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ABSTRACT: Conventional heavy-weight oil and gas well cement systems formulated with barite exhibit high viscosities.
Additionally, the heavy-weight powder tends to settle, causing density variation and disruption in the porosity of the hardened
cement cores. Studies have shown that such problems can be mitigated by controlling the particle size distribution of the cement
system. The main objective of this study is to evaluate the effect of perlite powder particles on the fluid and hardened properties of
barite-based cement systems. Barite heavy-weight cement slurries containing 0, 1, 2, and 3% by weight of dry cement (BWOC) of
perlite powder were prepared. The rheological study was performed at a bottomhole circulating temperature (BHCT) of 150 °F and
ambient pressure. An ultrasonic cement analyzer (UCA) and a high-temperature—high-pressure (HTHP) curing chamber were used
to cure samples for 24 h at a bottomhole static temperature (BHST) of 292 °F and pressure of 3000 psi. Porosity measurements
were performed using the nuclear magnetic resonance (NMR) technique. The results indicate that the incorporation of perlite
powder into conventional barite-based heavy-weight cement slurry causes modifications in the properties of the systems. In general,
the plastic viscosity decreases, while the yield point and gel strength increase with increasing perlite concentration. The reduction in
plastic viscosity also reduces the pump pressure, while the increase in yield point and gel strength reduces particle sedimentation.
Additionally, the compressive strength and tensile strength of hardened cement increase, while the wait-on-cement time decreases.
NMR studies indicate that perlite reduces the porosity variation that exists in conventional barite-based cement systems due to the
formation of stable cement systems.

1. INTRODUCTION Yami et al."> proposed a new high-density cement formula
composed of two weighting materials, iron oxide and
manganese tetroxide, and other admixtures for use in gas-
bearing wells. The performance of the slurry evaluated as per
the standardized procedure improved when these weighting
materials were combined than being used individually in
formulations.

Saasen and Log'” studied the influence of dust collected
from the ilmenite processing plant on cement rheology. The
composition of the material suggested that it would have high
density and could be an alternative to barite; however, the

Oil-well cementing is a multipurpose operation, where cement
slurries prepared by admixing water, cement, and various
additives are pumped downhole to isolate producing intervals,
protect the casing, carry out remedial operations, control
circulation losses, or abandon the well."™
Various admixtures are used in the cement slurry to improve
its plastic and solid properties.’” Weighting materials are
additives with a specific gravity greater than that of cement.’
When the objective is to cement unstable and high-pressure
intervals such as those encountered in deep oil and gas wells,
weighting materials are used to increase the density of neat
cement systems to 17.5 ppg and above.”” '’ Commonly used Received:  November 23, 2020 8.
weighting materials include barite, manganese tetroxide, Accepted: January 29, 2021
ilmenite, and hematite. 012 Published: February 9, 2021
Research in the area of heavy-weight cement has been
focused on performance assessment of new weighting materials
and optimization of conventional heavy-weight systems. Al-
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findings suggested that the effect of the material on the flow
behavior of cement is unsatisfactory. Johnston and Senese'*
proposed a water-dispersible additive, with a density
comparable to that of hematite as a substitute weighting
material. The material was obtained as a residue in the
production of ferromanganese. Tests showed that the material
does not settle out. As indicated by the workers, the reduction
in sedimentation, cost-effectiveness, and ease of handling
makes this material a better alternative to hematite.

An evaluation of the impact of different weighting additives
on the properties of cement composite was performed by
Ahmed et al.” Different heavy-weight cement systems were
prepared at 18 ppg with iron oxide (hematite), ilmenite, and
barite. The study indicated that the ilmenite-based cement
system has less variation in density and, due to its small particle
size distribution, produced excellent results. The barite-based
cement, on the other hand, showed the most variation in
density and lowest strength. Al-Bagoury et al.® reported that
when the particle size of weighting materials is reduced,
settling-out is eliminated and the properties of the cement
system are enhanced. The authors studied the effect of
micronized ilmenite with a median size of S ym on slurry
behavior. It was observed that the small size of ilmenite
prevented settling and allowed for enhancement in rheology
and strength.

According to Caritey and Brady,15 in very high temperature
and pressure conditions, some heavy-weight additives (hem-
atite, manganese, and titanium oxides) become reactive,
adversely affecting the strength and permeability of the
hardened cement matrix. However, this phenomenon was
not observed with barite. Also, investigations have revealed
that the existing heavy-weight cement systems have poor
rheology.® Other challenges encountered in the use of
conventional heavy-weight cement systems include high solid
volume and high viscosity, making it difficult to blend and
pump them.'”"* Additionally, weighting materials disrupt
cement homogeneity as a result of settling.” When settling
occurs, the ability of the slurry to control gas migration
reduces.”’

The above discussions highlight the amount of research
work that has been done in search of stable heavy-weight
cement systems. The objective of the current study is to
investigate the effects of perlite, an aluminosilicate material, on
the stability, rheology, and strength of barite-based cement
systems.

1.1. Applications of Perlite in Cement and Drilling
Fluids. Perlite is a silica-based volcanic glass composed of high
moisture content, about 2—5%.'®'” When heated at temper-
atures in the range of 1650—1832 °F, the water vaporizes and
the rock pops, forming white popcorn-like shapes.'”~'" Its new
form, termed expanded perlite, is a lightweight material with
the pozzolanic property.'’~>' The incorporation of perlite in
cement-based composites improves workability and enhances
thermal insulation.””*® Besides its use in formulating low-
density cement systems,”"** perlite is also used as a bridging
agent in both mud and cement systems.”*~** According to a
study on the effect of perlite powder on filtration properties of
a barite-based mud system performed by Bageri et al,*® the
inclusion of the material increased the yield point and hence
the ability to effectively transport cuttings and reduced the
mud cake thickness and volume of the filtrate.

According to Al-Bagoury et al.,” the particle size of cement
admixtures is key in formulating a high-performance cement

4794

system. This study seeks to study the effect of perlite particles
on the properties of a barite-based cement system. It is a
recommended practice to undertake preliminary studies to
assess the impact of any additive on the plastic and hardened
properties of a cement system before field applications. The
testing procedure and properties such as rheology, wait-on-
cement (WOC) times, density variation, porositgr, and strength
would be investigated following API standards.””*°

2. RESULTS AND DISCUSSION

2.1. Effect of Perlite Powder on Rheological Behavior.
The rheological parameters plastic viscosity, yield point, and
gel strength of cement systems are presented in Figures 1-3,
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Figure 1. Plastic viscosity for barite-based cement.

respectively. The fluid viscosity is an essential property that
controls the pump pressure.’’ As observed in Figure 1, the
plastic viscosity of the barite-based system decreased with
increasing perlite concentration. The addition of 3% perlite
reduced the plastic viscosity by 39%. The addition of 1%
perlite had a lower viscosity than the 0% perlite system.

The yield point is a very important flow parameter. It
controls the attractive forces between particles and describes
the lowest stress needed to cause fluid deformation.””* A high
yield point is ideal as it improves the carrying capacity of the
slurry.34 However, this results in an increase in the initial pump
pressure as the yield point also indicates the force to overcome
to start a flow.” The yield point of the barite-based heavy-
weight cement slurries increased with increasing perlite
content (Figure 2). The yield point increased by about
242%, 531%, and 958% for 1%, 2%, and 3% additions,
respectively.

The gel strength, on the other hand, represents the ability of
the cement system to develop attractive forces under static
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Figure 2. Yield point for barite-based cement.
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conditions, and it controls fluid migration up the annulus.*®
The plot (Figure 3) shows that the gel strength increased with
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Figure 3. Gel strength for barite-based cement.

increasing perlite content. For instance, the cement composite
consisting of 3% perlite had an increase of 82% in the 10 s and
69.38% in the 10 min gel strength.

These results show that the addition of perlite powder to
barite cement systems results in the modification of rheological
behavior. The plastic viscosity decreases, while the yield point
and gel strength of the slurries increase with increasing perlite
concentration.

2.2. Effect of Perlite Powder on Strength. The UCA
helps monitor strength development with time, especially at an
early age. The 24 h compressive strength of the slurries is

shown in Figure 4. The experiment was conducted at a
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Figure 4. Uniaxial compressive strength.

bottomhole static pressure (BHST) of 292 °F and pressure of
3000 psi. The study showed that the addition of perlite powder
improved the compressive strength of set cement. The 24 h
sonic strength of the barite-based slurry increased from 48.05
MPa for 0% perlite powder to 59.38 MPa for 3% perlite
powder, representing a 23.58% increase in strength.

Figure 5 compares the tensile strength of the 3% perlite
systems to that of the control cement matrix. The
incorporation of perlite particles enhanced tensile strength.
The tensile strength of the base barite containing 0% perlite
was 3.31 MPa and that for the 3% perlite system was 4.75
MPa. The increase in mechanical properties can be attributed
to the extra cementitious materials produced through the
pozzolanic activity of perlite.”’

The time to achieve a compressive strength of 500 psi for
the slurries is presented in Table 1. This is the wait-on-cement
time, which indicates the time allowed for the cement to set
and develop sufficient strength to support the casing before
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Table 1. Wait-on-Cement Time (h/min) to Reach 500 psi

sample 0% perlite

5:22

3% perlite

barite-based slurry 4:58

drilling out the casing shoe.”” This time could vary from hours
to days depending on various conditions such as field practice
and depth of cement placement.’®” The addition of 3%
perlite powder to the barite slurry resulted in a general
reduction in WOC time.

2.3. Effect of Perlite Powder on Density Variation.
Figure 6 shows the contrast in density along with the vertical
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Figure 6. Densities of the top, middle, and bottom sections of
cylindrical cement samples.

orientation of cylindrical cement samples formed with the
slurries under study. These cores were demolded after curing
for 24 h under temperature and pressure conditions of 292 °F
and 3000 psi, respectively. Each core is represented by three
different sections: top, middle, and bottom. The density of
each section was computed after drying the sections to a
constant weight. The graph also shows the percentage of
density contrast between the top and bottom of each cement
core. The degree of density variation correlates with the
heterogeneity of the cement system. The lower the density
variation (DV) between the top and bottom of the cylindrical
cement cores, the more homogeneous the system.

The results indicate that the conventional barite system has
a high settling tendency (25%). This is because of high specific
gravity (4.48 g/cm®), which promotes particle sedimentation.
However, the percentage variation between the top and
bottom samples with 3% perlite powder decreased to 15%. It
was obvious that the harsh conditions of high pressure and
high temperature could weaken the performance of viscosity
additives, which led to a severe reduction in the suspension
capacity. Meanwhile, the capability of the perlite particles to
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adapt and expand in such conditions,”® in addition to their
strong dispersion in these conditions, inevitably sustained the
viscosity features (yield point) of the cement, thereby raising
the sag stability of the cement.

2.4. Effect of Perlite Powder on Porosity. The NMR
technique was used to evaluate the impact of the perlite
particles on porosity. The test was performed on 4 inch length
cylindrical cement cores. The cement cylinder was cut into
three sections (top, middle, and bottom) to assess the
deviation in the porosity through the cement column. The
NMR measurement of the middle section was used as a
reference sample for the other two sections.

The NMR pore size distribution function (PDF) and
cumulative distribution function (CDF) results of the 4 inch
length cement samples, 0% perlite (here tagged 0% PPA) and
3% perlite systems, are shown in Figure 7. Continuous lines
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Figure 7. NMR T, relaxation for 4 inch length cylindrical samples.

represent the PDF, while broken lines represent the CDF. The
porosity distribution after adding the perlite particles showed
only a slight increment in porosity, with a porosity of 29.7% for
the 0% perlite and 30.7% for the 3% perlite systems.

The difference between the PDF and CDF curves for the
three sections of the base cement sample (0% PPA) is
conspicuous, as shown in Figure 8, which presented the
difficulty of formulating the high-density cement with a stable
sagging index. This observation confirmed a large density
variation between these three sections of the base sample.
However, the incorporation of perlite reduced particle
sedimentation to a greater extent, Figure 9.
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Figure 8. NMR T, relaxation for the cement base sample (0% perlite)
at three different sections (top, middle, and bottom).
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Figure 6 shows that the heavy material accumulated in the
lower section and hence had a higher density compared to the
middle and top sections. As a result, the porosity of the bottom
section was lower than that of the other two sections. For the
control sample containing 0% perlite, the increase in the
porosity of the upper section with respect to the middle section
was 21.5%, while the reduction in the bottom section porosity
with respect to the middle section was 25.8%, as shown in
Table 2. This extreme difference between the three sections’

Table 2. Porosity Measurement Using NMR for the Top,
Middle, and Bottom Sections of the Cement Cylinder

difference in

porosity with
respect to middle
porosity % section
perlite concentration (%) 0 3 0 3
top section 59.56 35.69 21.57 4.89
middle section 37.99 30.80
bottom section 12.11 27.49 25.88 3.31

porosity was controlled by adding a 3% concentration of perlite
particles. The difference in the upper and middle section
porosities reduced significantly down to 4.9% as shown in
Table 2. Also, the percentage reduction in porosity for the
bottom section in comparison to the middle section was even
much lower (3.31%). These observations could be attributed
to the fact that adding a 3% concentration of perlite particles
promoted suspension and carrying capacity of cement as
proven earlier.

3. CONCLUSIONS

The effect of perlite powder on heavy-weight barite cement
was studied. The following conclusions are drawn.

1 The plastic viscosity of barite heavy-weight cement
decreased with increasing perlite powder concentration,
while the yield point and the gel strength increased.

2 The addition of perlite powder improved the compres-
sive strength of set cement. The 24 h sonic strength of
the barite-based slurry increased from 48.05 MPa for 0%
perlite powder to 59.38 MPa for 3% perlite powder,
representing a 23.58% increase in strength.

3 The wait-on-cement time decreased with the addition of
petlite powder.
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Table 3. Elemental Composition of Raw Materials (wt %)

samples Na Al Cl Ca Ti Si S K Fe Ba
barite 1.96 5.18 15.84 1.34 0.97 69.36
cement 2.16 74.06 0.31 12.52 9.71
perlite 10.31 1.74 0.53 58.73 1.95
silica flour 0.61 0.27 0.14 98.84 0.06
4 Perlite particles reduced the settling tendencies of barite Table S. Mix Proportions
powder due to its improvement in viscosity, yield point, '
and gel strength. component names BWOC (%) weight (gm)
cement class G 100 600
4. MATERIALS AND METHOD siica flour SSA-1 3 210
. . weighting material barite 32.87 197.22
Heavy-weight cement slurry was prepared with Class G fuid Toss Halad-413 0.5 3
cement, silica flour, barite, and perlite. Table 3 shows the dispersant CFR-3 025 L5
elemental composition of these materials. The key elements in retarder H12 LS 9
barite are barium, sulfur, and silicon. A small amount of water distilled water 44 264
potassium, aluminum, and iron is also present in the barite defoamer D-Air 3000L 470 X 107 2.82 % 10°
particles. Class G cement contains about 74 wt % calcium and new material perlite 0 0
a substantial amount of silicon and iron. Silicon and aluminum 1 6
are the major elements in perlite, while silica flour is 5 12
predominantly silicon. 3 18
The plots of particle size distributions (PSDs) of the raw
materials are shown in Figure 10. The median size values, Dy,
Bl el i ot S determined at 150 °F and ambient pressure conditions using a
2 Grace M3M600 viscometer and M3600DAQ _software.
» 100 An ultrasonic cement analyzer (UCA) and a high-temper-
g o ature—high-pressure (HTHP) curing chamber were used to
cure samples for 24 h at a bottomhole static temperature
g & P S (BHST) of 292 °F and pressure of 3000 psi for compressive
§ © 200 Dy = 15.60 pum strength analysis. The tensile strength, porosity, and settling of
g ‘ Dso = 25.45 pum the weighting materials were measured using the hardened
» | cylindrical cement cores.
0 = = Yvivl e The porosity and pore size distribution of the cylindrical
! 0 particeize, um 1 100 cement plugs were measured using a low-magnetic-field (2
MHz) NMR relaxometry system “Geospec rock analyzer” from
Figure 10. Particle size distribution of raw materials. Oxford instruments, United Kingdom. In NMR relaxometry,
the surface relaxation time, T, (ms), of the fluids saturating a
porous medium was correlated with the pore size. The NMR
signal coming from the saturated medium decreased
Table 4. Summary of PSD exponentially with time.
pE—— prr—— — cement perlite A Laplace inversion of the exponential decay function will
’ give the probability density function (PDF) of the T, values in
Dso 1244 15.60 2545 419 the porous medium. Each T, value has a one-to-one
correspondence with the pore sizes in the medium such that
the PDF of T, represents the pore size distribution of the
used to characterize the powders are given in Table 4. The porous medium. The cumulative density function (CDF) plot
figure and table show that silica flour has the smallest size is a summation of the different pores’ volume (or porosity) and
distribution with a median value of 12.44 ym, while perlite has peaking at a value reopresenting the total porosity or pore
coarse grains with a median size of 41.9 ym. The Dy values for volume of the rock.”” The pore size distribution function
barite and Class G cement are 15.6 and 25.45 pm, respectively. (PDF) and cumulative distribution function (CDF) of the
In this study, barite-based heavy-weight cement systems cement sample were measured at three different sections (at
were prepared with 0, 1, 2, and 3% of perlite powder. The the top, middle, and bottom) to compare the porosity
cement, silica flour, and weighting material were dry-mixed and homogeneity through the same sample.
added to the water phase containing a fluid loss additive,
retarder, and defoamer. The mix was admixed within 15 s while B AUTHOR INFORMATION
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