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Abstract

RNA localization is involved in multiple biological processes. Recent advances in subcellular fractionation-based sequencing approaches
uncovered localization pattern on a global scale. Most of existing methods adopt relative localization ratios (such as ratios of separately nor-
malized transcripts per millions of different subcellular fractions without considering the difference in total RNA abundances in different
fractions), however, absolute ratios may yield different results on the preference to different cellular compartment. Experimentally, adding
external Spike-in RNAs to different fractionation can be used to obtain absolute ratios. In addition, a spike-in independent computational
approach based on multiple linear regression model can also be used. However, currently, no custom tool is available. To solve this prob-
lem, we developed a method called subcellular fraction abundance estimator to correctly estimate relative RNA abundances of different
subcellular fractionations. The ratios estimated by our method were consistent with existing reports. By applying the estimated ratios for
different fractions, we explored the RNA localization pattern in cell lines and also predicted RBP motifs that were associated with different
localization patterns. In addition, we showed that different isoforms of same genes could exhibit distinct localization patterns. To conclude,
we believed our tool will facilitate future subcellular fractionation-related sequencing study to explore the function of RNA localization in
various biological problems.
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Introduction
RNA localization plays important functions in diverse biological
processes in the cells. Proper subcellular distribution of RNAs not
only maintains the correct organization of cell structure but also
is crucial to control multiple biological processes (Holt and
Bullock 2009; Medioni et al. 2012; Holt and Schuman 2013;
Bovaird et al. 2018). mRNAs localized to specific compartments in
the cells allow proteins to be produced rapidly and energy-
efficiently on-site rather than be transported with lag and cost es-
pecially in response to extrinsic stimuli (Martin and Ephrussi
2009; Medioni et al. 2012). For noncoding RNA, since noncoding
RNAs broadly involved in multisteps of gene expression control
in distinct localizations in the cell, proper partitioning of regula-
tory RNAs would be critical to promote interaction with targets
and ensure efficient execution of their biological functions
(Batista and Chang 2013).

RNA localization involves multiple regulatory processes, such
as RNA nuclear retention, cytosolic export, and transportation to
specific compartments. Cis-elements encoded on RNAs are recog-
nized by RBP and guide the RNA to the proper cellular localization
of RNAs (Miyagawa et al. 2012; Chaudhuri et al. 2020). Many

neuronal and oocyte mRNAs have extended 3’UTRs that contain
the cis-elements dictating their specific localization pattern in the
cells, which is referred to as RNA cis-acting zipcode elements
(Jambhekar and Derisi 2007; Taliaferro et al. 2016; Tushev et al.
2018). However, cis-elements are not restricted to 3’ UTR but can
be located at other exonic regions. For example, binding of
HNRNPK to C-rich motifs outside Alu elements is associated with
increased nuclear accumulation in both lncRNAs and mRNAs
(Lubelsky and Ulitsky 2018).

Traditionally, RNA localization was studied on a gene-by-gene
manner. Recently, the omics approaches were used to reveal the
genome-wide localization patterns. A number of experimental
approaches were available to perform genome-wide profiling for
subcellular fractionations, such as subcellular RNA-Seq and
CeFra-Seq (Djebali et al. 2012; Lefebvre et al. 2017). When perform-
ing the quantification and downstream analyses, most used
relative localization ratios of separately normalized expression
quantification (such TPM or FPKM values) without adjusting
based on their absolute abundances in different fractions
(Carlevaro-Fita and Johnson 2019). However, subcellular distribu-
tion of RNA molecules is asymmetric in the nuclear and cytosolic
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compartments: cytosol generally has a higher total RNA
abundance than nucleus (Abdelmoez et al. 2018; Guo et al. 2020).
A previous study adopted a multiple linear regression approach
to estimate absolute abundances for lncRNA and mRNA in nu-
clear and cytosolic fractions separately (Carlevaro-Fita and
Johnson 2019). Moreover, adopting relative and absolute ratios
might yield different conclusions, thus suggesting the need to
consider absolute ratios (Carlevaro-Fita and Johnson 2019).
However, no available tool was provided for their method.

In this study, we provided a method and easy-to-use Python
scripts to infer the relative abundance of different subcellular
fractionations. Instead of estimating the absolute ratios for
lncRNA and mRNAs separately adopted in multi linear regression
method, we estimated only one single fraction ratio. The relative
abundance of different cellular fractions predicted based on our
method was consistent with existing results. Then we explored
whether such relative abundance varied in different conditions.
In addition to global level regulation, we also looked into the dis-
tribution pattern for individual genes in these conditions. Finally,
we tried to explore the regulatory mechanism and potential func-
tional significance of the variations of RNA localization.

Materials and methods
Data preparation
The processed gene and transcript TPM expression level data of
subcellular polyA and non-PolyA samples were downloaded from
ENCODE database (https://www.encodeproject.org/). There are
11 cell lines with Cytosol, Nucleus and whole cell (WC) fractions
PolyA RNA-seq, 7 cell lines with RNA-seq from three correspond-
ing non-PolyA fractions (Tilgner et al. 2012). The detailed sample
information could be found in Supplementary Table S1.

RNA-seq data preprocessing
The RNA-seq data about HNRNPK was downloaded from the SRA
database, accession SRP111756 (Lubelsky and Ulitsky 2018). The
sequenced reads were mapped to human reference genome
(GRCh38.89) using the STAR (STAR_2.5.3a) mapping program
with parameters recommended by ENCODE project (Dobin et al.
2013). The expression TPM and FPKM of genes and isoforms were
calculated by Expectation-Maximization (RSEM v1.3.0; Li and
Dewey 2011).

Subcellular fraction abundance estimator method
to estimate the cytosolic ratios
The inputs of subcellular fraction abundance estimator (SFAE)
method were the filtered normalized expression vectors: genes
whose TPM level in WC did not fall within the range between
nuclear and cytosol TPM levels were removed. To estimate the
single parameter CR, we aimed to identify CR value that mini-
mized the difference between the predicted WC TPM vector with
observed TPM vector, where TPMpredicted is equal to CR*TPMcyto þ
(1-CR)*TPMnuc. The cost function we used to minimize the differ-
ences is

E hð Þ ¼

Pn

i¼1
ðln h�TPMCyto; iþ1�h�TPMNuc; i

TPMWC;i
Þ2

n
;

where h represented cytosolic RNA abundance ratio (CR), TPMCyto; i,
TPMNuc; i, and TPMWC;i was corresponding to TPM value of gene i
in Cytosol, Nucleus, and WC fractions, respectively, and n was
the gene number involved in estimation after filtering in

preprocessing step. We used constrained minimization method
“trust-constr” implemented in scipy.optimize.minimize function
in Scipy package in Python to estimate the CR ratios (Virtanen
et al. 2020).

We’ve tested in multiple datasets and such cost function
would normally yield a bell shape in the prediction error mea-
surement (Figure 1). When dealing subcellular fractionation with
more than two fractions, similar ratios for each fraction can be
estimated simultaneously with the same function. The method is
available as a standalone Python pipeline (github.com/bioliyez-
hang/SFAE).

Cell culture and actinomycin D treatment
Hela cell were gifts from Reed Lab in Harvard Medical School,
All the cells were cultured in DMEM medium supplemented
with 10% FBS(Gibco), 1% streptomycin/penicillin and 0.1%
gentamycin(Life Technologies). Cell were incubated at 37�C and
5% CO2. HeLa cells were treated with 5 mg/ml actinomycin D
(ActD; Merck) to inhibit transcription (Hou et al. 2019), DMSO was
added as a control (5%), and then harvested at the indicated time
points following addition of ActD.

Nuclear and cytoplasmic separation, RNA
isolation, and Library Prep
For separation of nuclear and cytoplasmic fractions, the extrac-
tion kit (Beyotime China, P0027) was used and followed the same
procedures as previous study (Khan et al. 2021). Total RNA was
used as input material for the RNA sample preparations. Briefly,
mRNA was purified from total RNA by using poly-T oligo-at-
tached magnetic beads. Fragmentation was carried out using di-
valent cations under elevated temperature in First Strand
Synthesis Reaction Buffer (5X). First strand cDNA was synthe-
sized using random hexamer primer and M-MuLV Reverse
Transcriptase, then use RNaseH to degrade the RNA. Second
strand cDNA synthesis was subsequently performed using DNA
Polymerase I and dNTP. Remaining overhangs were converted
into blunt ends via exonuclease/polymerase activities. After
adenylation of 3’ ends of DNA fragments, Adaptor with hairpin
loop structure were ligated to prepare for hybridization. In order
to select cDNA fragments of preferentially 370–420 bp in length,
the library fragments were purified with AMPure XP system
(Beckman Coulter, Beverly, USA).

Motif enrichment analysis for the three genesets
in human
We extracted cDNA sequence of the most highly expressed
isoform (defined by the isoform with the highest total sum of
expression TPM values) across multiple cell lines for each gene in
three genesets from ensemble reference database (Homo_
sapiens.GRCh38.cdna.all.fa; Mus_musculus.GRCm38.cdna.all.fa).
Then we used FIMO to scan each gene’s cDNA sequence for
occurrences of the annotated motifs from CISBP-RNA and Ray
2013 motif databases from MEME website based on default set-
ting (Grant et al. 2011). To remove the bias driven by gene length,
we calculated the motif density (normalized by gene length) for
each gene given a RBP motif. Then we used Wilcoxon rank-sum
test to examine whether the motif densities (motif occurrences
divided by most abundant isoform length) were significantly dif-
ferent between genes in one geneset vs the rest of genes. Then P-
values were then corrected for multiple hypotheses testing by
FDR method.

For genesets of mouse, we directly used the genesets (Cyto-
gene and Nuc-gene) defined in their study (Halpern et al. 2015).
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Cytoplasmic genes (Cyto-genes) are genes whose log2(Number

Cyto/NumberNuc) more than 0 in both MIN6 cells and liver cells
(NumberCyto and NumberNuc respectively represent normalized
numbers of cytoplasmic and nuclear mRNAs per cell in MIN6
cells and liver cells). Similarly, nuclear genes (Nuc-genes) are
genes whose log2 (NumberCyto/NumberNuc) less than 0 in both
MIN6 and liver cells.

Identification of isoforms that are significantly
correlated with CRs values
First, correlation between CR of each gene and max/second
expressed transcript were calculated using Pearson correlation
coefficient. Second, the genes whose absolute correlations of the
most and second-most abundantly expressed transcripts are
both more than 0.4 and median TPM of genes are greater than 3
were chosen. Finally, 335 genes with opposite correlation
pattern (positive and negative correlation) in two isoforms were
remained.

Results
Estimation of relative RNA abundance for
subcellular compartment
We used hi (ranges from 0 to 1) to represent the ratios of total
RNA abundances among individual cellular subfractions. When
cells are fractioned into nuclear and cytosolic portions, we used
hcyto to represent the CR. For each fraction as well as total cell
extract, we have a vector of transcripts per million (TPM) values
(such as TPMCyto, TPMNuc, and TPMWC) to represent the expres-
sion vectors. We estimated optimal hCyto by minimizing the sum
of log ratios of the observed and predicted expression matrix
(Figure 1 and see more details in Materials and Methods section).
Such strategies can be also generalized to cases with more than
two subcellular fractionations of cells, such as data from CeFra-
Seq with four fractions.

We applied this method to quantify the relative cytosolic and

nuclear portion for polyadenylated and nonpolyadenylated RNA

in the ENCODE datasets (Tilgner et al. 2012). As expected, major-

ity of polyadenylated RNAs resided at cytosol, while nonadeny-

lated RNAs did not show strong enrichment at cytosol (Figure 2A

and Supplementary Figure S1 and Table S1). CRs of polyadeny-

lated RNAs in human cell lines from different tissues were tightly

distributed between �70% and 90%. Similar results were obtained

in non-ENCODE studies (control in Figure 2B). The multiple frac-

tionation techniques (CeFra-Seq) yielded similar CR estimate

(Supplementary Table S1; Benoit Bouvrette et al. 2018). Similar

levels of CRs were observed in D17 cell line from fruit fly

(Supplementary Table S1; Benoit Bouvrette et al. 2018). Such esti-

mates of CRs are also consistent with results (�84%) from one

single-cell study on human K562 cell lines (Abdelmoez et al.

2018). In addition, a study on mouse cell line using RNA-Seq and

RNA-FISH showed that most transcripts have a 3.8 cytoplasm/

nucleus ratio (Halpern et al. 2015), which was also consistent with

the �70–90% CR ratios. In summary, all these evidences sug-

gested the CRs predicted based on our method were consistent

with results from existing studies. And such CRs suggested that

using relative ratios between nuclear and cytosolic RNAs might

underestimate the genes with an absolute abundance level

preference for cytoplasmic localization.

Altered relative RNA abundance of nuclear and
cytosolic RNA upon perturbations
To understand whether overall abundance ratios between

nuclear and cytosolic RNAs can be regulated, we looked into the

subcellular fractionation RNA-seq dataset where perturbation

is available. We observed a consistent decrease (�10%) in

cytosolic RNA ratios upon HNRNPK knockdown in two cell

lines (Figure 2B). The decrease in cytosolic RNA also agreed

with a larger number of nuclear-enriched genes (397) vs

Figure 1 Overview of pipeline. Cells are separated into cytosol and nucleus fractions, then Cytosol, Nucleus, and WC fractions are separately sequenced
(left). With processed TPM data of three fractions, true CR could be calculated with SFAE as figure shows (right); E(h) is defined as summed estimated
error between predicted- and observed-TPM data of WC for all genes. For each CR or h in this example, an Estimate Error between predicted- and
observed-TPM data of WC was calculated. Then, the CR value with the minimum estimated error (red point) is considered to be optimal estimate of CR.
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cytosol-enriched genes (283) upon perturbation (Lubelsky and
Ulitsky 2018).

Unfortunately, such dataset is quite limited. Since we did not
have a positive-control treatment that is known to alter the
cytosolic RNA ratios, we resorted to ActD treatment, which
inhibits transcription. Originally, we suspected that such cyto-
solic ratios (CRs) might increase as nuclear transcription was
shut down. Both ActD inhibition (Supplementary Figure S2A)
and RNA subcellular separation (Supplementary Figure S2B)
were successful. However, CRs actually decreased slightly (from
0.629 in DMSO to 0.575 in ActD treatment) based on SFAE. We
suspected that RNA degradation might play crucial roles in
such process. Therefore, we extracted the short and long half-
lives RNA in Hela cells from previous study (Sharma et al. 2016).
Indeed, RNA with short half-lives exhibited a much stronger
decrease in expression levels (Supplementary Figure S2C).
Consistently, the RNAs with shorter half-lives showed a signifi-
cant decrease in CRs, but not the RNAs with long half-lives
(Supplementary Figure S2D).

Therefore, both examples above serve as a proof-of-principle
that global cytosol ratios can be altered; further studies are

needed to characterize how common this global CR is regulated

under other conditions and biological processes.

Majority of polyadenylated RNAs are
preferentially located in the cytosol
As we obtained the correct estimates between the overall RNA

abundances in cytosol and nucleus, we could calculate the abso-

lute ratio between cytosol and nuclear localized mRNAs for each

gene. We calculated such ratios for the polyadenylated mRNAs in

ENCODE datasets, and clustered on both the gene and sample

levels (Figure 2C). Consistently, majority of genes showed more

enrichment in the cytosol vs nucleus. There were three major

gene clusters based on K-means clustering algorithm, and the

cluster in the bottom showed clear preference for nuclear locali-

zation pattern. As expected, nonprotein coding genes, such as

lncRNA and antisense RNAs, were significantly enriched (P-value

< 2.2e-16 based on a Chi-Square test) in this nuclear localized

cluster (Figure 2D). Therefore, after adjusting with absolute CR

ratio predicted by our method, the gene level localization pat-

terns on the mRNAs (predominantly cytosol) and lncRNAs

Figure 2 Application of SFAE to estimate CRs in multiple conditions. (A) Boxplot showing polyadenylated RNAs have significant higher CRs than
nonpolyadenylated RNAs. The number (n) of cell lines analyzed is indicated. Statistical significance was determined by Wilcoxon rank-sum test. (B)
Bar plot showing changes in CRs for two cell lines following HNRNPK knockdown by siRNA. (C) Heatmap of Z-scores of log2 Cyto/Nuc ratios of all genes
after adjusting with CRs estimated by SFAE for 11 cell lines. Genes were clustered into three groups by K-means clustering, lincRNA and unprocessed
pseudogenes are over-represented in bottom cluster, whose genes are more enriched in the nucleus vs cytosol. (D) Bar plot showing the percentage of
different classes of RNA in three clusters defined in C. (E) Absolute localization ratios were estimated by adjusting TPMs with CR ratios estimated by
SFAE. Median Log2-transformed Cyto/Nuc ratios for the all lncRNAs and mRNAs in each cell line are shown.
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(predominantly nucleus) were also consistent with existing
results (Chen and Carmichael 2009; Khalil et al. 2009; Derrien
et al. 2012).

When focusing on the cell line specific patterns, we plotted
the median log2 ratios between the absolute Cytosol vs Nuc TPM
for mRNAs and lncRNAs as used in published literature
(Figure 2E; Carlevaro-Fita and Johnson 2019). We also compared
the results for 9 cell lines based on SFAE and multiple linear re-
gression methods. Both methods predicted preferred localization
in cytoplasm for mRNAs in all 9 cell lines. For lncRNAs, 5 out 9
cell lines showed consistent results (>50% of lncRNA located
more in nucleus in HelaS3, IMR90, MCF7 cell lines, while >50% of
lncRNA located more in the cytosol in SKNSH and HUVEC cell
lines). For the other four cell lines (GM12878, HepG2, K562, and
NHEK), SFAE predicted that >50% lncRNAs preferentially located
in the nucleus, while multiple linear regression projected the op-
posite pattern (preference in cytoplasm). To eliminate potential
bias caused by subtle differences in TPM and FPKM normalization
method, we rerun the SFAE with FPKM as the expression input
and obtained almost identical results (Supplementary Figure S3).
We also calculated the error between predicted WC TPM and ob-
served WC TPM by summing up the log ratios of all lncRNAs for
two methods. They showed overall comparable levels of errors
defined in Equation (1) (Supplementary Table S2). For the four
cell lines showing inconsistent in overall pattern, two cell lines
showed lower error in SFAE, while the other two cell lines showed
lower errors in multiple regression based method. Thus, the error
between estimated and observed WC TPM could not be used to
determine which method is more accurate. The predicted output
of SFAE was more consistent with prevalent view of nuclear
localization of lncRNAs. However, lack of ground truth, we were
unable to decide for sure which method yielded the correct
estimates.

Three gene classes based on the distribution
pattern of polyadenylated and
nonpolyadenylated RNAs
Most of studies on localization focused on polyadenylated RNAs,
we also examined whether the localization patterns were consis-
tent between RNAs with different polyA tail statuses. We quanti-
fied the median ratios across multiple cell lines between
cytosolic and nuclear polyadenylated and nonadenylated RNA
for each gene. Genes fell into three major categories (Figure 3A),
and we defined three groups as nuclear, cytosolic, and bivalent
genesets. Genes in cytosolic and nuclear subgroups showed con-
sistent localization patterns irrespective of poly-adenylation sta-
tus of RNAs, while genes in the bivalent group switched
localization preferences when poly-adenylation status of mRNA
changed: transcripts with polyA tails preferentially localized in
the cytosol, while transcripts without polyA tails in the nucleus.

Previous studies suggested that cis-elements on RNA carried
localization signals (Jambhekar and Derisi 2007; Bergalet and
Lecuyer 2014; Chen 2016). Therefore, we extracted the Ensemble
cDNA sequences for all genes and predicted the presence of an-
notated motifs recognized by RNA binding proteins (RBPs) (Ray
et al. 2013). We identified the enriched motifs based on their motif
densities in each geneset (see Materials and Methods for more
details). Interestingly, compared with other two groups, genes in
nucleus group only have a much smaller number of enriched RBP
motifs (Figure 3B and Supplementary Table S3), suggesting that
their transcripts might contain fewer cytosolic export cis-ele-
ments. RBM4, which is the most enriched RBP in the cytosolic
genes, contains a C-terminal alanine-rich domain that

potentially mediate RNA export (Lai et al. 2003). RNA export func-
tion of SRSF1, another top enriched RBP, is also supported by a
few published literatures (Das and Krainer 2014; Khan et al. 2021).
However, the functional roles of RBP in RNA localization, such as
RNA export, were still very limited. Therefore, we were unable to
confirm whether these enriched motifs we predicted for cytosolic
genes are indeed functional cis-elements. Our study provided a
prioritized list for mechanistic studies.

However, the localization pattern of bivalent genes could not
be simply explained by cis-elements. We argue there are at least
two models to explain the distinct localization preference based
on polyA tail status. One possibility is that for these genes, a tight
quality control was implemented and only fully processed
transcripts with polyA tail were exported. As previous studies
reported that RNA export is coupled with RNA processing, such
as RNA splicing (Luo and Reed 1999; Zhou et al. 2000). To validate
such assumption, we quantified the ratio between reads from in-
completely spliced transcripts (reads with fragments containing
intron) vs reads from fully spliced transcripts (reads only contain-
ing exons) for all genes in nuclear and cytosol subcellular frac-
tions. Indeed, such ratios in bivalent genes were significantly
higher compared with other two types for nuclear RNAs in non-
polyadenylated RNAs (Figure 3C). Interestingly, similar pattern
was also observed in the nuclear RNAs with polyA tails
(Supplementary Figure S4A), but not in the cytosolic RNAs with
or without polyA tails (Supplementary Figure S4, B and C). To un-
derstand whether the longer total intronic length in polyA-
dependent group led to higher ratios of incomplete splicing, we
quantified the total intronic length for each gene in three groups.
Indeed, the total intron length in bivalent genes were signifi-
cantly longer, which might lead to a slower processing rate and
higher fraction of incompletely processed transcripts (Figure 3D).
This suggested that significant higher proportion of nonpolyade-
nylated RNAs from bivalent genes may be immature transcripts
and thus be retained in the nucleus until the completion of RNA
splicing.

Another alternative explanation is that both polyA and non-
PolyA transcripts had similar localization preference. But cyto-
solic poly-adenylation altered the pattern (see cartoon model in
Supplementary Figure S5). Indeed, only bivalent genes, but not
cytosolic genes, showed strong enrichment with cytoplasmic pol-
yadenylation related genes such as CPEB2-4 (Supplementary
Table S3; Charlesworth et al. 2013).

To understand whether these RBP mediated localization are
conserved between species, we also processed the subcellular
fractionation data from mouse. Indeed, we observed highly con-
sistent pattern of enrichment in the same subcellular fraction-
ation (Figure 3E and Supplementary Table S4). For instance, CPEB
motifs were enriched in cytosolic genes in both species.
Conserved RBP mediated localization between species is consis-
tent with that CPEBs are cytoplasmic polyadenylation element-
binding proteins (Novoa et al. 2010; Charlesworth et al. 2013).

Variations of distribution pattern in different cell
lines
Only the average value across multiple cell lines were shown in
Figure 3A, however, the distribution preference might differ for
the same gene in different cell lines. Therefore, we quantified the
variations in the form of maximum difference among all the cell
lines and variance of the CR ratios. Nuclear genes showed the
largest variations, while cytosolic genes showed least variations
for polyadenylated RNAs (Figure 4A). Similar pattern was ob-
served when the variances of CR ratios were plotted
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(Supplementary Figure S6A). Given general localization prefer-
ence in the nucleus for lncRNA and cytosol for mRNAs, we quan-
tified the variations of distribution for these two types of genes.
Consistently, genes encoded mRNA showed significant lower var-
iation in cellular distribution preferences (Figure 4B and
Supplementary Figure S6B).

Previous study showed that alternative isoforms exhibited dif-
ferent localization patterns (Taliaferro et al. 2016), therefore we
wanted to evaluate whether alternative isoform splicing may ex-
plain the variations in localization in different conditions. We
used RSEM to quantify the isoform level expression for all the
genes. And we also calculated the Pearson’s correlation coeffi-
cient between the CRs values and isoform expression levels for
all 11 cell lines. Then we looked for genes whose two highest
expressed isoforms showed opposite correlation with CRs. In to-
tal, 335 genes with a relative high expression level (median TPM
� 3) showed such pattern (see one example on gene EPAS1 in
Figure 4C and Supplementary Table S5). We examined the tran-
script categories for the exported (cytosolic) and retained (nu-
clear) isoforms based on their correlation with CR s. Indeed, the

exported isoforms were significantly more enriched with protein-

coding isoforms (P-value � 9.42e-11 based on Fisher’s Exact test,

Figure 4D).

Variations of RNA distribution severely affects
transcription process in cancers
Given the potential mechanism of regulating localization to con-

trol protein production, we suspected that the part of genes

exhibited lower mRNA-protein correlation might adopt localiza-

tion-based regulatory mechanisms. Therefore, we extracted the

genes showing and not showing significant positive correlation

between mRNA and proteins from breast cancer and ovarian can-

cer in CPTAC projects (Edwards et al. 2015). Indeed, genes with

strong mRNA-protein correlation showed significant lower levels

of variations in term of CRs in both datasets (Figure 4E and

Supplementary Figure S6C), suggesting controlling mRNA export

can be a general mechanism to regulate translation.

Figure 3 Three gene subgroups based on the distribution pattern of polyadenylated and nonpolyadenylated RNAs. (A) Scatter plot indicating three
major group genes with based on median log2(Cyto/Nuc) ratios of polyA and non-PolyA data of cell lines. Genes on top-right and bottom-left are
defined as Cyto genes and Nuc genes, as they are enriched in cytosol or nucleus irrespective of polyA tail status. Genes on bottom-right are defined as
bivalent genes, which show distinct pattern based on polyA tail status. (B) Bar chart shows the number of enriched RBP motifs in the three gene
clusters. (C) Boxplot shows log-transformed Incomplete/Complete spliced exon reads ratios of three gene clusters in nucleus for non-PolyA RNAs. ***
represents P-value < 0.001 based on Wilcoxon rank-sum test for C and D. (D) Boxplot shows the summed intron lengths per gene distribution of three
gene clusters. (E) Table shows the number of enriched RBP motifs with same or different localization preferences between human and mouse. Bivalent
enriched motifs were considered as cytosol enriched motifs in here.
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Discussion
Given the complexity to correctly estimate relative total tran-
script abundances in different cellular fractions, most of the
existing studies adopted relative localization ratios for compari-
son (such as cytosol/nucleus ratios). Cyto/Nuc Ratios in polyade-
nylated RNAs predicted by our method showed clear imbalance
between cytosolic and nuclear RNAs: there are consistently more
RNAs resided in the cytoplasm compared with nuclear for all cell
lines and conditions (Figure 2A). In addition, we showed that
such Cyto/Nuc ratio could vary between different RNA subtypes,
cell lines, or different conditions from the same cell line
(Figure 2). The dynamic regulation of nuclear localization can oc-
cur on multiple levels. First, the global RNA abundance Cyto/Nuc
ratio can change as we have observed in the HNRNPK knockdown
and ActD treatment experiments. Interestingly, ActD treatment
did not increase in CR upon transcription shutdown in the nu-
cleus as expected, possibly due to the decrease of polyA mRNA in
the cytosol caused by mRNA degradation was stronger than the
decrease of polyA mRNA production in the nucleus due to the
transcription shutdown of ActD treatment (Tatosyan et al. 2020).
It will be interesting to explore whether during disease states or
developmental stages, such global nuclear/cytosol RNA ratio
could be altered. If so, whether this regulation has functional
consequences and its regulatory mechanism.

We also showed that the localization pattern for each gene
transcript could be dynamically regulated. For the genes exhib-
ited large variations, we identified alternative isoforms that may
exhibit distinct localization patterns. Therefore, by altering the
relative abundance of different isoforms, the localization pattern
can be switched. This is consistent with previous report that dur-
ing neuronal differentiation, isoform switching occurs to regulate

mRNA localization (Taliaferro et al. 2016). A cell-type-specific sta-
bility regulation might also explain the localization patterns for
different isoforms in cell lines. Previous studies showed the sta-
bility of transcripts in different cell types or the same cell type in
different conditions could be tuned in an isoform specific manner
(Zhang et al. 2002; Tushev et al. 2018). Nevertheless, we suspected
that localization regulation could be adopted to control transla-
tion. Consistently, the cytosol localizing isoforms were enriched
with protein-coding isoforms (Figure 4D). In addition, we also
observed that the genes with high mRNA-protein levels concor-
dance from CPTAC datasets showed weaker variations in locali-
zation patterns (Figure 4E).

There are a number of possible regulatory mechanisms for
RNA localization. By integrating analyses on non-PolyA and
polyA RNAs, we identified a large polyA-dependent cytosolic gen-
eset whose localization patterns differ based on polyadenylation
tail status (Figure 3A). Previous studies showed the RNA export is
frequently coupled with splicing and RNA maturation (Luo and
Reed 1999; Zhou et al. 2000). Therefore, it is also possible that
polyA tail just reflected the completion of RNA processing, which
is coupled with RNA export. In addition, we identified the RBP
motifs enriched with gene groups with distinct localization
pattern. The motifs we identified were consistent with existing
studies and also across species. We did observe that several RBP
motifs showed opposite patterns in localization with respect to
preference in nuclear or cytosolic fractions. A recent study
showed that the difference in abundance of RBP protein levels, in-
stead of cis-elements sequences on lncRNA, lead to opposite lo-
calization patterns between human and mouse embryonic
stem cells (Guo et al. 2020). Due to the functional and structure
conservation for the same RBPs, we suspected that the different

Figure 4 Variations of CR in multiple cell lines on the gene level. (A) Boxplot shows CR maximal differences (CR Max Diff) on individual gene level
among different cell lines in three defined gene clusters. Genes in different groups showed significant differences in the CR Max Diff based on Wilcoxon
rank-sum test for this and other panels in this figure if not mentioned otherwise. (B) Boxplot shows lincRNA have significantly higher CR variations
based on CR Max diff than mRNA. (C) Correlation between CR and isoform ratios of EPAS1 gene. Each circle represents one cell line. Two highest
expressed isoform showed opposite correlation pattern with CRs. (D) Annotation of transcript types (protein coding or nonprotein coding) on export and
retained isoform. (E) CR Max Differences between two groups genes in TCGA ovarian cancer dataset. Correlated and Not correlated, respectively, were
defined based on whether genes showing and not showing significant positive Pearson correlation between mRNA and proteins from ovarian cancer
CPTAC projects.
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regulation of abundance for these RBPs across species might be
more likely cause for opposite localization patterns, instead of
distinct localization patterns dictated by the homologous RBP
genes in two closely related species. However, one limitation of
our approach is that we relied on curated motif database, which
might not truly reflect the true complexity of cis-elements that
regulate the localization.

The other limitation with our work is lack of enough biological
replicates. Due to the small number of subcellular fractionation
RNA-Seq, most of the sample we only have one or two biological
replicates. Therefore, we are unable to dissect the variations
caused by different cell lines and intrinsic variations within one
cell line. On the global level, we did observe similar CR ratios for
MCF7 and Hela cell lines generated from different labs (Figure 2
and Supplementary Table S1). It will be interesting to estimate
the intrinsic variations of genes on RNA localization when no
other biological variables were present, which will facilitate the
identification of changes in localization caused by perturbations
or different biological conditions (such as cell type) instead of
intrinsic variations.

In summary, we presented a SFAE method to estimate relative
ratios for multiple subcellular fractions. By applying our meth-
ods, we were able to show the variations in RNA localization from
multiple levels. Our results suggested that RNA localization could
be dynamically regulated, therefore, it will be interesting to
explore the functional consequences (such as the translational
control) and significance of such regulated RNA localization in
multiple physiological processes and disease conditions.

Data availability
The raw sequence data reported in this paper have been
deposited in the Genome Sequence Archive (Chen et al. 2021) in
National Genomics Data Center (CNCB-NGDC Members and
Partners 2021), China National Center for Bioinformation/Beijing
Institute of Genomics, Chinese Academy of Sciences (GSA:
HRA001427) that are publicly accessible at https://ngdc.cncb.ac.
cn/gsa.

SFAE method is available as a standalone Python pipeline
(github.com/bioliyezhang/SFAE).

Supplementary material is available at G3 online.
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