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Abstract
Major depressive disorder (MDD) is one of the leading causes of disability worldwide, and its incidence is expected to increase.
Despite tremendous efforts to understand its underlying biological mechanisms, MDD pathophysiology remains elusive and
pharmacotherapy outcomes are still far from ideal. Low-grade chronic inflammation seems to play a key role in mediating the
interface between psychological stress, depressive symptomatology, altered intestinal microbiology, and MDD onset. We review
the available pre-clinical and clinical evidence of an involvement of pro-inflammatory pathways in the pathogenesis, treatment,
and remission of MDD. We focus on caspase 1, inducible nitric oxide synthase, and interferon gamma, three inflammatory
systems dysregulated in MDD. Treatment strategies aiming at targeting such pathways alone or in combination with classical
therapies could prove valuable in MDD. Further studies are needed to assess the safety and efficacy of immune modulation in
MDD and other psychiatric disorders with neuroinflammatory components.
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Introduction

Major depressive disorder (MDD) is a psychiatric disorder with
significant morbidity, mortality, disability, and economic bur-
den worldwide [1, 2]. In addition to the psychosocial and psy-
chophysical dysfunctions associated with MDD, several condi-
tions are often comorbid, including but not limited to obesity,
type-2 diabetes, heart conditions, autoimmune diseases, neuro-
degenerative disorders, cancer, and intestinal conditions [3–7].
Multiple hypotheses have been formulated attempting to

describe the elusive pathophysiology of MDD, including the
monoamine hypothesis, the neurotrophic hypothesis, the gluta-
mate hypothesis, the cytokine (or macrophage) hypothesis, and
the microbiota-inflammasome hypothesis [8–13]. However, no
single hypothesis seems to fully explain the onset, course, and
remission of the disease. To complicate matters further, antide-
pressant drugs present numerous side effects and are effective
only in a subset of patients [14–16]. Newer therapeutic strate-
gies involve drugs acting on neuroplasticity-related pathways,
gut microbiomemodulation, and deep brain stimulation surgery
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[17–19]. Nevertheless, the quest for a better understanding of
themolecular underpinnings of this disease represents an essen-
tial step in the identification of efficacious therapeutic strategies
that could target the causal biological mechanisms of MDD.

Emerging evidence suggests that dysregulated neuro-
immune pathways underlie depressive symptomatology in at
least a subset of MDD patients [2, 20–25]. Three crucial inter-
linked networks seem to influence the bidirectional communi-
cation between the brain, the immune system, and the intestinal
microbiome, namely (a) increased oxidative stress, driven by
nitric oxide (NO) overproduction, (b) chronic inflammation,
driven by caspase 1 (CASP1), and Nod-like receptors family
pyrin domain containing 3 (NLRP3) inflammasome over acti-
vation, and (c) central nervous system (CNS) T cell-helper 1
(Th1) lymphocyte infiltration, driven by interferon-gamma
(IFNG). These three networks are strictly interlinked and pres-
ent several levels of reciprocal regulation. For example, NO is a
critical negativemodulator of the NLRP3 inflammasome, while
being necessary for IFNG-mediated suppression of interleukin-
1 beta (IL1B) processing [26, 27]. Moreover, CASP1 regulates
IFNG production via producing IL18, while IFNG modulates
the CASP1 system [28]. Similarly, transcription of inducible
nitric oxide synthase (NOS2) can be activated by IFNG [29].
Lastly, CASP1 is involved in the epigenetic regulation of NOS2
[30]. These multidirectional interactions suggest the importance
of observing and therapeutically approaching these pathways as
a whole rather than as insular entities. The possible involvement
of these three systems in MDD is briefly summarized here and
will be described in detail throughout this review.

Reactive oxygen species (ROS) are produced during cell
metabolism, and are largely quenched by the endogenous anti-
oxidant machinery [31]. However, excess of oxidative products
can elicit oxidative stress and cause protein, lipid, and/or DNA
damage [32]. Preclinical and clinical studies suggest that chron-
ic stress exposure is associated with increased ROS production
[33–40]. One of the free radicals produced during psychologi-
cal stress is NO, mainly by NOS2 [41]. Inflammatory factors
play key roles in tissue repair and in defense against pathogens
[42, 43]. However, pathological activation of inflammatory cas-
cades caused by stress and other insults can alter brain function
and increase the likelihood of developing MDD and comorbid
conditions [44–46]. CASP1, a protease that in the NLRP3
inflammasome renders the mature forms of IL1B and IL18, is
also activated by stress [47, 48]. It has been shown that reactive
Tcells infiltrate the brain where they produce pro-inflammatory
cytokines in response to CNS antigens [49]. Lastly, IFNG is a
powerful inducer of indoleamine 2,3-dioxygenase 1 (IDO1),
which degrades tryptophan increasing kyneurine and quinolinic
acid, leading to hyposerotonergia and hyperglutamatergia, in-
volved in MDD [9, 50, 51].

Recently, the role of the gut microbiome in mental health
and illness has come to the forefront in psychiatry [52, 53].
Increasing evidence suggests the existence of a gut-brain-axis,

a communication network that integrates brain and gut func-
tion, which plays a fundamental role in health and disease [54].
Such communication occurs via the endocrine and immune
systems, the vagus nerve, and the bacterial metabolome
[55–57]. It is becoming clear that the gut-brain-axis is an entity
directly involved in modulating stress systems like the
hypothalamic-pituitary-adrenal (HPA) axis, via its effects on
the immune and endocrine systems, which affect behavior
and mood and that can lead to MDD [53, 58, 59]. Given its
central role in modulating immune processes and brain func-
tion, and given that MDD is characterized by altered gut
microbiome composition, consensus is growing that manipulat-
ing the gut microbiota could represent a therapeutic tool in the
treatment of MDD [19, 60]. In this review, we will summarize
the pre-clinical and clinical evidence supporting the involve-
ment of CASP1, NOS2, and IFNG in the pathophysiological
processes underlying depressive symptomatology.

Communication Between the Brain,
the Immune System, and the Gut Microbiome

Although the CNS is considered to have its Bown^ immune sys-
tem, independent from the peripheral immune system, it is accept-
ed that the two constantly communicate and cooperate, that the
CNS is involved in regulating immunity, and that immune re-
sponses in the periphery lead to behavioral changes [66, 67].

Stress-mediated upregulation of pro-inflammatory cytokines
[such as IL1, IL6, tumor necrosis factor (TNF), and IFNG]
leads to endocrine and neurochemical responses, such as sym-
pathetic nervous system (SNS), hypothalamic-pituitary-adrenal
(HPA) axis, and microglial activation. SNS stimulation triggers
epinephrine and norepinephrine release in the locus coeruleus
and adrenal medulla, which result in an upregulation of pro-
inflammatory signaling. SNS activation in response to stress
pushes the CNS to Bsteer^ immunity towards pro-
inflammatory and antiviral responses [23]. At the same time,
norepinephrine modulates pro-inflammatory cytokines tran-
scription via beta-adrenergic receptor stimulation [68].

This leads to HPA axis activation by hypothalamus-secreted
corticotropin releasing hormone (CRH) and arginine vasopressin
(AVP). CRH stimulates adrenocorticotropic hormone (ACTH)
release from the pituitary gland, which stimulates glucocorticoids
release by the adrenal gland. Glucocorticoids interact with the
glucocorticoid receptor (NR3C1) and themineralocorticoid recep-
tors (NR3C2), activating anti-inflammatory cascades and
inhibiting Th1-driven pathways. This upregulates anti-
inflammatory gene expression to avoid side effects [69–73]. The
gut microbiome modulates HPA axis processes. In fact, germ-free
rodents have greater plasma ACTH and corticosterone spikes
compared to wild-type in response to stressors, while displaying
altered anxiety-like behavior [74]. This exaggerated response can
be reversed by early stage (but not later stage) recolonization
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with Bifidobacterium infantis [74]. Interestingly, the brain regions
presenting the highest concentrations of pro-inflammatory cyto-
kines are the prefrontal cortex, the hypothalamus, and the hippo-
campus, areas involved in cognition, mood, and antidepressant
response [75, 76].

Increased concentrations of brain cytokines trigger the ac-
tivation of microglia, immune cells inhabiting the brain paren-
chyma, representing chief innate immune cells in the brain
[67, 77]. Depending on the temporal and qualitative cytokine
profile, stress-induced microglial activation can either stimu-
late neuroprotection or neurodegeneration [78]. Not surpris-
ingly, the gut microbiome modulates microglia homeostasis
and maturation, while reduced gut microbiome complexity
impairs microglia function [79]. Altogether, these stress-
induced inflammatory events alter neurotransmitter systems,
such as serotonin (5HT) and dopamine (DA), exacerbating
depressive symptoms [80, 81]. Interestingly, the gut
microbiome is also involved in neurotransmitter modulation,
either via producing neurotransmitters, consuming them, or
responding to them [82]. This raises the intriguing possibility
that by altering gut microbiota composition, it might become
possible to modulate neurotransmitter systems in pathological
states, including MDD (Reviewed by [82]).

Glucocorticoids have the effect of restoring homeostasis
[83]. However, inMDD, the HPA axis can become hyperactive.
This phenomenon is underlined by increased cortisol, blunted
ACTH response to CRH, glucocorticoid resistance, impairment
in gluco- and mineral-corticoid signaling, and enlargement of
the pituitary and adrenal glands [84–88]. Antidepressant drugs
normalize the HPA axis and enhance the expression and func-
tion of corticosteroids [89, 90]. Peripheral cytokines can cross
the blood-brain barrier (BBB) via (a) CNS lymphatic vessels,
(b) active transport and a leaky or compromised BBB, (c) cross-
ing at circumventricular organs, and (d) binding to receptors in
the blood vessels that course through the brain [91–94].
Moreover, cytokines can affect brain function indirectly,
through vagal nerve activation or by binding to cell-surface
proteins found in brain endothelial cells [91, 93, 95, 96].

Cytokines can be produced in the gut in response to bacte-
rial virulence factors (such as LPS), and in response to bacte-
rial translocation to physiologically sterile enteric compart-
ments (Bleaky gut^) [97]. It was proposed that the leaky gut
phenomenon contributes toMDD [98]. In fact, stress is known
to compromise gut epithelial barrier integrity, allowing gut
bacteria to access the enteric nervous system and immune
cells [99]. Intestinal inflammation is a major contributor to
changes in gut microbiome composition and function that
are associated with disease (Reviewed in [100]). IFNG trig-
gers the production of hydrogen peroxide and the epithelial
expression of NOS2, which elevates the concentration of NO,
in turn favoring the expansion of facultative anaerobic clades
and hindering enterocyte proliferation [100, 101]. The
resulting inflamed intestine perpetuates the production of

pro-inflammatory cytokines and inflammogenic microbial
metabolites, which affect brain processes and precipitate
MDD onset while increasing the likelihood of comorbid con-
ditions [99, 102]. Lastly, cytokines are produced de novo in
the brain in response to stress [103–105].

Psychoneuroimmune Interactions
and the Cytokine Hypothesis of Depression

Psychoneuroimmunology studies the reciprocal interactions be-
tween behavioral traits and the immune system, mediated by the
nervous and endocrine systems [106]. In MDD, increasing ev-
idence suggests that the communication networks existing be-
tween the microbiota and the nervous, immune, and endocrine
systems lie at the crossroads of psychosocial stress, onset of
depressive symptomatology and antidepressant response [107].
Studies suggest anti-inflammatory, endocrine,- and entero-
regulatory effects of antidepressants, antidepressant effects of
anti-inflammatory medications, and differential responses to an-
tidepressants driven by polymorphisms in inflammation-related
genes [108–112]. With regard to the immune players of such
communication, cytokines have gained increasing attention over
the past 20 years. Cytokines are pleiotropic signaling molecules
with immunomodulatory function expressed constitutively and
on-demand in the periphery and in the CNS and have been
associated in at least a subset of patients with onset, course,
and severity of neuropsychiatric disorders, as well as with the
response to therapeutic drugs [113–122].

Exposure to psychological stressors primes the immune sys-
tem towards the creation of a pro-inflammatory environment in
the brain, a phenomena called sterile inflammation, which pre-
pares the CNS and the body to trigger a potential full-blown
immune response [123, 124]. While this program is essential
for coping with the stressor and restoring homeostasis, it re-
quires high amounts of energy and has collateral damage po-
tential. In fact, repeated or chronic stress exposure results in a
sustained inflammatory milieu in the brain which can lead to
the development of MDD and comorbid illnesses [23, 125].

These lines of evidence led to the Bcytokine hypothesis^
(or Bmacrophage hypothesis^) of depression, which proposes
that cytokines and an out-of-balance brain-immune commu-
nication are key MDDmilestones [126–130]. This hypothesis
is supported by mounting evidence: (a) illnesses characterized
by chronic inflammatory responses (e.g., type-1 diabetes and
systemic lupus erythematous) are associated with increased
depression rates [4, 6], (b) administration of pro-
inflammatory cytokines as a therapeutic strategy (e.g., IFNA
administration in cancer and hepatitis-C) induces a dose-
response depressive symptomatology and molecular features
of MDD [131–135], and (c) pro-inflammatory cytokines ad-
ministration in vivo induces sickness or depressive-like be-
havior [22, 136]. Lastly, polymorphisms in inflammation-
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related genes associate with increasedMDD susceptibility and
differential antidepressant response [25]. These layers of evi-
dence suggest that neuroinflammation is involved in MDD,
providing fertile ground to investigate diagnostic and thera-
peutic opportunities in neuro-immuno-psychiatry.

Major Depression and Dysregulated
Inflammatory Pathways

Psychoneuroimmunology research has highlighted that at least a
subgroup of MDD patients present with a systemic low-grade
chronic inflammatory profile underlined by increased T cell,
monocytic, microglial, and astrocytic activation [23, 24, 137,
138]. This is characterized by increased Th1 cytokines such as
IL1, IL2, IL6, TNF, and IFNG, decreased Th2 cytokines such as
IL4 and IL10, and decreased regulatory T cells [128, 139–144].
The resulting skewed inflammatory balance triggers multi-level
dysfunctions, such as metabolism, neurotransmission, gut
microbiome, and neurogenesis alterations [137, 145, 146].
Accordingly, the neurotrophic hypothesis of depression suggests
that MDD patients have inflammation-driven decreased
neurogenesis, which leads to atrophy of brain areas such as the
hippocampus and the prefrontal cortex [147–150]. Not surpris-
ingly, pro-inflammatory cytokines and increased glucocorticoids
production downregulate neurotrophins (such as brain derived-
and nerve-growth factor) and neurogenesis during and following
stress, while antidepressants reverse such decreases [151, 152].
The gutmicrobiome is also involved in regulating neuroplasticity

and neurogenesis; germ-free mice display altered neurogenesis
and BDNF expression in the dentate gyrus, while antibiotic treat-
ment impairs neurogenesis [74, 153, 154] (Fig. 1).

Cytokine Signaling and Nitrosative Stress

Oxidative stress is involved in MDD pathophysiology [155].
Stress exposure leads to ROS upregulation via cytokine-
induced NOS2 induction, an event that heightens the overall
oxidative stress, activating a feedback loop (co-activation state)
that produces more cytokines [138]. Oxidative stress is charac-
terized by the generation of ROS, which contributes to protein
and DNA damage, and can result in irreversible brain function
changes, leading to neurodegeneration and cognitive impair-
ments [156]. Oxidative processes are gaining attention in psychi-
atry, since an expanding body of research suggests the involve-
ment of these pathways in MDD [24, 40, 138, 157–159].

The involvement of oxidative and nitrosative stress in MDD
is confirmed by the increased oxidative (such as NO, arachi-
donic acid, malondialdehyde, and 8-hydroxy-2-
deoxyguanosine) and nitrosative (such as immunoglobulin (M
IgM)- antibodies directed against phosphatidylitol and nitro-
bovine serum albumin) stress markers inMDD patients, togeth-
er with decreased levels of antioxidants (such as vitamins C and
E) [160–164]. Interestingly, the concentration of oxidative
stress markers correlates with depression severity and chronic-
ity, as well as with antidepressant response [40, 138, 161, 165].
Accordingly, some antioxidant compounds have antidepressant
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properties, and antidepressants (such as paroxetine) partially
reverse oxidative damage by enhancing the protective antioxi-
dant status following stress [158, 166–168].

Of crucial importance for this work, the NO system is being
investigated in MDD, because NO levels are increased in
MDD and in animal models of stress, while NO inhibition
has antidepressant effects (discussed in detail below) [37,
164, 169–171]. Increased levels of oxidative and nitrosative
molecules can easily damage neurons, since they are particu-
larly vulnerable to free radicals [172]. Moreover, the brain
presents lower concentrations of antioxidants compared to
other organs, making it more susceptible to free radicals
[160]. Unsurprisingly, some areas (i.e., the subfields Cornu
Ammonis (CA)1) and CA4) of the hippocampus (a brain re-
gion involved in mood regulation and adult neurogenesis) are
the most sensitive to oxidative damage [24].

The Role of Caspase 1 in MDD

As mentioned above, stress triggers Bsterile inflammation,^
initiated by endogenous danger signal recognition, termed
damage-associated molecular patterns (DAMPs), by glial
cells, macrophages, and oligodendrocytes [124, 181, 182].
DAMPS are nuclear, cytosolic, mitochondrial, or extracellular
molecules normally hidden from the immune system that up-
on activation are exposed and released in the extracellular
space, where they stimulate an immune activation [124,
183]. In line with this understanding, increased levels of
DAMPs have been found in rodent blood and hippocampus
following stress exposure [103, 184].

Once released in the extracellular space, DAMPs function as
alarm signals, alerting immune cells through pattern recognition
receptors, to get ready for a potential full-blown immune re-
sponse [182, 185, 186]. It has been hypothesized that such

processes could represent an adaptive characteristic of the acute
stress response; for example, if an animal were running away
from a predator and were wounded during the chase, it might
have better chances of surviving if its immune system were
primed and ready to respond [187]. Another theory, one that
places this mechanism in a modern context, suggests that such
stress responses are activated when an individual is exposed to
social evaluation, rejection, isolation, exclusion or conflict, pos-
sibly due to the potentially physically harmful significance of
such social situations throughout history [188].

Together, DAMPs activation and release induce the transcrip-
tional upregulation of a number of immune genes, such as IL1B,
IL6, and TNF. This results in the creation of a pro-inflammatory
milieu in the brain and periphery, and in the activation of the
afferent nerves, which in turn leads to de novo production of
pro-inflammatory cytokines in the brain and culminates with
the onset of depressive-like behavior [22, 136, 189].

Further, DAMP activation results in the assembly of
inflammasomes [186, 190] A peculiar role is played by the
NLRP3 inflammasome, that consists of the NLRP3 protein,
the adaptor apoptosis-associated speck-like protein containing
a CARD (ASC), and the cysteine-protease CASP1 [47]. Upon
inflammasome assembly, the inactive procaspase 1 zymogen
is proteolitically cleaved into the enzymatically active hetero-
dimer [191, 192]. In turn, activated CASP1 cleaves pro-IL1B
and pro-IL18 into their mature, releasable, bioactive isoforms
[47, 193]. Increased circulating levels of IL1B activate the
HPA axis, which increases glucocorticoids production. [72]

CASP1 and NLRP3 transcripts and their protein products
are increased in peripheral blood mononuclear cells (PBMC)
from MDD patients compared to controls, while antidepres-
sants decrease such hyperactivity [61]. Similarly, IL1B and
IL18 are increased in MDD, and their levels correlate with
the severity of depression [61] (Table 1). Correspondingly,
antidepressants decrease IL1B levels [109].

Table 1 Clinical evidence of
CASP1 involvement in MDD Clinical evidence Reference

Increased CASP1 and NLRP3 transcription in PBMC (peripheral blood mononuclear cells)
from MDD patients.

Increased NLRP3 protein levels in PBMC from MDD patients.

Increased IL1B and IL18 in serum from MDD patients which positively correlate with BDI
(Beck Depression Inventory) score.

Antidepressant treatment decreased NLRP3 and CASP1 transcription in PBMC
from MDD patients.

Antidepressant treatment decreased IL1B and IL18 in serum from MDD patients.

[61]

IL18 is increased in MDD patients. [62, 63]

IL18 is increased in patients with panic disorder. [63]

IL18 promoter variants (rs187238 and rs1946518) associate with higher IL18 transcription
and increased susceptibility to MDD in patients exposed to stressful events.

[64]

Polymorphisms in the IL33 gene (rs11792633 and rs7044343) moderate the correlation
between history of childhood abuse and recurrent depression in women.

[65]

Patients with recurrent depression have higher peripheral IL33 [65]
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Casp1−/− mice display decreased depressive- and anxiety-
like behaviors, while being protected by the exacerbation of
depressive-like behavior following chronic stress [19, 173].
Similarly, minocycline-treated mice display resilience in de-
veloping depressive-like behavior following stress, and this
effect is accompanied by the expansion of bacterial clades
with anti-inflammatory properties, which could help explain
minocycline’s antidepressant effects [19] (Table 2).

CASP1−/− mice have the same behavioral and inflammatory
responses to systemic lipopolysaccharide (LPS) administration
as wild-type (wt) mice, but are resistant to the development of
depressive-like behavior and to pro-inflammatory cytokines in-
crease following intracerebroventricular LPS administration
[194].Moreover,CASP1−/−mice are resistant to lethal LPS doses
and have decreased levels of inflammation-induced brain and
systemic transcription [195–197]. Significantly for this review,
CASP1 and the NLRP3 inflammasome are involved in the de-
velopment of depressive-like behavior in stress models and are
increased in MDD [61, 173]. At the same time, pathological
shifts in gut microbiota composition and leaky gut trigger an
increase in pro-inflammatory signaling, which increases the risk
of developing depressive symptomatology and comorbid ill-
nesses [198]. Such evidence has led to the formulation of the
microbiota-inflammasome hypothesis of major depression and

comorbid systemic illnesses [58]. This hypothesis suggests that
pathological gut microbiome shifts upregulate pro-inflammatory
pathways exacerbating depressive symptomatology and increas-
ing the likelihood of developing comorbid conditions [58].

Interleukin-1B (IL1B)

IL1B binds to the interleukin-1 receptor (IL1R1), which results
in the activation of many acute-phase inflammation genes, such
as NOS2, IL6, and cyclooxygenase type 2 [192, 199]. Recently,
it was suggested that NLRP3 inflammasome activation medi-
ates IL1B orchestrated inflammation (that results in depressive-
like behavior) in the prefrontal cortex following stress, and that
fluoxetine reverses such changes [173, 175]. Accordingly, mice
lacking the IL1 receptor are resistant to developing depressive-
like behavior following chronic stress while being protected
against the decrease in neurogenesis observed in wt mice fol-
lowing stress [176, 177].

Interleukin-1A (IL1A)

IL1A shares features with IL1B and is an equally potent pro-
inflammatory cytokine [207]. However, IL1A also presents
differences to IL1B. For example, unlike the IL1B precursor

Table 2 Pre-clinical evidence of
CASP1 involvement in animal
models of MDD

Pre-clinical evidence Reference

Chronic unpredictable mild stress (CUMS) increases PFC (prefrontal cortex) CASP1
activation and NLRP3 and IL1B transcription and protein level.

Antidepressant treatment decreases PFC NLRP3 protein level and IL1B transcription
and protein level.

[173]

LPS-induced depressive-like behavior increases brain CASP1, NLRP3, and ASC
transcription, and IL1B transcription and protein level.

Pre-treatment with an NLRP3 inhibitor (Ac -YVAD-CMK) ameliorates depressive-like
behavior.

[174]

CUMS increases hippocampal and serum Il1b and increases hippocampal CASP1
activity and NLRP3 and ASC protein levels.

Pretreatment with the NLRP3 inflammasome inhibitor VX-765 decreases serum
and hippocampal IL1B protein levels and decreases depressive-like behavior.

[175]

CASP1−/− mice display decreased depressive- and anxiety-like behaviors, while being
protected by the exacerbation of depressive-like behavior following chronic stress.

The CASP1 inhibitor minocycline prevents the exacerbation of depressive-like
behavior following stress.

Minocycline triggers the expansion of bacterial populations with anti-inflammatory effects.

[19]

CUMS increase hippocampal IL1B.

IL1R−/− mice do not display CUMS-induced behavioral or neuroendocrine changes.

IL1R−/− mice do not display CUMS-induced decreases in neurogenesis.

IL1B exogenous administration mimics CUMS-induced depressive-like symptoms.

[176]

Stress and Il1b administration suppress hippocampal cell proliferation.

IL1R1 blockade blocks the antineurogenic effects of stress.

[177]

IL18−/− mice display decreased depressive- and anxiety-like behaviors. [178]

IL18 is involved in stress-induced microglial activation while contributing
to dopaminergic degeneration.

[179, 180]

Acute stress increases IL33 expression in the paraventricular nucleus of the hypothalamus
and in the prefrontal cortex.

[65]
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which is not active, both the pro-IL1A and the cleaved IL1A are
active ligands of the IL1R1 [208]. Moreover, while IL1B is
released, IL1A can be secreted or membrane-bound, although
the factors that control such translocation have not been fully
elucidated yet [207, 209]. Finally, while IL1B is produced on-
demand in immune cells, IL1A is constitutively expressed in a
variety of cell types but can be produced by immune cells in
response to insults [210]. Interestingly, IL1A-mediated activation
of p38-MAPK inhibits NR3C1 function, suggesting that the
mechanism conferring glucocorticoid resistance in MDD could
be associated with IL1A [211]. To the best of our knowledge, no
studies have investigated anxiety- and depressive-like pheno-
types in IL1A−/− mice.

Interleukin-18 (IL18)

IL18 is a prototypical Th1 cytokine for its ability to stimulate
IFNG activity, and it is expressed in macrophages and den-
dritic cells [212]. Circulating IL18 increases during stress and
in response to HPA axis activation [213]. IL18 binds to the
IL18 receptor (IL18R) activating p38-MAPK, c-Jun N-termi-
nal kinase, and NFKB1 cascades, which potentiate antimicro-
bial and antiviral immunity [214, 215]. Although IL18 is
known for its ability to promote both Th1- and Th2-related
inflammatory responses, its predominant role in enhancing
Th1 activity makes this cytokine a candidate therapeutic target
in Th1-related inflammatory and autoimmune diseases, in-
cluding MDD [212].

IL18 is increased in MDD and in panic disorder [62, 63].
IL18 gene promoter variants (rs187238 and rs1946518) associ-
ate with higher IL18 transcription and increased MDD suscep-
tibility in patients exposed to stressful events. IL18−/−mice have
decreased IFNG production and impaired natural killer cell
activity and abnormal Th1 responses [216]. Moreover, IL18−/
−mice display decreased depressive- and anxiety-like behavior,
as well as gene expression changes across various brain regions
[178, 217]. In addition, immobilization stress in mice induces
pro-IL18 via ACTH and a superoxide-activated CASP1 path-
way [218]. Given that IL6 is not induced in response to stress in
IL18−/− mice, it seems that IL18 mediates stress-induced IL6
upregulation [218]. Lastly, IL18 is involved in stress-induced
microglial activation in rodents while contributing to dopami-
nergic degeneration [179, 180].

Interleukin-33 (IL33)

IL33 has alarmin and transcription factor roles and triggers
predominantly Th2 responses (such as the induction of IL4,
IL5, IL13, and anti-inflammatory gene expression) [221].
Like other members of the IL1 family, IL33 can be beneficial
or detrimental, depending on its spatio-temporal expression.
IL33 is constitutively expressed and localized in the cyto-
plasm. However, if a barrier is breached and IL33 is released

from destroyed cells, it acts as an alarmin upon binding the
IL33 receptor (ST2) [222]. The signaling cascade in response
to ST2 activation modulates hundreds of genes with a pattern
that resembles that of IL1R1 activation [223].

Two single nucleotide polymorphisms in the IL33 gene
(rs11792633 and rs7044343) moderate the correlation be-
tween history of childhood abuse and recurrent depression in
women [65]. Moreover, patients with a history of recurrent
depression have greater peripheral levels of IL33 and IL1B
[65]. Finally, IL33 is expressed in the paraventricular nucleus
of the hypothalamus and in the prefrontal cortex of rats ex-
posed to acute stress, suggesting that stress induces IL33 ex-
pression in those brain regions [65].

The Role of Inducible Nitric Oxide Synthase
in MDD

NO is a small intercellular and intracellular signaling molecule
with a very short half-life (3–6 s) that freely diffuses across cell
membranes. NO plays important roles in the brain modulating
pathways such as neurogenesis, neurotransmission, synaptic
plasticity, learning, and pain [224]. NO also regulates emotional
and cognitive processes, suggesting that it could be involved in
the etiology ofMDDand anxiety disorders [225]. Three isoforms
of the NOS enzyme produce NO: NOS2, neuronal (NOS1), and
endothelial (NOS3), all of which have specific spatio-temporal
patterns of regulation. In this review, we will focus on the induc-
ible isoform since it is considered the most relevant to MDD.

Over the past two decades, several lines of evidence have
brought NO and specifically the NOS2 isoform to the forefront
in psychiatry: (a) the levels of NO and its metabolites are in-
creased in MDD patients and suicide attempters compared to
controls [171, 200, 201], (b) NOS2 transcription is increased in
the peripheral blood of patients with recurrent depressive dis-
order [202], (c) a polymorphism (-1026C/A) in the NOS2 pro-
moter associates with recurrent depressive disorder risk [203],
(d) IgM against NO adducts are elevated in MDD patients,
suggesting that the protein damage created by NO results in
the formation of immunogenic peptides, that in turn activate
an autoimmune-like response [204, 205], (e) the selective sero-
tonin reuptake inhibitor paroxetine is a NOS2 inhibitor [206,
226], (f) adjuvant NOS2 inhibition enhances the efficacy of
serotonergic antidepressants [169], and (g) NOS2 is increased
in the hippocampus and cerebral cortex in mice following
stress, and NOS2 inhibition results in antidepressant-like effects
in rodents [38, 219, 220] (Tables 3-4).

The architecture of the NOS2 promoter region suggests that
this gene has a tight and complex pattern of transcriptional control
since it is rich in positive and negative regulatory regions, and it is
responsive to many transcription factors, cytokines, and bacterial
by-products [29]. NOS2 is synthesized on-demand in macro-
phages andmicroglia [227]. In fact, whereas there is no detectable
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physiological NOS2 expression in the brain, a profound transcrip-
tional upregulation of theNOS2 gene can be observed in response
to traumatic events such as ischemia and systemic inflammation,
most likely through activation of the NOS2 promoter by
inflammation-related molecules [29, 39, 196, 228, 229].
Following induction, NOS2 produces NO continuously until the
proteasome degradation pathway inactivates the enzyme [230].

Several studies have targeted the NO system in pre-clinical
MDD research, yielding promising results. For example, NO
decreases norepinephrine production, decreases nitrate and ni-
trite levels in the hippocampus and cerebral cortex, and de-
creases serotonin turnover in the frontal cortex [231–233].
Moreover, NO inhibits the dopamine transporter, indirectly in-
creasing the availability of inter-synaptic dopamine [234].
Finally, several molecules such as bupropion (a
norepinephrine-dopamine reuptake inhibitor), venlafaxine (a
serotonin-norepinephrine reuptake inhibitor), mementine (an
NMDA receptor antagonist), and berberine (a plant alkaloid),
all of which produce antidepressant-like effects, modulate this
signaling pathway [235].

It is accepted that anaerobic bacteria in the gut prevent the
expansion of facultative anaerobic bacteria, at least partially by
limiting the host-mediated production of oxygen and nitrate
[236]. Antibiotic-mediated disruption of the gut microbiota in-
creases the production of host nitrate in the gut [237]. This allows
an expansion of the facultative anaerobic Enterobacteriaceae,
which includes potentially pathogenic gram-negative bacteria,
such as Escherichia coli (this effect is likely not to be limited
to E. coli, although the latter has been the focus of investigation

to date). These bacteria produce the virulence molecule LPS,
which triggers depressive-like behavior and increases serotonin
degradation in the brain [237, 238]. This alteration ismediated by
NOS2; therefore, its inhibition preventsE. coli overgrowth [237].
Therefore, rectifying aberrant NO signaling could have a thera-
peutic role in altered gutmicrobiology-induced depressive symp-
toms [239]. Accordingly, stimulation of colonic epithelial cancer
cells by IFNG induces NOS2-mediated NO production, while
butyrate (one of the main anti-inflammatory short chain fatty
acids (SCFAs)) blunts NO production [237]. This result suggests
that a diet rich in substrates for SCFAs production could have
antidepressant-like effects via its repercussions on gut
microbiome composition and inflammatory processes.
Together, these findings suggest that modulation of the NO sys-
tem could represent a useful approach in treating MDD and in
keeping of a healthy gut microbiome.

The Role of Interferon-Gamma in MDD

IFNG is a pleiotropic soluble cytokinewhich orchestrates cellular
programs via transcriptional and translational gene control. IFNG
is produced by immune cells such as lymphocytes, cytotoxic
lymphocytes, B cells, and antigen-presenting cells [240, 241].
The IFNG receptor (IFNGR) is expressed on almost all cell
types, and its activation triggers the janus kinase 1 and 2
(JAK1/2) signal transducer and activator of transcription
1 (STAT1) pathway, as well as additional pathways, such as the

Table 4 Pre-clinical evidence of
NOS2 involvement in animal
models of MDD

Pre-clinical evidence Reference

NOS2 inhibitors augment the efficacy of serotonin reuptake inhibitors in the forced swim test. [169]

NOS2 is increased in the hippocampus and cerebral cortex following stress. [38]

NOS2 inhibition results in antidepressant-like effects in rodents. [219]

The dopamine reuptake inhibitor bupropion modulates the NO system. [220]

Table 3 Clinical evidence of
NOS2 involvement in MDD Clinical evidence Reference

Increased plasma nitric oxide (NO) metabolites in suicide attempters.

Increased plasma NO metabolites in depressed suicide attempters.

[171]

Increased plasma NO metabolites in suicide attempters.

Higher plasma NO levels were related to lower suicide lethality
and lower depression severity.

[200]

Increased plasma nitrate concentration in MDD patients. [201]

Increased NOS2 transcription in peripheral blood of MDD patients. [202]

The polymorphism (-1026C/A) in the NOS2 promoter is associated
with the risk of recurrent depressive disorder.

[203]

IgM levels against NO adducts are elevated in MDD patients,
suggesting an autoimmune-like response.

[204, 205]

The antidepressant paroxetine is a NOS2 inhibitor. [206]
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extracellular-signal-regulated-kinase 1/2 (ERK1/2) [242, 243].
Activation of the IFNGR results in the transcription of geneswith
IFNG-stimulated response elements (ISREs) within their pro-
moter region until STAT1 dissociates following complete de-
phosphorylation within 1–2 h [244, 245]. The genes transcribed
in response to IFNGR activation are at least 200, together with
many micro RNAs and long non-coding RNAs [246] (for a
database see [247]). At the same time, after IFNGR stimulation,
the secondary transcription factors IRF1, IRF2, and interferon
consensus sequence binding protein are upregulated. This in turn
results in the transcriptional induction of a subset of
inflammatory-related genes such as NOS2 (stimulated by IRF1)
and guanylate-binding protein. Finally, IFNG can activate and be
activated by CASP [248–251].

Ex vivo PBMC fromMDD patients display increased IFNG
and neopterin production upon stimulation, as well as decreased
tryptophan bioavailability [252]. Nevertheless, IFNG transcrip-
tional levels (together with those of TNF) in patients with mul-
tiple sclerosis correlate with the severity of the depressive
symptomatology during flare-ups [253]. At the same time, most
categories of antidepressants suppress the IFNG/IL10 ratio
through suppressing IFNG and stimulating IL10 [254, 255].
These findings (Table 5) suggest that MDD patients have in-
creased systemic IFNG and neopterin production by activated T
cells and macrophages. This could be responsible for an upreg-
ulation of the enzyme IDO1 (since the latter presents 2 ISREs at
the promoter region that lead to maximum promoter activity)
and consequent tryptophan depletion through upregulation of
the kyneurine/tryptophan pathway, events that decrease

serotonin availability and increase the toxic metabolite
kyneurine [252, 258–260]. Accordingly, a polymorphism
(CA repeat, rs3138557) in the IFNG gene correlates with
lower serum tryptophan and 5-hydroxindolacetic acid (the
main metabolite of serotonin) and higher levels of
kyneurine, suggesting that carriers of the CA allele might
be more susceptible to developing MDD [256]. Similarly,
the presence of the high producer T allele +874(T/A) poly-
morphism (rs2430561) associates with increased IDO1 ac-
tivity [257]. Interestingly, IFNG signaling drives Th1 de-
velopment [261, 262]; therefore, early increased signaling
of IFNG by traumatic events could be involved in the Th1/
Th2 shift towards Th1 in MDD [141].

IFNG−/− mice do not show developmental defects but pres-
ent compromised immune responses and increased susceptibil-
ity to infections [263]. With regard to their behavior, IFNG−/−

mice display decreased anxiety- and depressive-like behaviors
as well as heightened emotionality in several paradigms
[264–266]. These behaviors are underlined by (a) increased
serotonergic and noradrenergic activity (i.e., greater metabolite
accumulation) in the central amygdaloid nucleus, together with
(b) increased baseline plasma corticosterone, (c) decreased
neurogenesis in the hippocampus, and (d) decreased levels of
nerve-growth factor in the prefrontal cortex, suggesting that
IFNG modulates anxiety and depressive states and is involved
in CNS plasticity [264, 265]. On the other hand, while IFNG
deficiency does not confer resistance to a chronic stress regimen
in mice, it attenuates monoamine, corticoid, and cytokine alter-
ations in response to stressors [264] (Table 6).

Table 5 Clinical evidence of
IFNG involvement in MDD Clinical evidence Reference

Ex vivo PBMC from MDD patients display increased IFNG production
upon stimulation.

[252]

Transcriptional levels of IFNG correlate with depressive symptomatology
in multiple sclerosis patients.

[253]

The antidepressants clomipramine, sertraline, and trazodone suppress IFNG production. [254, 255]

A polymorphism in the IFNG gene (CA repeat, rs3138557) correlates with lower
serum tryptophan and higher kyneurine increasing MDD likelihood.

[256]

The high producer T allele + 874(T/A) polymorphism (rs2430561) in the IFNG gene
has been associated with increased IDO1 activity and increased MDD likelihood.

[257]

Table 6 Pre-clinical evidence of
IFNG involvement in animal
models of MDD

Pre-clinical evidence Reference

IFNG−/− mice display decreased anxiety- and depressive-like behaviors as well
as heightened emotionality.

[264–266]

IFNG−/− mice display increased serotonergic and noradrenergic metabolite accumulation. [264, 265]

IFNG−/− mice display increased plasma corticosterone levels. [264, 265]

IFNG−/− mice display decreased hippocampal neurogenesis. [264, 265]

IFNG−/− mice display decreased levels of nerve growth factor in the prefrontal cortex. [264, 265]

IFNG−/− mice have attenuated monoamine, corticoid, and cytokine alterations
in response to stressors.

[264]
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IFNG signaling promotes leaky gut and bacterial transloca-
tion. In fact, in vitro experiments have highlighted that low-
dose IFNG dramatically increases the translocation of opportu-
nistic pathogens, and high-doses disrupt tight junctions [267].
Lastly, IFNG levels affect the representation of specific bacte-
rial species while being up- or downregulated by specific com-
mensals [97]. For example, the degradation of tryptophan to the
metabolite tryptophol inhibits IFNG production, while IFNG
levels dictate the presence and expansion of specific bacterial
taxa [97]. Given this evidence for an involvement of IFNG in
pathways relevant to depressive symptoms and gut dysbiosis,
targeting IFNG and/or its receptor could hold potential in the
quest for novel MDD therapies.

Conclusions and Future Directions

Convergent pre-clinical and clinical evidence points towards an
involvement of central and peripheral inflammatory pathways
and the gut microbiome in the response to psychological
stressors and in the onset, treatment, and remission of MDD.
Future randomized controlled trials should investigate the safe-
ty and efficacy of decreasing CASP1-, NOS2,- and IFNG-
mediated pathways in MDD patients. Reduced activity of those
pro-inflammatory mediators could be achieved via pharmaco-
logical inhibition or gut microbiome manipulation. The latter
approach can involve diet, probiotics supplementation, and fe-
cal microbiota transplantation. This could lead to the develop-
ment of novel antidepressant strategies acting upon the dysreg-
ulated inflammatory milieu observed in MDD. Because
inhibiting such pathways might hinder physiological immune
processes, particular care should be taken when developing
immunomodulatory and gut microbiota-directed therapies.
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