

Open platform for robotics
Many packages for data fusion
(robot_localization, sensor_msgs, etc.)
Wide support for sensors and algorithms
Large community and active development

[43]

MATLAB Sensor
Fusion and Tracking
Toolbox R2024b

Windows
macOS
Linux

Tools and algorithms for multi-sensor fusion
Support for object tracking and localization
Simulation and scenario testing
Used in academic and industrial research

[44]

OpenCV 4.11.0

Linux
macOS

Windows
Android

iOS

Computer vision library
Offers functions for processing and merging data from
cameras and sensors
Widely used in image and video processing
Large community and extensive documentation

[45]

RTMaps
(Real-Time
Multi-Sensor
applications)

Linux
Windows

Platform for real-time and multi-sensor applications
Synchronous data acquisition and processing
Used in the automotive and robotics industries
Graphical development environment

[46]

Autoware
(all versions) Linux

Open-source software for autonomous driving
Performs fusion of data from LiDAR, cameras, and radar
Based on ROS
Used in autonomous vehicle projects

[47]

Apollo (Baidu
Autonomous
Driving Platform)
(all versions)

Linux

Open platform for autonomous driving
Performs fusion of data from various sensors
Modular architecture
Support from major company Baidu

[48]
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Table 3. Cont.

Software OS Features Ref.

PX4 Autopilot
v1.16.0

NuttX (RTOS)
Linux

Open platform for drones and UAV autopilot
Offers data fusion algorithms for navigation
Large developer community
Used in research and commercial UAVs

[49]

LidarView v4.4.0 (by
Kitware, Clifton
Park, NY, USA)

Windows
macOS
Linux

Visualization and processing of LiDAR data
Provides support for fusion of LiDAR data with data
from other sensors
Based on VTK and ParaView technologies
Used in research and industry

[50]

Bosch Sensor Fusion
SDK v3.4.0

Android
iOS

Designed for mobile applications
Provides data fusion algorithms for motion tracking
Used in smartphones and wearables
Commercial SDK (by Bosch Sensortec,
Reutlingen, Germany)

[51]

Kalman Filter
Libraries
(TinyEKF, etc.)
(all versions)

Any OS
(C/C++, Python)

Offers Kalman filter implementations for data fusion
Used in embedded systems
Provides support for extended and non-linear
Kalman filters
Lightweight and suitable for systems with
limited resources

[52]

FusionLib
(all versions)

Windows
Linux

Data fusion library for C++
Supports various fusion algorithms
Modular architecture for easy integration
Has documentation and examples for quick start

[53]

Multi-Sensor Fusion
Framework (by ETH
Zurich’s)
(all versions)

Linux

Unified platform for data fusion
Provides support for various types of sensors
Modular and extensible
Developed at a leading research university

[54]

Currently, the Robot Operating System (ROS) is a popular tool in the field of robotics.
It provides a modular architecture and a wide range of packages for integrating and fusing
data from various sensors, which ensures scalability for complex systems [43]. Nevertheless,
implementing ROS is difficult for inexperienced users; therefore, the implementation is still
limited. The graphical mode of ROS is not very user-friendly.

In addition to ROS, the MATLAB Sensor Fusion and Tracking Toolbox offers tools
for modeling, simulating, and implementing data fusion algorithms. Moreover, it can be
integrated with other MATLAB tools, making it a versatile solution [44].

Specialized platforms such as Autoware and Apollo are focused on autonomous
driving and provide a full set of tools to process and fusing data from LiDAR, cameras, and
radar. It is important to note that these platforms are actively developed and are used in
industry to create autonomous vehicles.

Similarly, in the field of drones and unmanned aerial vehicles, PX4 Autopilot provides
solutions for navigation and flight control. In addition to this, this platform includes
optimized data fusion algorithms for real-time operations [49].

Finally, the ETH Zurich Multi-Sensor Fusion Framework tools and libraries provide
platforms for experimenting with new data fusion methods, thereby contributing to the
development of advanced technologies in the field of navigation.

The overview of the simulation software has revealed that all the software are very
versatile and require individual approaches as well as individual operations for each
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software package. Commercial packages look more polished in terms of the user interface,
but open-source ones have much more versatility for development and the implementation
of users’ own code.

4. Sensor Data Fusion in Technical Applications
4.1. Sensor Fusion in Mobile Robotics

In recent years, autonomous mobile robots (AMRs) have become increasingly popular
and have been applied in industries, domestic industries, agriculture, medical care, etc.
They are capable of autonomous navigation and obstacle prevention and are useful for
tasks such as heavy object transport, monitoring, search, and rescue. In the development of
AMRs, the main problems include navigation, trajectory planning, and collision avoidance.
High accuracy robot localization needs reliable navigation, an understanding of the route to
the target point, and the ability to avoid collisions. To increase localization accuracy, relative
and absolute methods based on various sensor technologies and algorithms are needed.
A prerequisite for AMR functionality is the ability to detect and bypass obstacles on the
way to the designated goal. Among the algorithms that are used are bug algorithms, vector
field maps (VFHs), and hybrid navigation algorithms, which facilitate the selection of safe
routes and the prevention of collisions. To improve accuracy, AMRs use different sensors
and data fusion techniques. Sensors are divided into IMUs, monocular vision sensors,
and marker-based systems. Data fusion allows for the integration of information from
different sensors, which increases the reliability and accuracy of environmental assessments.
Ref. [54] presents data fusion methods such as the Kalman filter and particle filter, which
are used to process sensor readings. The use of data fusion can improve the accuracy and
reliability of AMR systems. Figure 3 illustrates the processing of the classic sensor fusion
scheme in mobile robotics.
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Autonomous mobile robots (AMRs) are becoming increasingly common in various
industries due to their ability to autonomously navigate and avoid obstacles, making them
indispensable for tasks that require movement, monitoring, and sensing. However, the
development of effective AMRs poses a number of challenges, including precise localization,
reliable path planning, and safe obstacle avoidance. To address these challenges, various
localization methods, navigation algorithms, and sensor systems are used, as well as data
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fusion technologies such as Kalman filter and particle filter, to improve the accuracy and
reliability of robots in challenging environments.

4.2. Sensor Fusion in Production Processes

Sensory data provides “feedback” about the environment and processes. Sensors
provide object location and state determination for real-time control, as well as responses
to unexpected situations and safety [55]. This allows for greater accuracy and reliability for
production processes. Combining data from different sensors allows for a more complete
and reliable assessment of the state of the system and the environment, thereby reducing
errors and increasing production accuracy. This method is suitable for four specific types
of errors; other errors cannot be corrected using this method. Industrial robots require
flexible decision making to successfully operate in dynamic and unpredictable environ-
ments. Fused sensor data provide more details, allowing control algorithms to respond
quickly to changes and effectively adapt robot behavior. The fusion of sensory information
helps automate quality control, reduce the risk of defects, and reduce downtime. Robotics
standards pay special attention to the quality of sensor systems and data-processing meth-
ods. In the development of new standards (for example, the ISO/TC 299 “Robotics”
standards [56]), one area is the standardization of the exchange and processing of sensor
data for industrial robots.

A framework for combining data from different sensors used to monitor CNC ma-
chines is presented in [57]. The aim of this work was to create a more complete and accurate
picture of the material processing process by combining information obtained from dif-
ferent sensors. The authors proposed data integration methods that take into account
differences in sensor types and the characteristics of the measured parameters. The authors
in [58] showed the possibility of using multispectral analysis to measure defects in additive
manufacturing. The fusion of data from different spectral ranges allowed users to obtain
more complete information about the structure and properties of the material, which is
important for defect detection. The authors demonstrated how the fusion of data from
different sensors improves accuracy and reliability. Ref. [59] is devoted to the develop-
ment of a methodology for the multi-sensory monitoring of metal additive manufacturing
processes and shows the importance of merging data from different sensors to control the
quality of processes. Improving the monitoring quality and management of these processes
through multi-sensory methodologies still has limitations. The proposed methodology
includes data integration methods that takes into account differences in the types of sensors
in robotic manufacturing and the characteristics of the measured parameters. The fusion
of optical and feedback sensor data enables real-time monitoring of the robotic welding
process and parameter adjustments to achieve stability [60]. The application of optical
measurements and feedback can also improve the stability of additive manufacturing based
on gas tungsten arc (GTA) robotic welding.

Ref. [61] studied real-time optical monitoring methods in fiber laser welding. The
authors analyzed various approaches for the use of optical sensors and emphasized the
importance of using data fusion to obtain a more complete picture of the welding process.
In [62], the authors applied machine learning to determine the penetration depth across the
weld pool in a robotic process. When data from sensors measuring weld pool parameters
were merged, the accuracy of the weld penetration depth determination was improved.
Using deep learning algorithms for processing sensor output data with raw signals requires
a large amount of data and high computational power, and is limited by the high cost of
the system. Ref. [63] presents methods for detecting welding defects in high-power disk
automatic laser welding based on multi-sensory data analysis. The authors demonstrated
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how the fusion of data from different sensors revealed hidden patterns and detected
welding defects.

The analysis of equipment and process condition monitoring in [64] provided reviews
of equipment and process-monitoring methods using sensors, feature extraction techniques
from received signals, and artificial intelligence-based monitoring models to classify the
condition of the instrument. In particular, the authors considered tool-condition-monitoring
methods in milling processes. Ref. [65] used temperature for online monitoring of gear
system conditions and provides systematic information on modern monitoring methods
and their application in various industries. For full-scale systems, it is practically impos-
sible to obtain adequately similar conditions, so such a model is needed to maintain the
operating conditions.

4.3. Sensor Fusion Algorithm in Robotics

There is a vast number of position error compensation methods that help to bypass
sensor errors and compensate for the positioning error of the microrobotic system.

Ref. [66] presents a continuous part feeding system for industrial manipulators using
a mobile robot, a combination of ultrasonic sensors with IMUs, Kalman filter processing,
and visual marker detection. The proposed system had high accuracy and reliability for the
positioning of the mobile robot, even under dynamic motion and possible blocking of the
visual sensor, due to the switching strategy between positioning methods. With the EKF
approach, a slight deviation was observed during complex movements, which needed to be
compensated for. Figure 4 graphically illustrates the structure and operation of this system.
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Various sensor fusion algorithms used for navigation applications have been reviewed,
with a focus on MEMS sensors, which are prone to temperature drift and errors. Real-
time sensor fusion is essential for low-cost MEMS navigation systems to minimize errors
and improve performance [67]. In dynamic experiments, the algorithm only works in
rectilinear motions since the relative angle of rotation of the compass is inaccurate. An
adaptive fusion algorithm was proposed for real-time processing, integrating data from
a gyroscope and accelerometer. This algorithm was designed to improve the estimate of
attitude and direction. The authors in [39] reviewed and evaluated the recent research on
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multimodal imaging sensor calibration for sensor fusion, focusing on both traditional and
emerging methods.

The research in [68] aimed to reduce sensor drift errors and improve the accuracy of
navigation systems by combining data from redundant MEMS inertial sensors. The results
showed that the drift error in a single gyroscope can be significantly reduced by combining
the redundant measurements. This method, which decomposes signals into different noise
components, requires complex experimental equipment which can introduce new errors.

We designed and implemented an Attitude and Heading Reference System (AHRS)
using an extended Kalman filter based on MEMS multi-sensory fusion. This approach
improved the accuracy of the measurements and achieved accurate attitude positioning [41].
Ref. [69] focused on the application of multiscale and multi-sensor data fusion algorithms
in processing data from MEMS gyroscopes. The fusion algorithm enhanced the reliability,
fault detection, and isolation capabilities of the data-processing system. The main problem
was the inherent random noise and drift of MEMS gyroscopes, which affected the stability
of the entire system. The proposed algorithm based on information fusion was designed to
overcome some of these shortcomings by simultaneously filtering the signals.

The alternative sensor fusion method for unmanned aerial vehicle orientation using
low-cost MEMS inertial sensors is described in [70]. The authors focused on the correlation
between the angles derived from a rate gyroscope and accelerometer-derived angles. The
measurements in the study were performed on a flat surface with minimal vibrations since
magnetic fields may be degraded by significant vibrations or interference.

A real-time navigation system for a wheeled mobile robot (WMR) using an IMU sensor
and Global Positioning System (GPS) modules designed with a real-time trajectory tracking
system was developed. This system implements two data fusion methods for localization
on an Arduino-based sensor system. The system includes on-chip self-calibration to
enhancing its accuracy and reliability in farm conditions. The authors implemented a
tracking controller and an embedded system [71]. The main weaknesses identified in the
data sources were filtering problems, which are often encountered in real-world settings.

A Gesture Recognition System was developed for robot control using median filtering
to reduce noise and sensor data processing with quaternion-based output computing,
and employs a dynamic link library for sensor data fusion. The system uses 14 MEMS
sensors and Bluetooth for data transmission [72]. Based on a low-cost, intelligent, and
lightweight portable gait analysis platform, a body sensor network was developed to assess
rehabilitation of patients with gait impairments. The authors used a multi-sensory data
fusion algorithm to estimate gait parameters [34]. Table 4 shows the sensor data fusion
applications and techniques that have been implemented in different fields.

Table 4. Comparison of sensor data fusion applications.

Methodology Application Sensors Fusion Technique Ref.

Signal level fusion for
vibration·reduction Micro assembly Diverse sensors Signal-level fusion [73]

Passive diamagnetic levitation
Microrobot

manipulation in fluid
environments

Magnetic fields Magnetic control [74]

Movable sensor array with
dynamic tracking

Medical
microrobotics Magnetic sensors Multi-point locating

algorithm [75]

Algorithm for multirobot
formation Multirobot formation

Ultrawideband
system, IMUs,

wheel encoders
Sensor fusion system [76]
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Table 4. Cont.

Methodology Application Sensors Fusion Technique Ref.

Magnetic control for patterning Fiber
functionalization Magnetic sensors Magnetic control [77]

Laser sensors with feedback
and control

Microrobotic motion
control Laser sensors Closed-loop

motion control [78]

PL-ICP and extended Kalman
filter (EKF) Indoor Robot SLAM LiDAR, cameras,

IMUs, odometers EKF, Bayesian [79]

UKF-based sensor fusion Mobile robot
localization IMUs, angle sensors UKF algorithm [80]

Maximum Likelihood Estimator Indoor positioning Cameras, infrared
sensors Fusion estimation [81]

Resilient Factor Graph Robot navigation UWB, IMUs, LiDAR Factor Graph
Optimization [82]

EKF with sensor fusion Indoor localization of
mobile robots

IMUs, odometers,
laser radar EKF [83]

RBPF-SLAM with Maximum
Posterior Estimation

Mobile robot
navigation

Laser radar,
ultrasonic sensors,

monocular cameras
RBPF [84]

Sensor Fusion with SLAM and
LiDAR Scan Mobile robots LiDAR, GNSS, IMUs,

wheel encoders
Sensor Redundancy

Strategy [85]

Recent research on sensor fusion for robot positioning has developed various inno-
vative approaches to improve positioning accuracy. The classified levels of sensor fusion
reflects the complexity and power of signal processing. Many studies integrated multiple
sensor types, such as Ultra-Wideband Positioning (UWB) [76], IMUs, cameras, magnetic
sensors, and LiDAR. Advanced fusion techniques like the EKF [79], unscented Kalman
filter (UKF) [80], and decentralized Kalman filter (DKF) have also been used to improve
the control of microrobots and mobile robots in complex environments. For example, some
studies [74] utilized diamagnetic levitation and magnetic control to precisely manipulate
microrobots without contact, achieving nano-accuracy, which is suitable for biomedical
applications. An example of a sensor fusion array is shown in Figure 5.

The applications range from medical environments, where pressure and magnetic
sensors improve microrobot stability and navigation in blood vessels, to industrial set-
tings, where sensor fusion improves multirobot formations. Other research used Kalman
filters and dedicated algorithms for indoor drone and mobile robot positioning, achiev-
ing centimeter-level precision by fusing data from UWB, MEMS sensors, and visual-
inertial odometry.

In more specific applications, laser sensors are used to control the closed-loop move-
ment of microrobots and multiple-sensor SLAM technology is used to navigate structured
indoor environments [84]. Some approaches integrate sensor data in real time using de-
centralized algorithms to provide robust and scalable solutions for complex multirobot
systems [86]. Decentralized approaches can perform localization even if one or more parts
fail, which is a significant advantage for this type of system. Furthermore, fusion tech-
niques such as early integration algorithms combine inertial and visual data to improve
GPS-free positioning accuracy, while camera and infrared sensor fusion can be used for
high-precision indoor positioning. In general, these studies show the critical role of sensor
fusion methods in improving the accuracy and reliability of robotic systems in various
fields [87]. The use of IMUs relies on the dead reckoning technique, which is inherently
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prone to error accumulation, and there are time delays between the camera and IMUs,
requiring synchronization.
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A multi-sensory fusion-based mobile robot positioning and navigation system is
described in [88]. The authors increased the localization accuracy by combining data from
inertial measurement units, laser rangefinders, and cameras using an extended Kalman
filter. Their findings showed a notable decrease in positioning errors compared to single-
sensor systems, improving the robot’s precision in navigating intricate surroundings. Even
with a simple trajectory and a short distance, the robot’s performance was still not sufficient
to function in more complex conditions.

4.4. Sensor Fusion Technique for Localization and Position Detection

In [89], a robust and affordable multiple-sensor data fusion technology for collabora-
tive heterogeneous multirobot positioning is described. The proposed method enables the
sharing and fusion of data among robots with different sensor capabilities, thus increasing
the overall positioning accuracy. The results demonstrated that this collaborative method
improved the positioning efficiency by reducing localization errors and confirmed its use-
fulness in multirobot systems and remote sensing applications. Achieving high-precision
navigation is a challenging task due to the combined effects of various factors, individual
sensor limitations, the complexity of the data, and the accumulation of errors.

Other researchers used methods to integrate data from infrared sensors and cameras
for indoor positioning using multi-sensory fusion [81]. This approach improved the location
accuracy under dynamic conditions by addressing environmental uncertainty and sensor
noise. Comparisons between this strategy and those using sensors revealed significant
reductions in positioning errors. This study confirmed the practicality and scalability of this
approach for large-scale applications due to the low cost of the components and its high
accuracy. The camera and infrared sensor integration system still needs to be improved.

In [90], we reported an indoor mapping method based on a combination of IMUs,
odometry sensors, and the extended Kalman filter. By intelligently combining data, the
localization accuracy in an indoor area was improved without using GPS. The experimental
results showed improved accuracy in position estimation; the theoretical calculations
showed a good solution to internal navigation problems. When this method was used
to estimate the robot position using data from wheel encoders (odometry), a large error
occurred both in position and angle. This was due to the accumulation of errors from
the encoders.
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Similar research [91] used sensor fusion to investigate the location of robotic devices
during nuclear reactor inspections. The authors combined data from an IMU and laser
rangefinder to increase the accuracy of the robot’s positioning. The test reduced the
cumulative positioning errors by less than 2.3 mm and improved the robot’s ability to
navigate hazardous areas. The sources of positioning errors included unprocessed laser
measurement errors, IMU measurement errors, and scanning resolution interpolation
errors. These errors cannot be avoided, and can only be compensated for.

Motion control of a microrobot using laser sensors was implemented in [92]. By fusing
the data from laser displacement sensors, the authors achieved precise movement control.
The experiments demonstrated that the positioning accuracy was within micrometers
for high-precision micro-assembling and manipulation tasks, such as semiconductor and
biomedical device manufacturing. The platform was intended for performing movements
with a resolution on the order of micrometers. From a practical point of view, the resolution
of the movement is limited by the electronic control modules and the uneven distribution
of the factor of thirds.

In a similar case [93], scientists unveiled the Micro-UFO (Untethered Floating Object)
method, a remarkably precise method of manipulating microrobots. They were able to
attain submicrometric accuracy and fine control by employing sensor fusion. Their re-
sults demonstrated the efficiency of their manipulation technology and showed potential
uses in medical procedures and micromanufacturing, where great precision is critical.
Thus, despite the high positioning accuracy, the system has limitations related to hydrody-
namic forces, phase differences, trajectory errors during complex movements, and a stable
levitation range.

Research was conducted on the use of pressure signals in pulsating blood vascular
flow to stabilize the location of microrobots. They were able to maintain the stability of the
microrobot in dynamic biological contexts by combining data from sensors. Their findings
suggested that the microrobot can be successfully stabilized within a pulsatile flow and
that it could be used in targeted therapies and minimally invasive medical procedures [94].
The hemorheological properties of blood and blood flow in the vascular system create
significant hydrodynamic obstacles for the control of microrobots. The high velocity of
blood flow, especially in arteries, makes it difficult to precisely guide microrobots, whose
speed is actually much lower.

In [95], the authors present a two-probe setup and developed algorithms for the
precise capture, movement, and placement of nanoparticles using visual feedback from
a microscope and sensory data from the probes. The experimental results showed that
system can work with position errors of less than 5 micrometers, which is essential for tasks
requiring high precision and responsiveness in the fields of microfabrication. Although
the system, in principle, has a high resolution, the accuracy of the image data deteriorated
significantly when the two probes were close to each other.

The results demonstrated that the multi-sensory fusion-based mobile robot positioning
algorithm increased the positioning accuracy. Their algorithm effectively reduced location
errors by combining data from IMUs, LiDAR, and visual sensors. The results showed
that the accuracy and reliability were improved, addressing the difficulties of localization
which are essential for autonomous navigation [96]. In a complex scenario with a glazed
corridor and an exterior corridor, cartographer showed a noticeable angular deviation and
a dependence on the quality of the LiDAR data.

A pre-integration technique for inertial navigation that uses multi-sensory fusion for
the location of indoor mobility robots to improve the accuracy of inertial navigation was
proposed. The results showed that the drift was significantly reduced over time, making
it useful for indoor navigation when GPS signals are weak or opacity is lacking. This
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approach improved the robot’s ability to maintain accurate positioning over a long period
of time [97]. Although various sensors have been used to detect key points, some of them
may have limitations. For example, a Harris corner may not work with sharp changes in
scale or significant rotation between image frames.

Range-visual-inertial sensor fusion was used for the localization and navigation of
micro-aerial vehicles. Combining range measurements with visual and inertial data im-
proved the localization accuracy of micro-aerial vehicles. The experiments demonstrated
improved robustness and accuracy in complex air operations, while maintaining reliable
positioning in environments with limited functions or GPS rejection [98]. The experi-
ments used minimally tuned standard PID controllers, which could affect the accuracy of
trajectory tracking, especially at higher speeds.

Ref. [76] studied the formation of multiple robots with sensor locations in unknown
environments. Using data from LiDAR, IMU, and inter-robot communication, the robots
were able to maintain training and conduct collaborative navigation without prior environ-
mental knowledge. Their results showed that training control was successful with minimal
position errors and demonstrated the effectiveness of their approach in unrecognized and
dynamic terrains. During trajectory tracking in real-world conditions, the robots exhibited
slight vibrations while moving along a defined path due to localization errors.

In [99], a sensor fusion system was developed to autonomously locate mobile robots.
The proposed system improved the autonomy and precision of robot positioning. The
results showed higher reliability and reduced the positioning errors compared to GPS
alone, contributing to the development of a fully autonomous robot system capable of op-
erating in various environments. This paper discusses methods for combining information
from laser scanners and cameras to improve terrain perception by robots. The authors
proposed a new approach using deep neural networks and conditional random fields. The
excessive complexity of the deep structure of the model will lead to additional loads in the
learning network.

A new micro-profilometric method was developed for the study of art objects by com-
bining intensity and surface height data obtained from interferometric sensors. Ref. [100]
describes the principle of this system, and the testing of its characteristics and practical
application in the field of cultural heritage conservation. The disadvantage of the method
is that it is often impossible to obtain high-quality data in a single scan due to the different
light absorption coefficients of different materials.

Ref. [101] presents a method for positioning mobile robots based on multi-sensory in-
formation fusion with laser SLAM. Integrating laser scanning data with IMU and odometer
data, the authors improved the positioning accuracy and map quality. Their results showed
that the localization errors were reduced and the environment was mapped more accurately,
which is important for autonomous navigation and environmental interactions, although
the high complexity of the algorithm and computational workloads limits implementing of
this method.

The positioning of a wheeled mobile robot based on multi-sensory data fusion using
the extended Kalman filter is described in [102]. By combining data from an IMU, wheel
encoder, and ultrasonic sensor, the reliability of the mobile robot positioning system was
increased. Their experiments showed that the cumulative error rate was significantly
reduced over time and that the robot’s ability to navigate accurately over longer distances
and in environments with sensor uncertainty improved. There are numerous signal-filtering
techniques that are well studied and well known. However, each signal has its own
footprint with specific features, so filtering issues are still important in technology and are
part of the sensor fusion process. Mobile robots can define their orientation and coordinates
using a minimum number of sensors when the sensor fusion mechanism is applied [103].



Sensors 2025, 25, 3008 19 of 25

Unfortunately, the planning of the optimal robot route in dynamic environments, especially
with unknown and unpredictable changes, becomes a difficult task.

In general, the presented studies show the importance and effectiveness of multi-
sensory data fusion methods in improving the accuracy and reliability of positioning
in various robotic systems, from microrobots to mobile platforms and unmanned aerial
vehicles. These results open broad prospects for the further development of autonomous
systems and their application in various fields, including medicine, manufacturing, and
navigation in complex environments.

5. Discussion
After an analysis of the existing sensor data fusion issues, the authors noticed some

trends. The distribution of sensor fusion technology in each area of application is presented
in Table 5.

Table 5. Comparison of sensor data fusion applications according to fusion levels.

Fusion Level Description Examples Applications

Low-level fusion
Directly combines raw data
from sensors, focusing on
signal-level information.

IMU + GPS for raw
positioning; LiDAR +
camera for
depth estimation.

Basic localization, rough
mapping, and
obstacle detection.

Intermediate-
level fusion

Processes and combines
features extracted from raw
data for more significant ideas.

Feature-based fusion like
parameter detection and
object segmentation.

Object tracking, pattern
recognition, and
enhanced localization.

High-level fusion

Combines high-level decisions
made by each sensor, focusing
on interpreted or
classified data.

Decision fusion for
obstacle avoidance or
object recognition.

Advanced navigation,
autonomous decision making,
and robotic manipulation.

Autonomous vehicles and drones actively use all levels of data fusion, especially
hybrid fusion, to ensure reliable operation under dynamic conditions.

Service robots and medical robots also require a high level of data integration, espe-
cially at the high-level and hybrid levels, to ensure effective interactions with people and
the performance of complex tasks.

Industrial robots are less dependent on high-level data fusion as they usually per-
form repetitive tasks under predictable conditions, which reduces the need for complex
processing of sensor data. A graphical classification of sensor fusion is shown in Figure 6.
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The analysis of data fusion technology revealed that the intermediate level accounts
for a higher percentage of all sensor data fusion implementation, and could therefore open
a new space for higher level technique development. It is also necessary to develop more
sophisticated algorithms that can effectively process and interpret the combined data to
make more accurate and timely decisions. This will lead to the improved performance and
reliability of systems based on sensor data fusion.

6. Conclusions
This review identified numerous studies devoted to the use of sensor data fusion to

improve the accuracy and reliability of the positioning and navigation of robotic systems.
The use of multi-sensory fusion can effectively compensate for the disadvantages of in-
dividual sensors, improving the quality of the system. Some publications focused on the
combination of raw data from different sensors. For example, integrating data from IMUs,
odometry, and laser rangefinders can improve positioning accuracy by directly combining
the measurements. Such a fusion requires precise data synchronization and differences
in the update rate and characteristics of the different sensors. Several studies focused on
combining extracted features from sensor data, for example, combining visual features
with LiDAR data to improve mapping and localization in SLAM systems. This approach
uses complex information from different types of sensors to more reliably recognize the
environment. Fusion is also used at the decision-making level, where the results of individ-
ual algorithms or models are combined to make a final decision, for example, in systems
where data from different robots are combined for joint navigation and formation.

Several studies used a hybrid fusion level, combining low-, middle-, or high-level
fusion methods to achieve the best results. This approach has the advantage of using
each fusion level simultaneously. In hybrid methods, the data from different sensors
are first combined at the data or feature level, and then the results are integrated at the
decision level. This helps improve the accuracy and reliability of systems in complex and
dynamic environments.

Future research in this area could focus on developing adaptive fusion methods
that can dynamically select the optimal fusion level and method depending on current
conditions and tasks. Machine learning and deep learning methods are also promising
methods for improving data fusion and decision making in real time, which will allow for
the creation of more intelligent and autonomous methods.

The provided analysis of the issues in robotics revealed the following trends:

• The widespread adoption of multi-sensory fusion as a key approach to overcome the
limitations of individual sensors;

• A movement towards more complex and adaptive fusion algorithms that can effec-
tively operate in real time and dynamically respond to environmental changes;

• The integration of machine learning and deep learning methods to improve the quality
of data fusion and decision making;

• The creation of highly autonomous robotic systems capable of performing complex
tasks under uncertain and changing conditions.

These trends reflect the growing interest in the development of intelligent navigation
and positioning systems that can find application in various fields, including industry,
medicine, and service robotics.

Future trends in hybrid sensor data fusion could include the development of hybrid
models of fusion, including sensor-database mixed data fusion and machine learning-based
sensor signal fusion with dynamic weight coefficient adjustment. There are AI technologies
that can be implemented into fusion processes and there are unpredictable technologies
development trends within the hybrid sensor fusion domain.
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The following abbreviations are used in this manuscript:

AHRS Attitude and Heading Reference System
AMRs Autonomous mobile robots
ANFIS Adaptive Neuro Fuzzy Interface
CNC Computer numerical control
DKF Decentralized Kalman filter
EKF Extended Kalman filter
GTA Gas tungsten arc
GNSS Global Navigation Satellite System
IoT Industrial Internet of Things
IMUs Inertial measurement units
IR Infra-red
KF Kalman filter
LiDAR Light detection and ranging
LSTM Long short-term memory
MIMUs Magnetic and inertial measurement units
µSCM Micro search-coil magnetometer
MEMS Microelectromechanical system
HES Micro-Hall-effect sensor
MDS Multidimensional Scaling
PDR Pedestrian dead reckoning
PCA Principal Component Analysis
RF Radio frequency
ROS Robot Operating System

SFAs Sensor fusion algorithms
SLAM Simultaneous localization and mapping
UWB Ultra-Wideband Positioning
UKF Unscented Kalman filter
UFO Untethered Floating Object
VFHs Vector field maps
WMR Wheeled mobile robot
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