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Oral lichen planus (OLP) is a chronic inflammatory disease that affects oral mucosa, some of which may finally develop into oral
squamous cell carcinoma. Therefore, pinpointing the molecular mechanisms underlying the pathogenesis of OLP is important to
develop efficient treatments for OLP. Recently, the accumulation of the large amount of omics data, especially transcriptome data,
provides opportunities to investigate OLPs from a systematic perspective. In this paper, assuming that the OLP associated genes
have functional relationships, we present a new approach to identify OLP related gene modules from gene regulatory networks. In
particular, we find that the gene modules regulated by both transcription factors (TFs) and microRNAs (miRNAs) play important
roles in the pathogenesis of OLP and many genes in the modules have been reported to be related to OLP in the literature.

1. Introduction

Oral lichen planus (OLP) is a chronic inflammatory disease
that acts onmucous membranes inside the mouth and causes
bilateral white lacy patches or plaques on the buccal mucosa,
tongue, and gingivae [1]. It is found that OLP affects 0.5%
to 2% of the adult population, especially the adults over 40
years old, where OLP tends to affect women rather than men
with a ratio about 1.4 : 1 [2, 3]. Compared with cutaneous
lichen planus, oral lichen planus lesions are more difficult
to be treated with frequent recurrence. Furthermore, OLP
may be at risk of developing into oral cancer as the result of
carcinogenic exposures, where the erosive OLP lesions might
be more sensitive to carcinogens than normal oral mucosa
[1]. Currently, oral cavity cancer has become one of the 10
most frequently diagnosed cancers with increasing mortality

in East Europe [4, 5]. However, the pathogenesis of OLP and
how it is developed into oral cancer is still unclear [6, 7].
Therefore, it is extremely urgent to pinpoint the molecular
mechanisms underlying the pathogenesis of OLP so that
accurate diagnosis can be made and effective therapies can
be developed.

Recently, the accumulation of large amount of omics data,
especially transcriptomedata, provides opportunities to iden-
tify the molecules related to diseases. Accordingly, many
works have investigated OLPs with transcriptome data. For
example, the genes CCR5, CD14, and beta-catenin have been
identified to play important roles in the pathogenesis of OLP
[8, 9]. Moreover, Tao et al. identified some genes that are dif-
ferentially expressed in OLPs, such as FOXP3, ANGPT1, and
MMP1, and these genes may be related to the development
of OLP [10]. In general, the above-mentioned studies assume
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those differentially expressed genes between OLPs and con-
trols are related to OLP. However, the differentially expressed
genes are usually treated independently, which is actually not
the case. It has been found that complex diseases, for example,
cancers, happen due to the dysregulation of functional gene
sets or molecular pathways [11, 12]. In other words, the
genes involved in the same disease tend to have functional
relationships. Therefore, it is necessary to investigate disease
related genes from a systematic perspective. Except for the
above-mentioned genes, some small noncoding RNAs, that
is, microRNAs (miRNAs), were found to play important roles
in cancer by targeting oncogenes or tumor suppressor genes
[13]. For example, mir-21 was found to be overexpressed in
several tumor types [14], and let-7 inhibits lung tumorigenesis
by repressing the expression of the RAS oncogene [15]. More
recently, Gassling et al. found that the dysregulation of some
miRNAs has important pathophysiological impacts on OLP
[16]. For instance, mir-21, mir-181b, and mir-345 were found
to be upregulated in OLPs and have critical roles in the
malignant transformation of OLP to oral cancer.

In this work, we present a novel approach to identify gene
modules that may play important roles in the pathogenesis of
OLP by assuming that OLP is caused due to the dysregulation
of certain gene modules. Furthermore, based on the gene
modules as well as their transcription factor and miRNA
regulators, we construct a TF-miRNA coregulation network.
By investigating the genes and their regulators in the coregu-
lation network, we find that some of them have already been
reported to be related to OLP or oral cancer, indicating the
important roles of the regulation network inOLP. In addition,
we notice that the genes involved in the regulation network
can serve as disease associated pattern and separate OLPs
from controls very well, which is also validated by another
independent real dataset, demonstrating the potential of the
gene modules we identified as disease associated pattern and
therapeutic targets.

2. Materials and Methods

2.1. Gene and miRNA Expression Data. The matched gene
and miRNA expression data were obtained from the Gene
Expression Omnibus (GEO) database [17]. Both mRNA
(accession number: GSE38616) and miRNA (accession num-
ber: GSE38615) expression profiles were measured in 7
healthy individuals and 7 oral lichen planus patients [16].
To further validate the genes identified from the above
datasets, another gene expression dataset (accession number:
GSE52130) was retrieved from GEO, which was originally
measured in 14 oral samples and 9 genital epithelium samples.
Here, the gene expression profiles from the 14 oral samples
consist of 7 normal oral samples and 7 oral lichen planus
samples were kept for validation. All the three expression
datasets have been preprocessed and normalized when we
downloaded them, and the data were used in later sections
without further preprocessing.

2.2. Identification of Differentially Expressed Genes and miR-
NAs. In general, the genes that are differentially expressed
between diseases and controls are related to diseases to some
extent. In this work, the genes that are differentially expressed
between OLPs and controls were detected with Student’s 𝑡-
test. The genes with 𝑃 values less than 0.05 were regarded
to be differentially expressed genes (DEGs), and the same
for miRNAs. Consequently, 2587 differentially expressed
genes (GSE38616) and 90 differentially expressed miRNAs
(GSE38615) were obtained for further analysis.

2.3. Identification of Network Modules Associated with OLP.
Agene coexpressionnetworkwas constructed forOLPs based
on their corresponding gene expression data, where one
gene was linked to another if their coexpression measured
with Pearson’s correlation coefficient was significantly high
(𝑃 value cutoff of 0.05) and the weights accompanying the
edges were their corresponding correlation coefficients. Sub-
sequently, networkmodules that consist of densely connected
genes were detected with ClusterONE [18], and 154 network
modules were detected here. Furthermore, after investigating
the network modules, we merged two modules if more
than one-third of genes from the smaller module occur
in the larger one. As a result, 125 modules were kept for
further analysis. For each networkmodule, it will be regarded
to be related to OLP if the module is enriched with the
above identified differentially expressed genes, where the
enrichment analysis was performed with Fisher’s exact test
(𝑃 value cutoff of 0.01).

2.4. miRNA-Gene Regulations. The target genes of miRNAs
were collected from both predictions and experimentally
determined ones. For the predictions, several tools, including
PicTar [19], miRanda [20], MicroT [21], and TargetScan
[22], were employed to predict the target genes of miR-
NAs. Specifically, we picked up the interactions between
genes and miRNAs predicted by at least two tools to avoid
false positives. Moreover, the target information of miRNAs
deposited in Tarbase [23] was obtained and merged with
the predictions, where all the miRNA-gene interactions from
Tarbase have been experimentally validated.

2.5. The TF-miRNA Coregulation Network in OLP. After
obtaining the network modules, we first checked which
miRNAsmay regulate the networkmodules. Given a network
module and amiRNA, themiRNAwill regulate themodule if
its target genes are enriched in themoduleswith Fisher’s exact
test (𝑃 value cutoff of 0.01). In particular, we only considered
the differentially expressed miRNAs (DemiRs) here since
these DemiRs are more likely related to OLP. Furthermore,
given a network module, the transcription factors (TFs) that
possibly regulate the modules were identified if these TFs
belong to the module and coexpress with other genes in the
module. Note that here we suppose the TFs that coexpress
with other genes in the module will regulate the genes within
the module. Consequently, we detected 6 network modules
that are coregulated by TFs and miRNAs, where the modules
are enriched with DEGs. We assumed that the TF-miRNA
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Figure 1: Schematic illustration of the pipeline to detect the TF-miRNA coregulation networks in oral lichen planus.

Table 1: The detailed information about the 6 network modules as well as their TF and miRNA regulators.

Module #Nodes #Edges miRNAs Transcription factors

Module 1 134 952 hsa-miR-628-5p
SALL2, PEG3, ZNF865, HES3, ZNF283, ZIM2,
FOSB, PAX6, SIX2, ZNF616, KDM5D, SRY, RFX4,
and ZFY

Module 2 62 594 hsa-miR-595 ASCL4

Module 3 160 1301
hsa-miR-34c-5p
hsa-miR-34a
hsa-miR-26b

ELK3, RFX8, MIXL1, HIF1A, and ZNF552

Module 4 80 405 hsa-miR-29a LIN28A
Module 5 55 335 hsa-miR-190 THRA, NR1D1, and NR1D2
Module 6 43 241 hsa-miR-146b-5p ZNF626

coregulation network which consists of the 6 modules plays
important roles in the development of OLP.

3. Results and Discussion

Figure 1 depicts the flowchart of our proposed approach for
identifying the TF-miRNA coregulation network in OLP,
and we applied it to a real dataset which contains 7 healthy
individuals and 7 OLP patients, where the dataset con-
tains the matched gene (GSE38616) and miRNA (GSE38615)
expression profiles. From the dataset, we detected 2587
differentially expressed genes (DEGs) and 90 differentially

expressed miRNAs (DemiRs). We further constructed a
gene coexpression network and identified modules that were
coregulated by miRNAs and TFs (Figure 2). Table 1 lists the
detailed information about the 6 network modules as well as
their regulators.

3.1. The Network Modules Are Enriched with Oral Lichen
Planus Related Genes. After getting the 6 network modules,
we first investigated the genes in each module. By querying
the PubMed, we found that 59 out of the 497 genes belonging
to the 6 modules have been reported to be relevant to oral
cancer. Here, for each network module, we gave examples
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Figure 2:TheTF-miRNA coregulation network with 6modules, where the green nodes represent differentially expressedmiRNAs, red nodes
denote the transcription factors, and gray nodes represent genes in modules, respectively.

about genes that have been reported to be related to OLP
or oral cancer in the literature (Table 2). For example, it
was reported that the gene KRT18 was related to tumor
differentiation and metastasis and plays important roles in
the malignant transformation of OLP to oral squamous
cell carcinoma [24]. Another gene PTEN was reported to
be downregulated in oral squamous cells, which in turn
downregulates the expression of cyclin D1 and leads to the
suppression of cell growth, indicating that targeting PTEN

may help treat oral cancer [25]. Moreover, IGF1R has been
reported to control cell proliferation of oral cancer [26, 27].
The overlap between known oral cancer associated genes
and our identified module genes indicates that the genes
belonging to these modules are related to OLP as well as its
development to oral cancer.

Next, we investigated the functions of the network mod-
ule genes. For each module, functional and pathway enrich-
ment analyses were performed with DAVID [28], and the
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Table 2: Examples of genes from each network module that have
been reported to be related to OLP or oral cancer.

Network module Gene symbol PubMed IDs

Module 1
KRT18 19575986; 22677743; 7527618;
SHH 11857543; 21945071; 21496886
FOSB 19653276; 15926923

Module 2
MAGEA3 19187853; 12855658
KRT1 20002980; 16334838; 10896780

MAGEA6 18197853;

Module 3
HIF1A 19717330; 19449077; 18630523
PTEN 17067457; 15453811; 15805158
IGF1R 17786320; 23106397; 19584075

Module 4
CP 23812204; 19884712; 17066447

ABCG2 18429968; 15801936; 15618737
ALDH1A1 22725270; 22782852; 21441790

Module 5 IDH1 22385606; 21383741; 19378339
CRABP2 19197536; 16568407; 11437413

Module 6
CD55 21545652; 17234541; 15668483
FGFR4 18487077; 20127014; 23481570
CYP3A5 16338276; 18628519; 1808564

detailed results can be found in Table 3, where only the pro-
cesses we thought related to OLP were listed for clarification.
From the analysis, we can see the biological processes in
which the modules involved are related to the initiation and
development of OLP. For example, it was reported recently
that the pathogenesis of OLP was associated with some
systemic diseases that can cause midbrain injuries [29]. The
inhibition of phospholipase A2 activity that is associated with
numerous inflammatory processes was found to be related to
the mechanism of OLP [30]. The sensory perception, such as
anxiety and tension, has been reported to be an important
factor in the development of OLP [31]. It was reported that
oral lichen planus can be caused by a variety of stimuli and
the preservation of keratin in oralmucosawas an efficientway
for the treatment of the disease [32]. Compared with normal
controls, the OLPs tend to have increased angiogenesis,
indicating OLP is associated with the induction of aberrant
angiogenesis [7]. In addition, the symptoms of OLP are
always accompanied by compromised wound healing [33],
and the epidermal growth factor receptors were found to be
significantly higher in OLPs [34].

Except for biological processes, functional enrichments
analysis implies that some molecular functions, such as
cytosol, steroid hydroxylase activity, and oxidoreductase
activity, also have important impacts on OLPs. Considering
that OLP is often treated with steroids and vitamin A ana-
logues [35], it is not surprising that steroid hormone receptor
activity, retinoid metabolic process, and vitamin Ametabolic
process are enriched in our identified modules. Moreover,
the metabolism of xenobiotics by cytochrome P450 has been
reported to result in the oral and pharyngeal cancers [36].
In addition, it was found that the metallic ion content can
increase the damage to the oral mucosa cells [37], which is

consistent with the enrichment of the iron ion homeostasis
and binding.

From the analysis of the genes belonging to our identified
modules, we can see that these modules are indeed related
to the development of OLP. In addition, we identified some
important biological processes that have important roles
in the development of OLP, such as the metabolism of
xenobiotics by cytochrome P450 and vitamin A metabolic
process. The detailed information about the biological pro-
cesses in which the TFs and miRNAs are involved can
be found in Supplementary Table I available online at
http://dx.doi.org/10.1155/2015/731264.

3.2. miRNAs Regulators of Network Modules Are Associated
with OLP. In the TF-miRNA regulation network, there are
in total 8 miRNAs, which were picked up from the 90
differentially expressed miRNAs. Among the 8 miRNAs,
some of them have been reported to be related to OLP or
oral cancer in the literature. For example, miR-26b was found
to be significantly low expressed in OLP lesions compared
with controls [38], miR-29a was remarkably differentially
expressed in the oral squamous cell carcinoma metastasis
[39], and miR-628 was able to discriminate hand-foot-
mouth diseases from healthy controls [40]. According to
the Human microRNA Disease Database (HMDD) [41], a
manually curated disease-miRNA association database, mir-
146b was reported to be associated with diverse neoplasms
including oral cancer. In addition, two of the 8 DemiRs, that
is, hsa-miR-146b-5p and hsa-miR-26b, have been reported
previously to be related to OLP [16].

Furthermore, we derived the interactions between miR-
NAs and target genes from the 6 modules in TF-miRNA
coregulation network. Figure 3 shows the regulation network
composed of miRNAs and target genes. By investigating the
expressions of miRNAs and their target genes, we noticed
that the expressions of 4 miRNAs, hsa-miR-190, hsa-miR-
146b-5p, hsa-miR-29a, and hsa-miR-595, were negatively
correlated with that of their target genes, which is consistent
with the observation that miRNAs generally repress the
expression of their target genes. Interestingly, these four
miRNAs were highly expressed in OLP while their target
genes were downregulated. The detailed information about
the expression levels of miRNAs and their target genes in
modules can be found in Supplementary Table II.

3.3. Transcription Factors Regulating the Network Modules
Are Associated with OLP. We also investigated the 27 tran-
scription factors involved in the TF-miRNA coregulation
network. By querying the PubMed, some TFs were found
already reported to be related to OLP or oral cancer. For
example, in module 3, the transcription factor HIF1A is a
master transcriptional regulator of the adaptive response to
hypoxia. It was found that RTP801 and VEGF, the target
genes of HIF1A, were significantly low expressed in OLPs
[42]. The transcription factor LIN28A from module 4 has
been reported to regulate cancer stem cell-like properties
and can act as an appropriate target for oral squamous cell
carcinoma treatment [43]. In module 1, AX6 was found to
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Table 3: Functional enrichment analysis of genes in network modules.

Network
module Enriched functions related to OLP 𝑃 value (<0.05)

Module 1

GO:0030901∼midbrain development 0.00337086
GO:0016702∼oxidoreductase activity, acting on single donors
with incorporation of molecular oxygen, incorporation of two
atoms of oxygen

0.00560592

GO:0008285∼negative regulation of cell proliferation 0.01400315
GO:0007600∼sensory perception 0.032006
GO:0007435∼salivary gland morphogenesis 0.0376765
GO:0002052∼positive regulation of neuroblast proliferation 0.04294326

Module 2
GO:0004623∼phospholipase A2 activity 0.00233
GO:0050877∼neurological system process 0.00764739
GO:0051606∼detection of stimulus 0.04745557

Module 3

GO:0001525∼angiogenesis 0.00589117
GO:0005829∼cytosol 0.00679876
GO:0042060∼wound healing 0.01651834
GO:0045740∼positive regulation of DNA replication 0.01978034
GO:0007173∼epidermal growth factor receptor signaling
pathway 0.01978034

GO:0015629∼actin cytoskeleton 0.04636455

Module 4

GO:0006879∼cellular iron ion homeostasis 0.00604241
GO:0000041∼transition metal ion transport 0.029349054
GO:0055114∼oxidation reduction 0.03217
hsa00980:Metabolism of xenobiotics by cytochrome P450 0.03978611

Module 5

GO:0003707∼steroid hormone receptor activity 0.00495459
GO:0006766∼vitamin metabolic process 0.01044366
GO:0001523∼retinoid metabolic process 0.04657368
GO:0006776∼vitamin A metabolic process 0.04657368

Module 6
GO:0008395∼steroid hydroxylase activity 0.02851299
GO:0005887∼integral to plasma membrane 0.02900047
GO:0008202∼steroid metabolic process 0.04570667

regulate the proliferation and apoptosis processes in human
retinoblastoma cells [44]. In module 2, ASCL4 was found to
be essential for the determination of cell fate as well as the
development and differentiation of numerous tissues [45].

In addition, we investigated the top 25 biological pro-
cesses regulated by these TFs as shown in Supplementary
Figure 1, where the percentage denotes the fraction of all
TFs from the TF-miRNA coregulation network that were
involved in the corresponding process. Consistent with the
above observations, the TFs identified here are involved in
a lot of OLP related processes, such as cell differentiation,
Notch signaling pathway, steroid hormone mediated signal-
ing pathway, and wound healing.

The analysis of TFs involved in TF-miRNA coregulation
network indicates that these TFs regulate OLP related bio-
logical processes and play important roles in promoting the
progression and development of OLP.

4. Conclusion

The potential malignant transformation of oral lichen planus
(OLP) to oral cancer makes it demanding to understand the
pathogenesis of this disease. In this paper, we introduced
a novel approach to identify the TF-miRNA coregulation
network that plays important roles in OLP. Unlike traditional
approaches, the regulatory circuit we detected here provides
new insights into observing disease associated patterns.
The overlap between known OLP associated genes and our
identified module genes implies that these gene modules are
significantly related to OLP. The discriminative capacity of
these modules in separating OLPs from controls confirms
again the important roles of these modules in OLP and
their potential as disease associated pattern. In addition, the
regulators of these gene modules, including transcription
factors and miRNAs, were also found to play important roles
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Figure 3: The regulatory relationship between miRNA and their targets in our regulatory network.

in the manifestation and progression of OLP, indicating their
potential as new therapeutic targets when treating OLPs.
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