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medical needs and include traditional gases, such as oxygen and nitrous oxide, as well as gases

with recently discovered roles as biological messenger molecules, such as carbon monoxide,

nitric oxide and hydrogen sulphide. Medical gas therapy is a relatively unexplored field of

medicine; however, a recent increasing in the number of publications on medical gas therapies

clearly indicate that there are significant opportunities for use of gases as therapeutic tools for

a variety of disease conditions. In this article, we review the recent advances in research on

medical gases with antioxidant properties and discuss their clinical applications and

therapeutic properties.
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Introduction

The use of medical gases to treat oxidative stress is an

exciting and evolving therapeutic possibility. Oxidative

stress is the process of cellular injury caused by excessive

levels of reactive oxygen species (ROS). ROS are highly

reactive, unstable molecules generated during a variety of

energy-generating biochemical reactions and cellular

functions. ROS function as necessary signaling molecules,

critically modulate the activation of the immune system and,

thus, participate in antibacterial defense [1]. However, when

ROS formation is unbalanced in proportion to protective

antioxidants, the excess ROS can cause toxic effects that

damage all components of the cell including lipids, proteins,

and DNA and ultimately lead to cell death. Antioxidants

prevent oxidant formation or scavenge the ROS produced

under conditions of oxidative stress by binding and inacti-

vating them. Most antioxidants are electron donors and react

with ROS, which are free radicals, to form innocuous end

products, such as water.

The primary sources of oxidative injury include super-

oxide anion (·O2
−) and hydrogen peroxide (H2O2), which

undoubtedly play important roles; however, these species

also produce highly reactive hydroxyl radicals (·OH) and

peroxynitrite (ONOO−) through the Haber-Weiss or Fenton

reactions [2, 3]. Oxidative stress resulting from an imbalance

between pro-oxidant and antioxidant systems, has been

implicated in many diseases including cardiovascular dis-

ease, cancer [4], chronic inflammatory disease [5], hyper-

tension [6], ischemia/reperfusion injury [7], acute respira-

tory distress syndrome (ARDS) [8], and neurodegerative

diseases such as Parkinson’s disease and Alzheimer’s

disease [9, 10], as well as in aging [11]. Exogenous admin-

istration of antioxidants has been utilized as a therapeutic

approach and there is evidence that antioxidants protect

against oxidative stress and prevent the pathological pro-

cesses of a wide range of diseases.

Medical gases are pharmaceutical gaseous molecules

which offer solutions to medical needs. They include tradi-



A. Nakao et al.

J. Clin. Biochem. Nutr.

2

tional gases, like oxygen and nitrous oxide, as well as gases

with recently discovered roles as biological messenger

molecules including nitric oxide, carbon monoxide and

hydrogen sulphide. In this article, we will review recent

advances and current knowledge pertaining to antioxidant

medical gases including the three gaseous signaling mole-

cules (nitric oxide, carbon monoxide and hydrogen sulphide),

as well as hydrogen, xenon and ozone. Additionally, we will

discuss their clinical applications and therapeutic properties

(Table 1). These gases may be toxic, hazardous or poisonous

at a higher concentration, however; they are safe and poten-

tially therapeutic at lower concentrations. Medical gases

can be administered in a straightforward way simply by

providing the gas for the patients to inhale using a ventilator

circuit, facemask, or nasal cannula. While there are a variety

of delivery systems presently in use and even more under

development, the basic design and goal of each system is to

provide safe gas delivery and precision gas analysis or

monitoring. In addition to the development of safe devices

for inhaled medical gas, potential clinical application may

include a parenteral injectable or a drug containing a gas-

releasing moiety. Medical gas therapy is a relatively

unexplored field of medicine; however, a recent increase in

publications in the medical gas field clearly indicates that

there are significant opportunities for the use of medical

gases as therapeutic tools [12, 13].

Nitric Oxide (NO)

Nitric oxide (NO) is a colorless and poisonous gas which

is generated by automobile and thermal power plants and

causes a serious air pollutant. NO concentration in unpol-

luted air is approximately 0.01 parts per million (ppm). NO,

together with NO2, participates in damage of ozone layer by

absorbing high frequency ultraviolet light from the sun.

However, NO is an important signaling molecule in the

Table 1. Antioxidant medical gas

nitric oxide carbon monoxode hydrogen hydrogen sulphide xenon ozone

formula NO CO H2 H2S Xe O3

color, odor colorless, a mild, 

sweet odor

colorless, 

odorless

colorless, 

odorless

colorless, smell 

like rotten egg

colorless, 

odorless

pale blue a sharp, 

cold, irritating odor

receptors heme proteins 

K/Ca channel

heme proteins 

K/Ca channel

unknown KATP channels N-methyl-D-

aspartate (NMDA)

not determined

flammable no no yes yes yes no

toxicity yes yes no yes yes yes

produced in 

mammalian 

cells?

Yes. From L-

arginine by nitric 

oxide synthase 

(NOS), or 

reduction of nitrite

Yes. Through 

heme 

degradation by 

heme oxygenase

No Yes. From L-

cysteine by CBS 

and CBE

No Yes. In the white 

blood cells and 

other biological 

systems

application 

except medical 

use

rare except 

medical use

industrial fuels analytical 

chemistry

light emitting 

devise

bleaching 

substances

effects for 

vessels

vasodilation vasodilation unknown vasodilation no change vasodilation

anti-apoptotic 

effects

yes yes yes yes yes yes 

(preconditioning)

anti-inflammatory 

effects

yes yes yes yes yes yes 

(preconditioning)

therapeutic 

human use

pulmonary 

hypertension, lung 

transplantation 

ARDS

not available decompression 

sickness in divers, 

breath test for 

mal-absorption

not available general anesthesia, 

medical imaging 

(133Xe)

cancers, chronic 

fatigue syndrome, 

infectious disease
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body of mammals and was named “Molecule of the Year” in

1992 [14]. Inhaled NO is a relatively new United States

Food and Drug Administration (FDA) investigational drug

and numerous facilities are involved in clinical trials utilizing

NO.

In normoxic conditions, NO is synthesized endogenously

from the amino acid, L-arginine, by nitric oxide synthase

(NOS). NO is also generated by the reaction of near-

physiological levels of nitrite with deoxyhemoglobin, a

nitrite reductase, along the physiological oxygen gradient

[15]. In hypoxic or acidotic conditions, NO is generated by

reduction of nitrite. Under these conditions of very low

tissue pH and oxygen tension, nitrite may be reduced to NO

by disproportionation (acid reduction) or by the enzymatic

action of xanthine oxidoreductase (XOR) (Fig. 1) [16, 17].

The half life of NO is measured in seconds and NO is

eliminated rapidly as nitrite and nitrate in urine. Nitrite is

also considered to have a role as an endocrine pool of NO

[18].

Blood vessel dilation is one of the most well-known

effects of NO. NO stimulates soluble guanylate cyclase

(sGC) and increases cGMP content in vascular smooth

muscle cells, resulting in relaxation of vascular tone and

vasodilation. Sildenafil (Viagra®), a selective inhibitor of

phosphodiesterase type 5 (PDE5) in vascular smooth muscle,

blocks the degradation of cGMP, leading to relaxation of

blood vessels by increasing levels of cGMP. This action of

sildenafil has been used for stimulation of erections

primarily by enhancing signaling through the NO pathway

[19]. People taking nitrate medications that are converted to

NO in the body, such as nitroglycerin, are contraindicated

for PDE5 inhibitor treatment due to the potential of

overstimulating the NO-cGMP pathway. In addition to its

vasorelaxative effect, NO has a complex spectrum of actions

including the regulation of platelet activity and the

preservation of the normal structure of the vessel wall. NO,

produced by endothelial nitric oxide synthase (eNOS) in

vascular endothelial cells, activates sGC and plays a key

anti-inflammatory role by inhibiting P-selectin expression

and leukocyte recruitment [20]. Thus, the actions of NO on

blood vessels may increase tissue blood supply and abate the

inflammatory response, leading to protection of the tissues

from oxidative insults.

NO abates oxidative injury via several mechanisms. NO

reacts with peroxy and oxy radicals generated during the

process of lipid peroxidation. These peroxy and oxy radical

adducts continue the chain reactions in lipid peroxidation,

resulting in compromised cell membranes [21]. The reac-

tions between NO and these ROS can terminate lipid

peroxidation and protect tissues from ROS-induced injuries

[22]. Through the Fenton reaction, hydrogen peroxide

oxidizes iron (II) and in the process generates an extremely

reactive intermediate (the hydroxyl radical) which then

carries out oxidations of various substrates [H2O2 + Fe2+ →

Fe3+ + OH− + hydroxyl radical (·OH)]. NO prevents hydroxyl

radical formation by blocking the predominant iron catalyst

in the Fenton reaction [2]. Furthermore, NO reacts with

iron and forms an iron-nitrosyl complex, inhibiting iron’s

catalytic functions in the Fenton reaction [23]. Treatment of

rat hepatocytes with NO imparts resistance to H2O2-induced

cell death by induction of the rate-limiting antioxidant

enzyme, heme oxygenase (HO)-1 [24]. In bacteria, NO

activates the redox-sensitive transcriptional regulator

protein (OxyR), resulting in the subsequent expression of

proteins protective against ROS [25]. In addition, NO

prevents the induction of some ROS-induced genes during

tissue injury such as early growth response-1 (Egr-1), which

activates a number of adhesion molecules and accelerates

oxidative tissue injuries [26]. Thus, multiple mechanisms

underlie the antioxidant properties of NO.

Identification of the cytoprotective abilities of NO to

mitigate oxidative injuries in many model systems led to

numerous formal studies that examined the effect NO on

human patients. Multiple single-center studies demonstrated

the ability of inhaled NO to improve the outcome of patients

Fig. 1. Biological NO production in human body.

NO is generated from L-arginine by inducible nitric oxide

synthase (iNOS) and endothelial NOS (eNOS). Alterna-

tively, NO is produced from diet-derived nitrates, which

are reduced to nitrite by bacteria in the alimentary tract.

At very low tissue pH and oxygen tension, nitrite may be

reduced to NO by the enzymatic action of xanthine

oxidoreductase (XOR). Also, physiological levels of

nitrite are reduced to NO by reaction with deoxyhemo-

globin, a nitrite reductase, in the along the physiological

oxygen gradient.
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with ARDS. NO inhalation was associated with a redistri-

bution of blood flow to well-ventilated areas in the lungs and

improved oxygen levels in the blood [27, 28]. On the other

hand, several studies showed that NO had no affects on

ARDS [27, 29]. Similarly, some studies advocate inhalation

of NO as a method to prevent graft injury due to ischemia/

reperfusion injury after human lung [30] and liver transplan-

tation [31], while others have demonstrated detrimental or

marginal effects [32–34]. Some of the adverse effects of NO

may be due to the formation of peroxynitrite (ONOO−), a

powerful pro-oxidant capable of causing organ injuries, by

reaction of NO with superoxide anion [35]. Thus, studies

examining the delivery of NO in experimental and clinical

studies have shown discrepant results. NO may be linked

both to protective and toxic effects after oxidative insults,

depending on NO levels, NO source, timing of NO

administration and the environment, suggesting a narrow

therapeutic window for NO administration in the treatment

of oxidative injuries [36].

Carbon Monoxide (CO)

CO occurs in nature as a product of oxidation or

combustion of organic matter. CO is an invisible, chemically

inert, colorless and odorless gas and is commonly viewed

as a poison. CO avidly binds to hemoglobin and forms

carboxyhemoglobin (COHb) with an affinity 240 times

higher than that of oxygen, resulting in interference with the

oxygen-carrying capacity of the blood and consequent tissue

hypoxia. COHb levels of 10–30% can cause headache,

shortness of breath and dizziness, and higher levels (30–50%)

produce deleterious toxicity, such as severe headache,

vomiting, syncope and arrhythmia, possibly death [37].

Thus, CO is widely known to be toxic at high concentra-

tions.

Similar to NO, the gaseous molecule CO is endogenously

and physiologically generated in mammalian cells via the

catabolism of heme in the rate-limiting step by heme

oxygenase (HO) systems [38]. Catabolism of heme by HO-1

is highly induced in a variety of tissues in response to

diverse stress-related conditions [39], and provides general-

ized endogenous cytoprotection [40]. The specific mecha-

nisms by which HO-1 can mediate endogenous cytoprotec-

tive functions are not clear, but byproducts generated during

the heme catabolism such as CO, iron and biliverdin, have

been suggested as potential protective mediators [41, 42].

In fact, CO, generated by HO-1 or exogenously admin-

istered, has beneficial biological and physiological func-

tions. Potent therapeutic efficacies of CO have been demon-

strated using experimental models for many conditions,

including paralytic ileus [43], hemorrhagic shock [44],

hyperoxic lung injury [45], and endotoxiemia [46],

supporting the new paradigm that, at low concentrations,

CO functions as a signaling molecule that exerts significant

cytoprotection.

Several possible mechanisms have been postulated to

explain the antioxidant effects of CO. CO binds to the heme

moiety of mitochondrial cytochrome c oxidase and substan-

tially decreases mitochondria-derived ROS [47, 48].

Additionally, this inhibition of mitochondria-derived ROS

can result in low level ROS generation and trigger adaptive

responses and cell survival, a novel mechanism to explain

redox signaling by CO [49–51]. The strong affinity of CO

for the heme moiety of other heme-containing proteins

(referred to collectively as heme proteins) may also account

for the antioxidant effects afforded by CO. During

hemorrhage, hemolysis, or ischemia/reperfusion injury,

damaged heme proteins are prone to degrade and release

heme, which is highly lipophilic and detrimental. Heme can

directly induce tissue injury by rapidly promoting peroxida-

tion of the lipid membranes of the cells [52, 53]. Further-

more, free heme derived from degraded heme proteins

during cellular injury is implicated as the source of catalytic

iron that would participate in the Fenton reaction, converting

H2O2 to more reactive hydroxyl radicals and promoting

severe tissue damage by propagating lipid peroxidation. CO

may prevent the degradation of heme proteins by binding to

the heme moiety.

Cytochrome P450s (CYP), a large group of heme proteins

which are abundant in many organs, are prone to degrada-

tion and the release heme and iron and play a critical roles

during organ injury by various insults (Fig. 2) [54–62].

Recently, our group demonstrated that CO in the organ

preservation solution used during transplantation can bind

to and stabilize renal CYP and prevent CYP degradation

and detrimental heme/iron release in renal grafts. This

resulted in potent protection from transplant-induced

ischemia/reperfusion injury [63]. Syngenic orthotopic kidney

transplantation (KTx) with 24 h cold ischemia in UW

solution (Viaspan®, Du Pont, Wilmington, DE) was per-

formed using inbred male LEW (RT.1l) rats. The excised

graft was flushed with and preserved in UW or CO-

supplemented UW (CO content; 40.6 ± 1.6 μmol/L). The

graft functions treated in UW with CO showed better renal

functions and fewer inflammatory events. The grafts stored

in control preservation solution exhibited a markedly

decreased total CYP levels in rat kidney 3 h after reperfu-

sion, indicating CYP degradation during ischemia/reperfu-

sion injury [63]. In contrast, the grafts stored in UW with CO

maintained CYP enzyme at the levels comparable to those

seen in normal kidney [63]. These data indicate that ex vivo

organ-targeted CO delivery during cold storage prevents

CYP breakdown during the ischemia/reperfusion process.

In addition to its oxidative abilities, described above, free

heme activates vascular endothelial cells and upregulates

adhesion molecules such as intercellular adhesion molecule
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(ICAM)-1 and E-selectin. These heme-induced adhesive

events cause massive cellular infiltration and increased

vascular permeability, contributing to the pathogenesis of

local inflammatory processes by induction of monocyte

chemoattractant protein (MCP-1) and nuclear factor (NF)-

kappaB [64]. To cope with the problems caused by high

free heme concentrations, the body is equipped with various

defense mechanisms, namely the HO system. CO treatment

can induce HO-1 in cells to protect against injury [65–67].

Thus, a detrimental excess of heme can be immediately

removed by HO-1 enzymatic activity, induced by CO. The

adverse effects of inhaled CO are a major concern for

clinical use. CO combines with hemoglobin, interferes with

the oxygen-carrying capacity of the blood and leads to tissue

hypoxia. Soluble forms of CO, such as CO-releasing

molecules, may overcome this problem and allow clinical

application [68, 69]. Currently, several human clinical trials

are ongoing for various pathophysiologic disease states

testing the therapeutic effects of inhaled CO administered at

concentrations similar to those used in animal transplanta-

tion models [70, 71]. A recent study demonstrated that the

application of CO to animals at low concentrations approxi-

mating cigarette-smoke exposure caused no apparent lung

pathology [72]. However, Myer et al. failed to obtain similar

anti-inflammatory effects of CO in a human endotoxemia

model as were seen in small and large animal experiments

[71]. These discrepancies may be attributed to species-

specific differences in the affinity of CO for hemoglobin, or

physiological differences such as respiratory rate and

sensitivity to lipopolysaccharides (endotoxins) [73, 74].

Hydrogen (H2)

Hydrogen (H2) is the lightest and most abundant of

chemical elements, constituting nearly 90% of the universe’s

elemental mass. In contrast, earth’s atmosphere contains

less that 1 ppm of hydrogen. In concentrations over 5%,

hydrogen can form explosive mixtures with air, as typified

by the 1937 Hindenberg Zeppelin disaster. Although

hydrogen is known to be highly flammable and to violently

react with oxidizing elements, it is noteworthy that hydrogen

has no risk of explosion at concentrations less than 4.6%

(Safety and Standard for hydrogen and hydrogen systems;

National Aeronautics and Space Administration “NASA”,

1997). Hydrogen has wide applications in physics and

engineering. As hydrogen is a highly potent energy source,

the industrial use of hydrogen is expanding, such as the use

of hydrogen fuel cells for zero-emission vehicles.

In fact, hydrogen is physiologically and continuously

produced in our body during fermentation of non-digestible

carbohydrates, primarily in the large intestine, by numerous

strains of intestinal bacteria and is excreted as flatus, further

metabolized by flora or exhaled as a natural component of

abdominal gas [75, 76], the basis for the routinely-used

hydrogen breath test for gastrointestinal transit [77, 78].

Increased excretion of hydrogen in the breath after

carbohydrate ingestion is considered a consequence of

bacterial fermentation in the colon [79, 80]. Hydrogen gas

is routinely administered to divers as hydreliox, which

contains 49% hydrogen [81].

Gharib et al. reported that animals maintained in a

hydrogen-supplemented hyperbaric chamber were signifi-

Fig. 2. Hypothetic scheme for the binding of CO to the heme moiety of cytochrome P450.

Cytochrome P450 (CYP) proteins are susceptible to oxidative stress and are liable to degrade and release prooxidant heme

during cellular damage. CO may bind in the heme pocket of CYP and stabilize CYP, thereby prevent CYP degradation.
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cantly protected from schistosomiasis-associated chronic

liver injury [82]. Hydrogen treatment significantly increased

antioxidant enzyme activity, decreased lipid peroxide levels

and decreased circulating proinflammatory cytokine levels.

Consistent with this first report showing the antioxidant

effect of hydrogen, Ohsawa et al. demonstrated that inhaled

hydrogen gas (~4%) has antioxidant and anti-apoptotic

properties that can protect the brain against ischemia-

induced injury and stroke by selectively neutralizing the

detrimental ROS [83]. Hydrogen selectively reduces the

levels of hydroxyl radicals (·OH) mainly generated through

the Fenton reaction and peroxynitrite (ONOO−) in vitro

(Fig. 3). This report also suggests that hydrogen easily

crosses the brain-blood barrier and can be safely admin-

istered to human patients [81]. More recently, our group has

shown that hydrogen treatment ameliorates transplant-

induced intestinal injuries including mucosal erosion and

mucosal barrier breakdown. Perioperative inhalation of

2% hydrogen mitigated intestinal dysmotility following

transplantation and reduced upregulation of inflammatory

mediators, such as chemokine (C-C motif) ligand 2 (CCL2),

interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α.

Hydrogen significantly diminished lipid peroxidation

compared to air-treated grafts, as indicated by elevated

levels of malondialdehyde, a lipid peroxidation product, in

air-treated grafts demonstrating an antioxidant effect of

hydrogen [84]. Thus, treatment with hydrogen has several

potential advantages over current therapies used for

ischemia/reperfusion or oxidative injury.

The positive results of our experiments with CO inhala-

tion and hydrogen inhalation alone led us to conduct experi-

ments toward potentially more potent therapeutic gas

strategy combined CO and hydrogen. The rationale behind

this approach was based on our unpublished data and on

previous observations demonstrating several differences in

the biological actions of CO and hydrogen, even though both

ameliorate cardiac cold IRI [85, 86]. There is no chemical

reaction between CO and hydrogen at room temperature,

and the gases can be administered together safely. The

combined effects of CO and hydrogen were evaluated using

our established model of cold ischemia/reperfusion injury.

In this model, syngeneic heart transplantation (HTx) is

conducted from Lewis (RT1l) rats to Lewis rats with 18 h of

cold ischemic time in Celsior® (Pasteur Merieux Serums et

Vaccins, Lyon, France). HTx is performed into the abdomen

by anastomosing the graft aorta and recipient infrarenal

aorta and the graft pulmonary artery and recipient inferior

vena cava in an end-to-side manner [86, 87]. Myocardial

injury is evaluated by measurement of the ischemic area

of the grafts as visualized by 2,3,5-triphenyltetrazolium

chloride (TTC) staining 3 h after reperfusion [87, 88]. Cold

ischemia/reperfusion injury results in significant damage to

the cardiomyocytes. However, when both donor and

recipient were treated with mixed gas therapy with 250 ppm

of CO, 2% hydrogen in balanced air, the ischemic area was

significantly reduced, while either CO or hydrogen alone

did not significantly decrease the infarct area compared to

untreated controls (Fig. 4). These results suggested that dual

gas therapy with CO and hydrogen may have more potent

protective effects against cardiac cold ischemia/reperfusion

injury compared to single treatment.

Fig. 3. Hydrogen scavenges hydroxyl radicals.

Hydrogen selectively neutralize hydroxyl radicals

generated by the Fenton reaction.

Fig. 4. Hydrogen inhalation reduced ischemic area following

heart grafts with prolonged cold ischemia.

The extent of gross structural damage to heart graft was

evaluated by TTC staining 3 h after reperfusion. Normal

naïve hearts had negligible infarct area. The infarct area

was significantly reduced by dual-treatment with CO

and hydrogen, while either CO or hydrogen alone did

not significantly decrease the infarct area compared to

untreated controls. (NL; normal naïve heart, HTx: heart

transplant, n = 4–5 for each group, *p<0.05 vs HTx/air).
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Hydrogen Sulphide (H2S)

Hydrogen sulphide (H2S) is a colorless, toxic and

flammable gas. It is a naturally occuring gas found in

volcanic gases and some well waters and is also responsible

for the foul odor of rotten eggs and flatulence. Toxic effects

of hydrogen sulphide in humans include eye irritation,

shortness of breath, and chest tightness at concentrations

<100 ppm [89, 90]. Exposure to hydrogen sulphide at

>1000 ppm may cause severe adverse effects, ranging from

loss of consciousness to fatality [91]. Measurement of the

concentration of thiosulfate in blood and urine is useful for

determining hydrogen sulphide poisoning [92].

Hydrogen sulphide is endogenously synthesized from

L-cysteine, a product of food-derived methionine, by

cystathiononeβ-synthase (CBS) and cyctathione-γ-lyase

(CSE) (Fig. 5). Methionine adenosyltransferase (MAT)

converts methionine to homocystine. CBS catalyses the

homocystine to cystathionine conversion. CSE, subsequently,

converts cystathionine to L-cysteine. L-cysteine is further

metabolized to hydrogen sulphide by CBS and CSE [93, 94].

Hydrogen sulphide is produced normally in vertebrates, and

is believed to help regulate body temperature and metabolic

activity at physiological concentrations [95, 96]. Also,

hydrogen sulphide exerts physiological effects in the cardio-

vascular system of vertebrates, possibly through modulation

of K+-ATP channel opening or as a cellular messenger

molecule involved vascular flow regulation [97, 98]. Recent

studies have shown that hydrogen sulphide is a physiologic

gaseous signaling molecule, as are NO and CO [12].

Administration of hydrogen sulphide produced a

“suspended animation-like” metabolic status with hypo-

thermia and reduced oxygen demand in pigs (who received

it intravenously) [99] and mice (who received hydrogen

sulphide via inhalation) [100, 101], thus protecting from

lethal hypoxia. This hypometabolic state, which resembles

hibernation, induced by hydrogen sulphide may contribute

to tolerance against oxidative stress.

Some of the antioxidant effects of hydrogen sulphide can

be explained by its effects on cytochome c oxidase and

mitochondrial functions, while its effects on gene expression

may be related to actions on the the NFkB and extracellular

signal-regulated kinase (ERK) pathways [102]. Cardiac

protection from oxidative injury is, at least in part, due to the

ability of hydrogen sulphide to activate myocardial KATP

channels, although this is still being elucidated [103].

Whiteman et al. showed that hydrogen sulphide has the

potential to act as an antioxidant inhibitor of peroxynitrite-

mediated processes via activation of N-methyl-D-aspartate

(NMDA) receptors [104]. Kimura et al. revealed that

hydrogen sulphide can shield cultured neurons from oxida-

tive damage by increasing levels of glutathione, an anti-

oxidant enzyme [105]. Similarly, hydrogen sulphide can

induce upregulation of HO-1, anti-inflammatory and cyto-

protective genes [102, 106]. Hydrogen sulphide also inhibits

myeloperoxidase and destroys H2O2 [107] and can reduce

ischemia/reperfusion-induced apoptosis via reduction of

cleaved caspase-3 and cleaved poly (ADP-ribose) poly-

merase (PARP) [108]. Thus, multiple mechanisms may be

involved in the antioxidant properties of hydrogen sulphide.

Xenon

Xenon is a noble gas considered chemically inert and

unable to form componds with other molecules. Xenon is a

trace gas in Earth’s atmosphere, occurring at <0.001 ppm

and is also found in gases emitted from some mineral

springs. Xenon is not a “greenhouse gas” and,in fact, is

viewed as enviromentally friendly gas [109].

Xenon possesses anesthetic properties in animals and

humans [109–111]. Since Cullen first used xenon on human

patients in 1951, xenon has been successfully used in a

number of surgical operations [110]. Although the cost of

xenon has been too high to be used routinely in surgical

practice, xenon anesthesia systems are still being proposed

and designed for certain cases of patients, as xenon has

several advantages including greater circulatory stability,

Fig. 5. Enzymatic pathways for hydrogen sulphide production.

MAT; methionine adenosyltransferase, CBS; cystathiononeβ-

synthase, CSE; cyctathione-γ-lyase
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lower analgesic consumption, lower adrenaline levels and

better regional perfusion of individual organs [109, 112].

Xenon readily crosses the blood-brain barrier and has low

blood/gas solubility, which is advantageous for rapid inflow

and washout [113]. Human patients anaesthetized with

xenon show good cardiovascular stability and satisfactory

sedation [111]. Also, xenon inhalation had no measurable

effects on mesenteric vascular resistance in the propofol-

sedated pig [114].

In addition to its anesthetic properties, xenon has protec-

tive effects against cerebral ischemia [115]. Decreased blood

flow to the brain leads to neuronal death through necrotic

and apoptotic mechanisms, which are largely dependent on

the activation of the NMDA receptor [116]. Since xenon

effectively inhibits the NMDA receptor, the neuroprotective

effects of xenon may be at least partially due to this inhibi-

tion [115, 117–119]. Similarly, Abraini et al. showed that

xenon reduced ischemia-induced neuronal death induced by

occlusion of the middle cerebral artery in rodents, and

decreased NMDA-induced Ca2+ influx, a critical event

involved in excitotoxicity, in neuronal cell cultures [120].

Also, xenon has inhibitory effects on the Ca2+-ATPase pump

and interferes with the Ca2+ intracellular signaling pathway,

which might also be involved in the prevention of ischemic

injury [121].

There is evidence suggesting that brief exposure to xenon

prevents myocardial ischemia/reperfusion injury [122].

Although exact mechanism involved in prevention of

ischemia-induced myocardial injury are still not fully

elucidated, xenon significantly activates protein kinase C

(PKC)-epsilon and leads to phosphorylation of p38 mitogen-

activated protein kinase (MAPK). This signaling may

represent a central molecular mechanism for xenon’s

protective effects [122, 123]. Interestingly, other noble

gases, such as helium, neon and argon, have also been shown

to convey protection against cardiac ischemia/reperfusion

injury [124].

Ozone

Ozone is a triatomic molecule, consisting of three oxygen

atoms. Ozone is a pale blue gas with a sharp, cold, irritating

odor and is produced naturally by electrical discharges

following thunderstorms or ultraviolet (UV) rays emitted

from the sun. Ozone is present in low concentrations

throughout the Earth’s atmosphere; however, an ozone layer

exists between 10 km and 50 km above from the surface of

the earth and plays a very important role filtering UV rays

which is critical for the maintenance of biological balance in

the biosphere [125, 126]. Ozone gas has a high oxidation

potential and is used in as an antimicrobial agent against

bacteria, viruses, fungi, and protozoa. In particular, supple-

mentation of ozone into spas and hot tubs can reduce the

amount of chlorine or bromine required to maintain cleanli-

ness by reactivating chlorine and bromine to their free states.

Also, ozone is also widely used in treatment of water in

aquariums and fish ponds to minimize bacterial growth,

control parasites, and eliminate transmission of some

diseases. Ozone inhalation (0.1 to 1 ppm) can be toxic to the

pulmonary system and cause upper respiratory irritation,

rhinitis, headache, and occasionally nausea and vomiting.

Ozone, administered by rectal insufflation, prior to

ischemia/reperfusion injury, prevents the damage induced

by ROS and attenuate renal and hepaticischemia/reperfusion

injury [127–129]. It is postulated that ozone could prepare

the host to face physiopathological events mediated by ROS,

through NO-related mechanisms by modulating increases in

eNOS and iNOS expression [127, 130, 131]. In addition,

ozone has vasodilative effects without affecting any other

cardiopulmonary parameters [132]. Al-Dalain et al.

demonstrated that the ozone treatment improved glycemic

control and prevented oxidative stress in diabetic rats.

This study suggested that repeated administration of ozone

in non-toxic doses might play a role in the control of

diabetes and its complications [133]. Medical applications

of blood ozonation via extracorporeal blood oxygenation

and ozonation (EBOO) was found to be safe and effective

in treating peripheral artery disease in clinical trials [126,

134–136].

Conclusion

As highlighted above, the ability of medical gases to

ameliorate oxidative stress plays important roles at the

chemical, cellular and physiological levels. Although some

medical gases may cause serious adverse effects, there are

still many possible applications of these gases as therapeutic

tools for various diseases if the concentrations are tightly

controlled. The future of medical gas therapy must focus on

the establishment of safe and well-defined administration

parameters and on randomized controlled trials to determine

the precise indications and guidelines for the use of medical

gases in the treatment of various pathologies.
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