
RESEARCH ARTICLE

Ischemic stroke in PAR1 KO mice: Decreased

brain plasmin and thrombin activity along

with decreased infarct volume

Efrat Shavit-Stein1,2☯*, Ekaterina Mindel1,3☯, Shany Guly GofritID
2, Joab Chapman1,2,3,4,

Nicola Maggio1,2,5

1 Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel, 2 Department

of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel, 3 Department of Physiology and

Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel, 4 Robert and Martha Harden

Chair in Mental and Neurological Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel,

5 Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel

☯ These authors contributed equally to this work.

* efrat.shavit.stein@gmail.com

Abstract

Background

Ischemic stroke is a common and debilitating disease with limited treatment options. Prote-

ase activated receptor 1 (PAR1) is a fundamental cell signaling mediator in the central ner-

vous system (CNS). It can be activated by many proteases including thrombin and plasmin,

with various down-stream effects, following brain ischemia.

Methods

A permanent middle cerebral artery occlusion (PMCAo) model was used in PAR1 KO and

WT C57BL/6J male mice. Mice were evaluated for neurological deficits (neurological sever-

ity score, NSS), infarct volume (Tetrazolium Chloride, TTC), and for plasmin and thrombin

activity in brain slices.

Results

Significantly low levels of plasmin and thrombin activities were found in PAR1 KO compared

to WT (1.6±0.4 vs. 3.2±0.6 ng/μl, p<0.05 and 17.2±1.0 vs. 21.2±1.0 mu/ml, p<0.01, respec-

tively) along with a decreased infarct volume (178.9±14.3, 134.4±13.3 mm3, p<0.05).

Conclusions

PAR1 KO mice have smaller infarcts, with lower thrombin and plasmin activity levels. These

findings may suggest that modulation of PAR1 is a potential target for future pharmacologi-

cal treatment of ischemic stroke.
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Introduction

Stroke is a common disease, caused by acute deprivation of oxygen and nutrients to tissue due

to ischemia or hemorrhage. The lifetime risk for stroke is 25% [1], and it is the fifth leading

cause of death in the United States [2], making it a major burden on the healthcare system.

Clinical presentation of stroke differs according to the affected brain region. Rapid recognition

of its clinical signs is necessary for immediate treatment and consequent recover of brain tis-

sue. Thrombolysis is the major pharmacological treatment to be administered in the early

phase of the disease, up to 4.5 hours of symptoms onset [3]. Endovascular intervention is an

additional therapeutical approach in selected cases [4]. Thrombolysis is achieved with the use

of recombinant tissue-type plasminogen activator (rtPA) aimed to generate plasmin as part of

an induced fibrinolysis process. Given in the appropriate therapeutic time window, this treat-

ment achieves good outcome in about 33% of the patients, with 10% disability free survival

rates 3–6 months following treatment [5]. The relatively limited treatment options call for fur-

ther evaluation of the molecular mechanisms involved in neural damage processes following

ischemia.

The coagulation proteins have been recognized as central players in the modulation of the

neural function in health and disease [6, 7]. Protease activated receptor 1 (PAR1) is activated

by a number of serine proteases, including thrombin plasmin and FXa [8], and is their main

cell signaling mediator in the central nervous system (CNS). Following ischemia, levels of

thrombin rise in correlation with infarct volume in the ischemic hemisphere [9, 10]. A rise in

the levels of thrombin activity is followed by a reduction in PAR1 levels; this process dynami-

cally increases for hours after the insult [11]. Continuous elevation of thrombin activity levels

indicates that this process is initiated by coagulation and hypoxia, but is continued due to

other factors [12]. The zymogen plasminogen is present in the brain under physiological con-

ditions, and it is involved in brain development [13]. When tPA binds to fibrin in a blood clot,

it converts plasminogen into plasmin. The latter is also known to induce neuronal death [14].

The chemoattractant monocyte protein 1 (MCP-1) requires processing by plasmin for its acti-

vation, and therefore, lack of functioning plasmin reduces microglia induced damage [15].

Altogether this supports the existence of a fine balance between plasmin positive effect in clot

lysis and its negative cellular effects on brain tissue. Recently, we have found increased plasmin

activity in the brain following ischemia [16], which correlates with an increase in infarct size.

Previously, published data indicate the possible protective effects of PAR1 modulation in the

setting of ischemic stroke. When PAR1 is silenced (by either PAR1 antagonists or by knockout

(KO)) the volume of damaged tissue caused by transient focal ischemia is significantly reduced

[17]. The protective effect of PAR1 inhibition is further supported in models of PAR1 knock

down and KO [18, 19], with reduced neurological deficits, and lower stroke volume. Further-

more, in contrast to the destructive effect of high thrombin levels, low levels of thrombin are

protective against ischemic brain damage [20, 21]. This protective effect disappears in PAR1

KO mice [22], suggesting that PAR1 involvement in stroke pathogenesis is part of a complex

modulation process. PAR1 has been suggested as a therapeutic target for stroke and specific

antagonists have been used in clinical studies [23, 24], however their effectiveness vs. side

effects have not yet been well established. Furthermore, the PAR1 antagonist vorapaxar is cur-

rently contraindicated in stroke patients. Due to the absence of PAR1 on WT mice platelets,

the PAR1 KO mouse model allows for the differentiation between the neural and coagulation

effects of PAR1. Thus, measurements of thrombin and plasmin 24 hours following experimen-

tal ischemic stroke in this model may indicate the role of neural PAR1 on stroke severity.

In the present study, we evaluated the role of PAR1, thrombin and plasmin activity levels in

neural damage following permanent focal cerebral ischemia in PAR1 KO mice. Using a novel
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sensitive method for a direct quantitative measure of plasmin or thrombin activity in fresh

brain slices. The infarct volume following ischemia was reduced in PAR1 KO mice together

with reduced plasmin and thrombin activities. These observations may shed light on the

potential role of plasmin, thrombin and PAR1 in the brain function and neurological outcome

following ischemic stroke and may suggest a combined therapy targeting this pathway.

Methods

Animals

The study was carried out on 10-weeks-old (23–30 gr) male C57BL/6J mice (WT, Envigo,

Israel) and male PAR1 KO C57BL/6J (PAR1-/-) background mice (a generous gift of Prof. Yair

Reisner, the Weizmann Institute of Science, Rehovot, Israel). Animal handling and experi-

ments were approved and performed in accordance with the Animal Care and Use Committee

of the Chaim Sheba Medical Center (#1026/10/ANIM), which adhere to the Israeli law on the

use of laboratory animals and according to the ARRIVE Guidelines. All animals were main-

tained in a controlled animal facility at 18–22˚C and 40–60% humidity, with a photoperiod of

12 hours dark/12 hours light. Animals were allowed free access to water and food before and

following surgery. Genotyping for PAR1 KO was performed by polymerase chain reaction,

using WT mice as reference. During the establishment of the colony establishment, the health

measures of the mice were monitored twice a week (weight, mobility, ability to move freely

around the cage and the condition of the fur). Loss of a 15% of body weight was considered a

humane endpoint (no weight loss was documented in this cohort). Exclusion criteria included

massive bleeding and/or intracerebral hemorrhage during the procedure as described below.

Two hours and 24 hours following the procedure the animals underwent a neurological evalu-

ation by an investigator blinded to the experiment groups. Mice were scored using a five-point

Neurologic Severity Scores (NSS) as described by Longa et al [25]. NSS was defined as follows:

0-no neurologic deficit; 1-failure to fully extend left forepaw; 2-circling to the left; 3-falling to

the left; 4-do not walk spontaneously and have depressed level of consciousness. In line with

the animal welfare guidelines in our institution, in order to minimize suffering, moribund sub-

jects must be sacrificed. During the hours following the induction of permanent MCA occlu-

sion, we repeatedly examined the mice and sacrificed those animals which were moribund

(equivalent to a score of 4 on the NSS). These animals were therefore not available for analysis

24 hours after the procedure. Mice who had NSS of 4 were sacrificed using 100 μl pentobarbital

(200 mg/ml) by intraperitoneal administration. Data of excluded animals (n = 16) were pulled

for the nearest time-point NSS analysis. Number of sacrificed animals is in line with the mor-

tality known in this model, which is approximately 20–40% [16]. Animals that survived follow-

ing the procedure and were not sacrificed due to exclusion criteria (WT = 19/25; PAR1

KO = 13/23) were sacrificed following 24 hours and were randomly assigned to the experimen-

tal groups.

Permanent middle cerebral artery occlusion (PMCAo) mouse model

PMCAo model with a monofilament suture was performed as previously described [9, 26, 27].

Anesthesia was performed with 2.5% isoflurane mixed in oxygen and delivered through a face-

mask. A silicone-coated filament (Doccol Corp, Redlands, CA, USA) was inserted through a

small hole in the right external carotid artery. The filament was carefully advanced up to 11

mm from the carotid artery bifurcation. Throughout the procedure, the mouse’s body temper-

ature was maintained at 37˚C with the aid of a heating pad (F.S.T., CAT# 21061–90, USA). Fol-

lowing surgery, 1 ml of saline was injected by subcutaneous administration into the loose skin
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over the intrascapular [28]. The mice were kept in a lamp-heated chamber for 2–5 hours,

according to the experimental setting [29].

Plasmin and thrombin activity assays

Plasmin and thrombin activities in brain slices were measured as previously described [9, 16].

Following sacrifice, the brain was removed and placed in a steel brain matrix (1 mm, Coronal,

Stoelting, IL, USA). First, the brain was cut into sagittal sections in its midline separating the

non-ischemic and ischemic hemispheres. Then, each hemisphere was cut into 9 coronal slices

(starting at slice number (no.) 3, 2 mm anterior to the bregma). Analyses were conducted on

slices 3–8. The slices were placed in 96-well black microplate. Plasmin activity: prior to fluores-

cence signal reading, the plates were pre-treated by incubation while shaking for 90 minutes at

37˚C in Thermo Shaker (MB100-4P), in order to allow penetration of the high molecular

weight inhibitor α2-antiplasmin. Following this pre-treatment, a fluorometric assay measuring

the cleavage of synthetic peptide substrate Boc-Val-Leu-Lys-peptidyl-7-amino-4-methylcou-

maryn (AMC) (15 μM, I-1115, Bachem, Switzerland) was conducted, and defined by the linear

slope of the fluorescence intensity versus time [30]. The specific plasmin activity was calculated

by subtraction of the mean activity measured in the presence of α2-antiplasmin (3.6 mM,

SRP6313, Sigma-Aldrich, Israel) from the total activity in the absence of this specific inhibitor.

Thrombin activity: using the fluorogenic substrate, Boc-Asp(OBzl)-Pro-Arg-AMC (14 μM, I-

1560, Bachem, Switzerland) a linear slope of the fluorescence intensity versus time was defined.

The specific thrombin activity was measured in the presence of Bachem defined substrate

buffer, 0.1% BSA, 0.1 M bestatin and 0.2 mM prolylendopeptidase inhibitor. In order to dem-

onstrate that the measured signal represents thrombin activity, NAPAP (1 μM), a specific

thrombin inhibitor, was added to the microplate. For calibration, known concentration of

human plasmin and bovine thrombin (P1867, T-4648, respectively, Sigma-Aldrich, Israel)

were used in duplicates in the same assay. Measurements were performed by the Infinite 2000

microplate reader (Tecan, infinite 200, Switzerland) with excitation and emission filters of 360

±35 nm and 460±35 nm, respectively. Other parameters were kinetic cycles, 25; interval time,

2 minutes; integration time, 20 μs; lag time, 0.

Calculation of infarct volume

Infarct volume was measured as previously described [16]. Briefly, immediately following the

plasmin activity assay, brain slices were placed in 2% Tetrazolium Chloride (TTC) solution for

30 minutes. Next, the slices were fixed by 4% formaldehyde for 30 minutes and mounted on

microscope slides and scanned (1,200 dpi resolution). The area of the lesion, as identified by

reduced TTC staining, was manually traced and calculated using ImageJ (NIH), a Java based

image processing program. The calculation included correction for brain edema by subtract-

ing the area of normal tissue in the ischemic hemisphere from the total area of the non-ische-

mic hemisphere [31].

Statistical analysis

Sample size was based on previous studies, with appropriate modifications [9]. Data are pre-

sented as dot plots and mean ±SEM. When comparing two groups, the difference was deter-

mined by two-tail unpaired t-test with Welch’s correction. In the case of more than two

groups we preformed one-way analysis of variance (ANOVA) with Tukey post hoc analysis.

For plasmin activity and infarct analysis as a function of the distance from the ischemic core,

two-way ANOVA with Sidak’s post hoc analysis was performed. Statistical significance was
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determined as p value<0.05. Analysis and figures preparation were performed with Graphpad

Prism (Version 8.0.1, GraphPad Software Inc., San Diego, CA).

Results

Decreased infarct volume in PAR1 KO mice

Total infarct volume at 24 hours following ischemia was calculated by summation of infarct

volumes measured in each slice, in animals with neurologic severity score (NSS)<3. In total,

the NSS scores included WT = 25 and PAR1 KO = 23 mice. Animals with an NSS of 4 were

excluded from the following study and are included only in Fig 1A. Though no significant dif-

ferences were found in mortality rates and NSS between WT and PAR1 KO mice (NSS evalua-

tion at 2 hours, 1.4±0.1, 1.6±0.2, respectively, p = 0.8, and at 24 hours, 1.96±0.2, 2.54±0.3,

Fig 1. Preserved NSS at 2 and at 24 hours following ischemia and decreased infarct volume in PAR1 KO mice 24 hours following ischemic stroke.

(A) There was no significant difference between NSS scores in WT (black circles) compared to PAR1 KO (gray circles) mice at 2- and 24-hours

following ischemia (mixed model analysis, with Sidak’s post-hoc analysis. 2 hours: WT = 25, PAR1 KO = 23, 24 hours: WT = 25, PAR1 KO = 22). (B)

Representative images of TCC staining brain slices of WT (left panel) and PAR1 KO (right panel), including slices 3#-8#. (C) Total infarct volume is

significantly lower in PAR1 KO mice compared to control (t-test, WT = 6, PAR1 KO = 6). (D) Infarct volume decreases as a function of distance from

the ischemic core (slices #5&6). Infarct volume is lower in all PAR KO slices compared to WT mice (two-way ANOVA with Sidak’s post-hoc analysis,

WT = 6, PAR1 KO = 6). Results are presented as dot plot individual values and mean±SEM, �p<0.05.

https://doi.org/10.1371/journal.pone.0248431.g001
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p = 0.08, Fig 1A), the infarct volume was significantly lower in PAR1 KO mice compare to WT

(representative TCC staining slices Fig 1B, 178.9±14.3, 134.4±13.3 mm3, respectively, p<0.05,

Fig 1C). Two-way ANOVA (animal type, infarct size) with repeated measures (distance from

the core) was calculated. Using a post-hoc analysis for multiple comparisons showed that a dif-

ference in each separate slice compared (ischemic penumbra in slices #4&7: 43.2±3.4, 53.8

±3.03 mm3, respectively, p = 0.12; slices #3&8: 29.7±4.6, 34.9±5.4 mm3, respectively, p = 0.68)

and reached statistical significance in the ischemic core (slices #5&6, which corresponded to

the infarct core, 51.5±3.9, 67.3±1.2 mm3, respectively, p<0.05, Fig 1D).

Decreased plasmin activity in PAR1 KO and association with infarct

volume

Plasmin activity following permanent middle cerebral artery occlusion (PMCAo) was mea-

sured in each slice, and summed up separately in each hemisphere. Plasmin activity in the

ischemic hemisphere was elevated in both WT and PAR1 KO mice. However, activity levels

were significantly lower in the PAR1 KO mice compared to WT (1.6±0.4, 3.2±0.6 ng/μl,

respectively, p<0.05, n = 6, Fig 2A). Measurements of plasmin activity levels in each slice

Fig 2. Decreased plasmin activity levels in PAR1 KO mice at 24 hours following ischemia. (A) Total plasmin activity levels were significantly lower

in the ischemic hemisphere of PAR KO mice compared to WT (t-test). (B) Plasmin activity measurements by slice number show an elevation closer to

the infarct core in WT and PAR1 KO mice (two-way ANOVA with Sidak’s post-hoc analysis). (C) Total plasmin activity levels in the non-ischemic

hemisphere were undetectable in PAR1 KO mice compared to WT (t-test). (D) Spatial dispersion was present in the non-ischemic hemisphere as well

(two-way ANOVA with Sidak’s post-hoc analysis). N = 6, results are presented as dot plot individual values and mean±SEM, �p<0.05, ��p<0.01.

https://doi.org/10.1371/journal.pone.0248431.g002
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separately showed spatial dispersion, with higher levels at the ischemic core, and with lower

plasmin activity levels in all the PAR1 KO slices (F(8,90) = 3.77, p<0.001 for brain slice num-

ber, and F(1,90) = 12.8 p<0.001 for mice type, Fig 2B). The non-ischemic hemisphere of PAR1

KO mice showed undetectable plasmin activity levels compared to WT mice (-0.06±0.09, 0.97

±0.2 ng/μl, p<0.01, Fig 2C). Spatial dispersion was present in the non-ischemic hemisphere as

well with no elevation opposite the ischemic core in the PAR1 KO slices (Fig 2D).

Decreased thrombin activity in PAR1 KO mice

Thrombin activity measured in the ischemic hemisphere was significantly lower in PAR1 KO

mice compared to WT (17.2±1.0, 21.2±1.0 mU/ml, p<0.01, PAR1 KO = 3, WT = 4, Fig 3A).

Spatial measurements of thrombin activity were elevated in the slices at the ischemic core.

Thrombin activity levels were significantly lower in PAR1 KO compare to WT mice in slice

#3, and the ischemic core (slices #5 and #6) (F(8,45) = 4.688, p<0.001, Fig 3B). Thrombin

Fig 3. Decreased thrombin activity levels in PAR KO following 24 hours following ischemia. (A) Total thrombin activity is significantly decreased in

PAR1 KO compared to WT mice (t-test). (B) Thrombin activity elevation in the ischemic hemisphere of both groups demonstrated per slice. Levels are

significantly higher in WT mice in slice #3 and in slices #5 and #6 representing the ischemic core (two-way ANOVA with Sidak’s post-hoc analysis). (C)

A non-significant trend towards lower thrombin activity levels in PAR1 KO mice non-ischemic hemisphere (t-test). (D) Similar higher levels of

thrombin activity with spatial dispersion in WT compared to PAR1 KO mice (two-way ANOVA with Sidak’s post-hoc analysis). PAR1 KO = 3,

WT = 4, results are presented as dot plot individual values and mean ± SEM, �p<0.05, ��p<0.01.

https://doi.org/10.1371/journal.pone.0248431.g003

PLOS ONE Decreased brain plasmin and thrombin activity with decreased infarct volume in PAR1 KO stroke model

PLOS ONE | https://doi.org/10.1371/journal.pone.0248431 March 15, 2021 7 / 12

https://doi.org/10.1371/journal.pone.0248431.g003
https://doi.org/10.1371/journal.pone.0248431


activity showed a trend towards decrease in the non-ischemic hemisphere of the PAR1 KO as

well (Fig 3C) with spatial variations (Fig 3D).

Interestingly, in the non-ischemic hemisphere the measured low levels of thrombin activity

were similar between PAR1 KO and WT mice, while the measured plasmin activity was signifi-

cantly lower in the PAR1 KO mice compared to WT.

Discussion

In the present study, PAR1 KO mice show smaller infarct volumes following ischemic stroke

compared to WT. This was accompanied by reduction of both thrombin and plasmin activity

levels in the ischemic and non-ischemic hemispheres. PAR1 KO mice were previously

reported to present with smaller infarct size, decreased brain edema and fewer behavioral

impairments in response to ischemia compared to WT mice [19].

Elevation of thrombin activity levels following stroke in WT mice is well established [9, 26]

and it is accompanied by a reduction of its receptor PAR1 [11] and synaptic dysfunction fol-

lowing reperfusion [26]. Furthermore, the known spatial differences of PAR1 expression in

the brain [32], further support the findings of different thrombin activity measured in brain

slices in the current study. Ischemia-induced elevation of plasmin activity levels has been

recently described by our group, using a novel measuring method for plasmin activity levels in

brain slices. Plasmin activity levels were found to be higher in larger infarcts, and showed a

time-dependent increase [16]. The original finding of the current study is a correlation

between reduced infarct size and reduced thrombin and plasmin levels in PAR1 KO mice. Ele-

vated levels of thrombin and plasmin activity in WT mice compared to PAR1 KO during

stroke are related to larger infarct size. Our results support the role of PAR1 as a key auto-

modulator of thrombin and plasmin, which is directly related to the potential damage caused

by acute ischemia.

There are number of possible explanations for the correlation between PAR KO, reduced

plasmin and thrombin activity levels and smaller infarct volumes. An interesting open ques-

tion is whether the absence of PAR1 acts locally in blood vessels, generating a smaller occlu-

sion, intrinsically in the brain parenchyma, or both. Lack of PAR1 in mice platelets indicates

intrinsic brain mechanism. The differences between PAR1 KO and WT can be explained by

two possible mechanisms; the first, smaller infarcts in PAR1 KO leads to reduced thrombin

and plasmin activity. The second, lack of PAR1 reduces thrombin and plasmin activity result-

ing in smaller infarcts. Our results indicate decreased levels of thrombin and plasmin in the

contralateral side following stroke strengthen the second explanation which is also supported

by several known cellular mechanisms.

Activation of PAR1 by high levels of thrombin leads to various neurotoxic effects via dis-

tinct mechanisms [6, 33], including microglia activation, leading to neuronal damage [34],

and mediation of ischemic long term potentiation (iLTP) [12]. Selective inhibition of throm-

bin activity reduces CNS inflammatory markers, as seen following lipopolysaccharide injec-

tion (LPS) [35]. The latter suggests that blocking PAR1 activation may prevent some of

thrombin’s harmful effects and explain reduced stroke severity in these mice. The reduction

in plasmin and thrombin activity levels in the PAR1 KO PMCAo model suggests that the lev-

els of these factors are regulated by PAR1. A possible explanation may involve the astrocyte

role in mediating neuroinflammation. Indeed PAR1 activates astrocytes through an IL-6

dependent pathway, resulting in a positive feedback loop, thus elevating PAR1 and thrombin

levels [36]. PAR1 can be activated by both thrombin and plasmin. Plasmin leads to down-

stream elevation of Ca+2 levels in astrocytes, activation of extracellular signal-regulated

kinases (ERK 1/2) and potentiation of NMDA currents in pyramidal CA1 neurons [37]. A
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reduced activation of mitogen-activated protein kinases was suggested as an underlying

mechanism for the smaller infarct size seen in PAR1 KO mice [19]. Thrombin cleaves PAR1

at the Arg41-Ser42 site [38]. Plasmin is able to cleave and activate PAR1 at the same site at a

relatively similar rate, as well as serval other sites, leading to desensitization [8]. The presence

of a common binding site, together with plasmin unique activation/desensitization mode,

may point towards a competitive inhibition mechanism between thrombin and plasmin,

with different downstream effects.

Aside from its anti-coagulation properties, plasmin mediates neurotoxic cellular effects

such as cytotoxic microglia damage [15]. Stimulation of neurons and microglia induces tPA

release, which creates a vicious cycle of further microglial activation trough tPA [39]. tPA

changes blood brain barrier (BBB) properties, in a dose dependent manner, which is further

increased by plasminogen [40]. tPA treatment following ischemia in WT mice results in TNF

alpha and IL10 elevation in the plasma, accompanied by behavioral deficits. Both inflamma-

tory markers and behavioral deficits are reduced in mice lacking plasminogen [41]. There-

fore, rtPA, which activates plasmin, may mediate positive effect in the blood vessel outside

the BBB, and possible harmful effects “inside” the brain directly or indirectly on neural tissue

via cellular mechanisms. Cell-surface annexin 2 (A2) and its ligand P11 accelerates plasmino-

gen activation to plasmin by tPA. High levels of thrombin cause elevation of P11 and traffick-

ing of ANXA2 to the cell membrane, in a PAR1 mediated mechanism [42]. Astrocytes may

express uPA, which can convert plasminogen to plasmin. The presence of plasminogen may

lead a PAR1-mediated proinflammatory phenotype in astrocytes [43]. This may suggest a

complex feedback loop, in which PAR1 functions as a “sensor” for minor changes in throm-

bin levels, which results in significant fluctuation in plasmin levels. Lack of PAR1 may there-

fore results in a reduced plasmin production and ultimately block some of plasmin harmful

effect.

This study has some limitations. Due to difficulties in breading PAR1 KO mice, colonies

were relatively small, thus repetitions were limited. Although previous data indicate PAR1

KO have an improved NSS following stroke [19], in the present study this effect did not

reach statistical significance. This may have several explanations: the use of a different stroke

model (transient global ischemia vs. PMCAo), the temporal resolution (2 and 24 hours vs.

48 and 72 hours), and a different NSS scale (0–10 vs. 0–5). The major objective of this study

was to evaluate the PAR1 plasmin thrombin interaction during the acute phase of a stroke.

Therefore, a PMCAo model was used. Further evaluation at the reperfusion state should be

addressed in a transient MCAo model. Measuring plasmin activity is a complex process

which involves pre-treatment of the tissue including prolonged thermal shaking. This pro-

cess prevents measuring thrombin activity in the same slice. Furthermore, it affects the slice

volume, preventing the comparison of infarct volume in slices in which thrombin activity

levels where measured. The source of plasmin activity levels in the ischemic tissue may be of

brain-origin or it may originate from the plasma following BBB breakdown. Further

research is needed to better define the plasmin source. Evaluation of tPA effects on PAR1

KO infarcts and plasmin levels will provide a better understanding of plasmin and PAR1

interplay. It should be stressed that a complete inhibition of PAR1 might significantly affects

coagulation causing bleeding as a major side-effect (as seen with the pharmacological inhibi-

tor vorapaxar). Therefore, intervention at this pathway should be focused on precise modu-

lation rather than pure inhibition.

Understanding the complex interplay between PAR1 and plasmin will improve our under-

standing of the effects of stroke treatment, enabling the development of specific and safer phar-

macological interventions.
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