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ABSTRACT

Recent studies have revealed significant roles of
RNA structure in almost every step of RNA pro-
cessing, including transcription, splicing, transport
and translation. RNase footprint sequencing (RNase-
seq) has emerged to dissect RNA structures at the
genome scale. However, it remains challenging to
analyze RNase-seq data because of the issues of
signal sparsity, variability and correlations among
various RNases. We present a probabilistic frame-
work, joint Poisson-gamma mixture (JPGM), for in-
tegrative modeling of multiple RNase-seq profiles.
Combining JPGM with hidden Markov model allows
genome-wide inference of RNA structures. We apply
the joint modeling approach for inferring base pairing
states on simulated data sets and RNase-seq profiles
of the double-strand specific RNase V1 and single-
strand specific RNase S1 in yeast. We demonstrate
that joint analysis of V1 and S1 profiles outputs in-
terpretable RNA structure states, while approaches
that analyze each profile separately do not. The joint
modeling approach predicts the structure states of
all nucleotides in 3196 transcripts of yeast without
compromising accuracy, while the simple threshold-
ing approach misses 43% of the nucleotides. Fur-
thermore, the posterior probabilities outputted by
our model are able to resolve the structural ambi-
guity of ≈300 000 nucleotides with overlapping V1
and S1 cleavage sites. Our model also generates
RNA accessibilities, which are associated with three-
dimensional conformations.

INTRODUCTION

Determining the molecular structure of RNA is important
for understanding its function and regulation (1). Compu-
tational prediction of RNA structure solely based on se-

quence does not take various real situations (e.g. in vitro
and in vivo folding) into account (2–5). While traditional ex-
perimental methods (such as X-ray crystallography (6), nu-
clear magnetic resonance (7) and cryo-electron microscopy
(8)) allow one to probe the structure of one RNA of a lim-
ited length at a time, structural measurement of the entire
transcriptome (i.e. the RNA structurome (9)) is recently ad-
vanced by the utilization of high-throughput sequencing
technologies (10–18). Once properly combined with exper-
imental data, computational models can dramatically in-
crease the accuracy of RNA secondary structure predic-
tion (19–22). The successful extraction of structural features
from high-throughput sequencing experimental data is key
for genome-scale reconstruction of RNA secondary struc-
ture (20,23).

One of the most desired RNA structural features is the
landscape of double- and single-strandedness across the
transcriptome. Paired and unpaired bases extracted from
RNA structure mapping experiments are often used as
constraints (19) or guidelines (20) for improved RNA sec-
ondary structure reconstruction. The paired or unpaired
state of a nucleotide can also be used as a feature for learn-
ing RNA motifs that are targeted by RNA binding proteins
(20,24,25). Yet, it remains challenging to learn RNA struc-
tural features from high-throughput RNA structure map-
ping data effectively, due to the lack of the understanding of
biases and noises in these assays. RNase footprinting cou-
pled with high-throughput sequencing (RNase-seq), one of
the most popular RNA structure mapping methods, cleaves
structure-specific regions with specific RNases and con-
verts the isolated RNAs into cDNA libraries for next gen-
eration sequencing processing. The reagents that are com-
monly used include the double-strand specific RNase V1
(10,14) and the single-strand specific S1 nuclease (10,11),
etc. Comparing to using a single RNase, the use of a com-
bination of complementary RNases provides more cover-
age of the transcriptome and the characterization of both
double- and single-stranded bases (10,14). For example, the
parallel analysis of RNA structure (PARS) approach (10)
compares the RNase-seq profile of V1 versus that of S1, and
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Figure 1. Histogram of the Spearman correlation coefficient (SCC) be-
tween the read counts of V1 and S1 RNase-seq profiles per transcript in
yeast.

uses the log-ratio score of the normalized read counts de-
rived from the two enzymes to estimate the relative double-
strandedness of each nucleotide. In the yeast PARS study
(10), the log-ratio score represents the interrogation of 57%
of all nucleotides in the yeast transcriptome, comparing to
45% or 34% of using V1 or S1 alone.

The analysis of RNase-seq profiles poses significant chal-
lenges for statistical modeling. RNase-seq signals demon-
strate extensive variability, likely affected by a number of
factors other than the double- and single-strandedness. It is
notable that transcript abundance could affect the chance
of RNase cleavage and result in sparsity in the signal pro-
files. To overcome the sparsity, it is suggested to use a cutoff
of on average one mapped read per base to filter lowly ex-
pressed transcripts (23). But signal sparsity still exists with
this coverage cutoff. In addition, RNase cleavage could be
affected by properties at the single-nucleotide level. For ex-
ample, the V1 and S1 read counts in the yeast PARS data
(10) are positively correlated both across the whole tran-
scriptome (Spearman correlation coefficient (SCC) = 0.37)
and among individual bases within one transcript (Figure 1,
P-value = 2.61 × 10−288 under t-test), which seems to con-
tradict the opposite structure preferences that V1 and S1
are supposed to have. It suggests that some shared factors
other than double- or single-strandedness are affecting the
cleavage of both V1 and S1 at the single-nucleotide level.
For instance, the spatial accessibility of individual bases of
an RNA may affect the cleavage of RNases. Nucleotides lo-
cated at inside-facing or compact regions of the folded RNA
may not be cleaved as easily as those located in outside-
facing or loose regions. Another source of RNase-seq signal
variability lies in the intrinsic properties of RNases which
prevent them from cleaving bases continuously. For exam-
ple, at least two and usually three residues are required on ei-
ther side of the hydrolysis site to be recognized by RNase V1
(26). Thus, traditional approaches (10) that treat individual

nucleotides independently are insufficient for genome-wide
inference of RNA structural features from RNase-seq data.

In this study, we present a probabilistic framework for
joint analysis of multiple RNase-seq profiles of the whole
transcriptome. We test our model on simulated data sets
and the RNase-seq profiles of V1 and S1 in yeast (10). We
demonstrate that our joint modeling approach yields higher
accuracy for inferring RNA structure states compared to
approaches that modeling each data set independently or
ignoring the correlation among adjacent nucleotides. In ad-
dition, our model provides the first genome-wide inference
of RNA spatial accessibilities, which are shown to be asso-
ciated with RNA three-dimensional (3D) structure confor-
mation.

MATERIALS AND METHODS

Overview

Our modeling framework is illustrated in Figure 2. It takes
the mapped read counts of complementary RNase-seq data
(such as V1 and S1) of the whole transcriptome, and mod-
els them by a novel joint Poisson-gamma mixture (JPGM)
model with a nucleotide-specific common effect of RNA
accessibility. As a trade-off of model complexity and data
availability, we implement three components in the model,
in which the component coefficients are learned from the
data. With V1 and S1 RNase-seq data, we expect the three
components correspond to three structure states: double-
strand, single-strand and inaccessible-for-cleavage, which
will be determined by the learned component coefficients.

RNase-seq signals of adjacent nucleotides in a transcript
are correlated, as a result of clustered single-stranded or
double-stranded nucleotides. Thus far there are no meth-
ods to characterize the within-nucleotide correlations in
RNase-seq data. For simplicity, we model the adjacent nu-
cleotides along a transcript as a Markov chain. That is, the
structure state of one nucleotide is associated with the state
of the nucleotide before it, which can be characterized by
a transition probability matrix in Markov chain. We com-
bine JPGM with the hidden Markov model (HMM) such
that consecutively double- or single-stranded regions have
a greater probability of being inferred. We then use the
expectation-maximization (EM) algorithm to infer all the
parameters automatically, and output the posterior proba-
bilities of the structure states at the single-nucleotide reso-
lution. Thus, the structure states of all the nucleotides in a
transcriptome can be inferred probabilistically.

JPGM model

We model the nucleotide-specific read counts of RNase-seq
by the following JPGM model:

ni jt|zi j = k ∼ Poisson(μi j tk), t = 1, 2; k = 1, 2, 3

ln(μi j tk) = dt + ln(λi ) + αi j + βtk, t = 1, 2; k = 1, 2

μi j t3 ≡ 0, t = 1, 2

exp(αi j ) ∼ �(k∗, k∗), i = 1, ..., N; j = 1, ..., li .

Here nijt is the integer-valued read count of the jth nu-
cleotide in transcript i cleaved by RNase t (i.e., t = 1 for V1
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Figure 2. The framework of integrating complementary RNase-seq profiles for genome-wide inference of RNA structure.

and t = 2 for S1). li represents the length of transcript i. �i
represents the transcript abundance. dt represents a global
parameter characterizing the sequencing depth. We set d1 =
0 and d2 as the log-ratio of the total read count of S1 over
that of V1.

zi j indicates the nucleotide’s structure state k to be
learned from the combined RNase-seq profiles. We expect
that k = 1 or 2 corresponds to double- or single-strand
states depending on the estimated model parameters, given
that V1 is double-strand specific and S1 is single-strand
specific. We set k = 3 as an inaccessible-for-cleavage state
with a degenerate distribution valued at 0. �tk represents
the relative difference in the average V1 and S1 read counts
among the structure states with �11 = 0 for model recogni-
tion. Examining of the estimated model parameters �tk will
allow one to check whether the inferred three-component
RNA structure states are consistent with the specificity of
V1 and S1. For example, if �11 > �12 and �11 > �21, then
the first component may represent the double-strand state
since it is favorable to V1. Similarly. if �22 > �12 and �22 >
�21, then the second component may represent the single-

strand state since it is favorable to S1. �ij, the RNA accessi-
bility of the jth nucleotide in transcript i, is modeled with
a gamma distribution of equally valued shape and scale.
The effect of �ij can be averaged out across nucleotides, i.e.
E(exp (�ij)) = 1 under �(k*, k*), where k* is the disper-
sion parameter reflecting signal variation across nucleotides

since Var (ni jt|zi j = k) = μi j t + μ2
i j t

k∗ . The smaller k* is, the
more dispersed the data are. We model �ij in JPGM using
the gamma distribution with the unknown parameter k* to
be estimated so that it can capture the variability in RNase-
seq flexibly.

Denote vi j = exp (�ij) and �itk = �iexp (dt + �tk), inte-
grating vi j we get (see Supplementary Material for detailed
derivation):

P(ni j1, ni j2|zi j = k, d, βtk, k∗, λi )

=�(ni j1 + ni j2 + k∗)
ni j1!ni j2!�(k∗)

μ
ni j1

i1k μ
ni j2

i2k (k∗)k∗

(μi1k + μi2k + k∗)ni j1+ni j2+k∗ .
(1)

Hence we derive the joint distribution of V1 and S1 read
counts. The JPGM model explicitly considers the shared
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influence of RNA accessibility on the cleavage of different
RNases. It is easy to show that when k* goes to infinity,
the JPGM model becomes the Poisson mixture model, in
which the influence of RNA accessibility is negligible. The
marginal distributions of JPGM are both negative binomial
(NB). But the joint distribution is not NB and the two read
counts are correlated through a shared latent variable �ij.
Each nucleotide’s two read counts (nij1, nij2) then follow a
three-component mixture model as follows:

P(ni j1, ni j2|d, βtk, k∗, λi )

=
3∑

k=1

φi jk
�(ni j1 + ni j2 + k∗)

ni j1!ni j2!�(k∗)
μ

ni j1

i1k μ
ni j2

i2k (k∗)k∗

(μi1k + μi2k + k∗)ni j1+ni j2+k∗ ,
(2)

where �ijk = P(zi j = k), i.e. the mixture portion of structure
state k (

∑3
k=1 φi jk = 1) at the jth nucleotide of transcript i.

HMM implementation

We treat each transcript as a hidden Markov chain whose
observations are the V1 and S1 reads counts per nucleotide
and the hidden states are the aforementioned double-
strand, single-strand and inaccessible-for-cleavage. Denot-
ing the initial distribution of RNA structure states as π and
the transition probability matrix as P. π , P and the mixture
portion �ijk as well as the probabilities of the structure states
for each nucleotide given the observations can be estimated
by the Bauma-Welch algorithm (27).

The nucleotide-specific RNA accessibility �ij = log (vi j )
can be inferred through the posterior distribution of vi j (see
Supplementary Material for detailed derivation):

f (vi j |ni j1, ni j2, d̂, β̂tk, k̂∗, λ̂i , π̂ , P̂)

=
3∑

k=1

pi jkGamma(ni j1 + ni j2 + k∗, μi1k + μi2k + k∗),
(3)

where pi jk = φi jk P(ni j1,ni j2,d̂,β̂tk,k̂∗,λ̂i ,π̂ , P̂|zi j =k)∑3
k′=1 φi jk′ P(ni j1,ni j2,d̂,β̂tk,k̂∗,λ̂i ,π̂ , P̂,|zi j =k′)

. vi j is esti-

mated by the mode of its posterior distribution.

EM algorithm

We use the EM algorithm to estimate all the parameters it-
eratively. The description of the algorithm is as follows (see
Supplementary Material for detailed derivation):

(1) Initialize the global parameter β
(0)
tk , k*(0) by fitting a non-

HMM JPGM model through the EM algorithm using
nucleotides that are cleaved by at least one of the two en-
zymes. Denote � as all the parameters concerned.
Initialize z̄(0)

i jk = P(zi j = k|ni jt, θ
(0)) according to the pos-

terior probability given by EM for nucleotides with non-
zero reads. For those with no reads, sample randomly
from (0,1).
And initialize P(0) and π (0) by random.

(2) (M-step 1) Set l = 1, λ
(l)
i = a(l)

i1 /2 +
√

(a(l)
i1 )2 + a(l)

i2 , in
which

a(l)
i1 =

li∑
j=1

z̄(l−1)
i j1 (ni j1 + ni j2) − z̄i j2k∗(l−1)

1 + exp(d2 + β
(l−1)
21 )

+ z̄(l−1)
i j2 (ni j1 + ni j2) − z̄i j1k∗(l−1)

exp(β(l−1)
12 ) + exp(d2 + β

(l−1)
22 )

;

a(l)
i2 = k∗(l−1) ∑li

j=1(z̄(l−1)
i j1 + z̄(l−1)

i j2 )(ni j1 + ni j2)

(1 + exp(d2 + β
(l−1)
21 ))(exp(β(l−1)

12 ) + exp(d2 + β
(l−1)
22 ))

.

(4)

(3) (E-step) Update z̄(l)
i jk by � ik(j) calculated through the

Bauma-Welch algorithm (27) on transcript i given β
(l−1)
tk ,

k*(l − 1), P(l − 1), 	(l − 1) and λ
(l)
i fixed. Here

γik( j ) = P(zi j = k|ni j ′t, j ′ = 1, ..., li ; t = 1, 2, θ (l−1)).

(4) (M-step 2) Update π (l) by averaging all � ik(1). And up-

date P(l) by P(l)
kk′ =

∑
i

∑
j ξikk′ ( j )∑

i

∑
j γik( j ) , with ξikk′( j ) calculated

through the forward-backward algorithm on transcript
i (i = 1,...,N), given fixed β

(l−1)
tk , k*(l − 1) and λ

(l)
i . Here

ξikk′( j ) =
P(zi j=k, zi ( j+1)=k′|ni j ′t, j ′=1, ..., li ; t = 1, 2, θ (l−1))

k = 1, 2, 3; k′ = 1, 2, 3. (5)

(5) (M-step 3) Update β
(l)
tk and k*(l) by optimizing the ex-

pected value of the log-likelihood function

N∑
i=1

li∑
j=1

2∑
k=1

z̄(l)
i jk(

ni j1+ni j2−1∑
u=0

ln(u + k∗) + k∗ ln(k∗)

+ ni j1 ln(μi1k) + ni j2 ln(μi2k)

− (ni j1 + ni j2 + k∗) ln(μi1k + μi2k + k∗)).

(6)

(6) l → l + 1, return to the second step and repeat the cycle
until the criteria for convergence are met.

RESULTS

Results on simulated data

We simulated 1000 hidden Markov chains whose lengths
vary from 200 to 2000, with observations as simulated V1
and S1 read counts and three hidden states as double-strand
(enriched in V1 but not S1), single-strand (enriched in S1
but not V1) and inaccessible-for-cleavage (degenerate at 0 in
both V1 and S1). The hidden states are sampled according
to predefined initial distribution and transition probability
matrix specified in Table 1 and 2, respectively. We sampled
transcript abundance �i (ranging from 2 to 300) from a uni-
form distribution. Then we fitted the JPGM model using
both the simulated V1 and S1 data sets. To demonstrate the
advantage of modeling both data sets jointly versus mod-
eling each data set alone, we also fitted the NB model on
the V1 and S1 data sets separately. The structure states are
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inferred by assigning each nucleotide to the state with the
highest posterior probability. We compared the predicted
structure states with the corresponding true structure states
and calculated the prediction accuracy as the percentage of
true structure states that are correctly predicted. As shown
in Table 1, the accuracy is 0.99 by fitting V1 and S1 jointly,
while it is only 0.51 or 0.76 by fitting V1 or S1 alone. We also
compared the estimated parameters to the true parameters,
i.e., P, π , β and k* in Table 1. The estimated parameters
are much closer to the true parameters by fitting V1 and
S1 jointly compared to fitting V1 or S1 alone. This suggests
that joint modeling borrows information from both V1 and
S1, thus improves the model fitting.

To test whether the JPGM model is sensitive to poten-
tially different parameters in different transcripts, we ap-
plied it to diverse settings of parameters across transcripts.
Specifically, we varied the initial distribution π , the transi-
tion probability matrix P and the dispersion parameter k*
across different transcripts. We let π and each row of P fol-
low a Dirichlet distribution Dir (α), where the parameters α
are 10 times of the values presented in the ”mean” row of π
and P in Table 2. We sampled k* from the uniform distribu-
tion on the interval [0,1] for each transcript. We then fitted
the JPGM model on this data set with identical parameter
settings for all transcripts. It can be seen from Table 2 that
the estimated parameters are close to the true means. The
estimated structure components still maintain the relative
levels of V1 and S1. The accuracies of the structure state
predictions also remain high. This simulation study demon-
strates that the JPGM model is robust to variability among
different transcripts.

Furthermore, we tested whether the JPGM model is ro-
bust to erroneous data which mimic real situations. We sim-
ulated noisier data sets with reduced transcript abundance
�i ranging from 2 to 30 from a uniform distribution. To in-
troduce errors, we randomized a series of percentages (be-
tween 0 and 1) of the V1 and S1 signals. Then we compared
the prediction accuracy of the JPGM model and the log-
ratio score of V1 ans S1 read counts per nucleotide (10).
The accuracies of the predictions of JPGM along the ran-
domized percentages are consistently higher than those of
the log-ratio score (Figure 3), which demonstrates the ro-
bustness of the JPGM model on erroneous data.

Results on yeast RNase-seq data

We applied the JPGM model to infer the structure states
at single-nucleotide resolution for the entire yeast tran-
scriptome using the available V1 and S1 RNase-seq data
sets (10). We downloaded the original RNase-seq data of
yeast from GEO (Accession No. GSE22393) with all the
replicates pooled together. There are 3196 transcripts cap-
tured with nucleotide coverage (average read count per nu-
cleotide) ≥ 1. These are composed of 2 015 605 nucleotides
cleaved by V1 and 1 498 414 nucleotides cleaved by S1. Over
1.9 million nucleotides in the 3196 transcripts are cleaved by
neither V1 nor S1, leaving 43% of all nucleotides unread. As
a result, when using each of these enzymes alone to probe
the structure of RNA, V1 yields a relatively wider cover-
age of nucleotides and S1 covers a narrower range of nu-
cleotides. But neither of them alone produces enough cov-

Figure 3. Robustness on erroneous data. The accuracies of the predictions
of JPGM and the log-ratio score on simulated data sets with randomized
percentages of V1 and S1 signals varying from 0 to 1.

erage for genome-wide probing of RNA structure. Fitting
the JPGM model jointly with both the V1 and S1 data
sets greatly expands the coverage of structure states for nu-
cleotides in the 3196 transcripts.

Parameter estimation. The parameter estimations of fit-
ting V1 and S1 jointly in the JPGM model are presented
in Table 3. Notably, examining the estimated �tk (the over-
all level of component k on enzyme t), we found that the
inferred components have interpretable meanings. On one
hand, �11 = 0 > �12 = −1.02 and �11 = 0 > �21 = −2, which
suggests that the first component represents the double-
stranded state since the double-strand specific enzyme V1
is favored. On the other hand, �22 = 0.94 > �12 = −1.02
and �22 = 0.94 > �21 = −2, which suggests that the sec-
ond component is the single-stranded state since the single-
strand specific enzyme S1 is favored. To investigate whether
the shared mixing effect �ij plays an important role in deriv-
ing the above parameter estimates, we simplified the JPGM
model to a Poisson mixture model, which does not include
the accessibility �ij. As shown in Table 3, the Poisson mix-
ture model does not produce interpretable component pa-
rameters since �12 < �11 < �21. It suggests that RNase-seq
data do yield useful information on RNA structure but that
appropriate models (such as JPGM) are required to account
for the spurious correlation between RNase-seq profiles.

By fitting the JPGM model, we obtained the posterior
probabilities of the three structure states (double-strand,
single-strand and inaccessible-for-cleavage) at single-
nucleotide resolution across the entire yeast transcriptome.
As a comparison, the log-ratio score (10) is undefined for
43% of nucleotides with neither V1 nor S1 signals. The
representative structure states of each nucleotide can be
predicted by assigning the structure state according to the
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Table 1. Simulation results of the comparisons of parameter estimates and predictive accuracies obtained from fitting the simulated V1 and S1 data sets
jointly (the JPGM model) or individually (the NB model)

Parameter P π β k* Accuracy

Real values

⎛
⎝ 0.70 0.20 0.10

0.10 0.85 0.05
0.02 0.11 0.87

⎞
⎠

⎛
⎝ 0.32

0.42
0.26

⎞
⎠

(
0 1.69

2.25 −0.08

)
0.5 -

Est-V1+S1

⎛
⎝ 0.71 0.20 0.09

0.10 0.86 0.04
0.02 0.11 0.87

⎞
⎠

⎛
⎝ 0.31

0.42
0.27

⎞
⎠

(
0 1.17

2.25 −0.43

)
0.44 0.99

Est-V1

⎛
⎝ 0.72 0.22 0.06

0.19 0.74 0.07
0.05 0.07 0.88

⎞
⎠

⎛
⎝ 0.51

0.23
0.26

⎞
⎠ 0.3 0.42 0.51

Est-S1

⎛
⎝ 0.74 0.14 0.12

0.14 0.85 0.01
0.04 0.08 0.88

⎞
⎠

⎛
⎝ 0.36

0.41
0.26

⎞
⎠ -0.14 0.33 0.76

Table 2. Simulation results of the sensitivity of the JPGM model over varying P, π and k*

Parameter P π β k* Accuracy

Mean

⎛
⎝ 0.70 0.20 0.10

0.10 0.85 0.05
0.02 0.11 0.87

⎞
⎠

⎛
⎝ 0.32

0.42
0.26

⎞
⎠ (

0 1.69
2.25 −0.08

)
0.5 -

Varying P&π

⎛
⎝ 0.75 0.18 0.07

0.08 0.89 0.03
0.01 0.07 0.92

⎞
⎠

⎛
⎝ 0.31

0.43
0.26

⎞
⎠ (

0 1.28
2.25 0.51

)
0.45 0.98

Varying k*

⎛
⎝ 0.69 0.19 0.12

0.09 0.84 0.07
0.02 0.11 0.87

⎞
⎠

⎛
⎝ 0.29

0.42
0.29

⎞
⎠ (

0 1.10
2.25 −0.60

)
0.37 0.93

Table 3. Parameter estimation using the V1 and S1 RNase-seq data sets in yeast under different model settings

Model P π β k*

JPGM

⎛
⎝ 0.87 0.11 0.02

0.31 0.68 0.01
0.11 0.01 0.88

⎞
⎠

⎛
⎝ 0.44

0.30
0.26

⎞
⎠

(
0 −1.02

−2 0.94

)
0.45

Poisson mixture

⎛
⎝ 0.48 0.52 0.00

0.05 0.79 0.16
0.00 0.32 0.68

⎞
⎠

⎛
⎝ 0.05

0.53
0.42

⎞
⎠ (

0 −2.06
0.56 −2.88

)
–

highest posterior probability in the fitted JPGM model.
Using this approach, we obtained the proportions of the
three structure states in the entire yeast transcriptome,
in which 64% are double-strand, 23% are single-strand
and 13% are inaccessible-for-cleavage. This is consistent
with the equilibrium distribution of the inferred transition
probability matrix P. The structure state proportions
indicate that over half of the nucleotides across the yeast
transcriptome are double-stranded with just a very small
portion of nucleotides representing regions that are totally
inaccessible for cleavage. This suggests that RNAs need
to be well-structured to support their functional roles.
By comparing the initial distribution and the equilibrium
distribution of the structure states, we found decreased
probability of the double-strand (	1 = 0.44 versus 0.64)
and increased probability of the single-strand (	2 = 0.30
versus 0.23) in the initial distribution, which is consistent
with the observation that the 5′ end of transcripts are less
paired compared to gene body in yeast (20). The higher
probability of the inaccessible-for-cleavage state (	3 = 0.26
versus 0.13) in the initial distribution reflects the fact of
limited cleavage of the 5′ end regions in RNase-seq (10).

Genome-wide assessment using computational predictions of
RNAfold. We sought to assess the genome-wide predic-
tions of RNA structure states from the JPGM model. Given
that there is no established large-scale experimental bench-
mark for RNA structures of the whole yeast transcriptome,
we constructed a genome-scale benchmark using compu-
tational prediction of RNAfold in the ViennaRNA Pack-
age 2.0 (28). Specifically, we used RNAfold to calculate the
base pairing probability matrix (BPPM) for each of the 3196
yeast transcripts. Then the pairing probability of each nu-
cleotide is calculated as the sum of the corresponding row
in the BPPM of the transcript it belongs to. Note that most
transcripts’ lengths are less than 2000 nt (Supplementary
Figure S1) and all are well below the current length limit
of RNAfold (28). We then defined a conservative set of 611
465 double-stranded nucleotides by setting a threshold of
pairing probability larger than 0.99, and a conservative set
of 190 753 single-stranded nucleotides with pairing prob-
ability smaller than 0.01. We set such conservative cutoffs
rather than use all nucleotides so that only nucleotides with
high probabilities of being paired or unpaired are used,
which reduces the uncertainty. To obtain the receiver op-
erating characteristic (ROC) curve, we varied the cutoff on
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the double-strand posterior probabilities outputted by the
JPGM model. We calculated the sensitivities as the percent-
ages of correctly predicted double-stranded nucleotides and
specificities as the percentages of correctly predicted single-
stranded nucleotides. To test whether jointly modeling the
V1 and S1 data sets together outperforms modeling each
data set separately, we fitted the NB model using the V1
data set alone and the S1 data set alone, respectively. Also,
to test whether the sophisticated JPGM model has advan-
tages over the simple log-ratio score approach, we varied
the cutoff on the log-ratio score to calculate the sensitivities
and specificities. The ROC curves of the four approaches are
shown in Figure 4A. It can be seen that the JPGM model
fitted with the V1 and S1 data sets jointly performs the best
(area under the ROC curve (AUC) = 0.71), while the log-
ratio score has the lowest accuracy (AUC = 0.58) together
with the NB model fitted by the V1 data set alone. When we
filtered transcripts with more stringent nucleotide coverage
cutoffs 10 and 100, the AUCs of the JPGM model are con-
sistently higher than others (Supplementary Figure S2). We
also made comparisons on common regions that are cleaved
by RNases (nucleotides with nonzero reads count from V1
or S1). It is shown that the JPGM model still outperforms
the other three methods, while the log-ratio score performs
better than modeling V1 or S1 alone when only the RNase-
cleaved nucleotides are concerned (Supplementary Figure
S3).

RNase cleavage conditions may be different for RNAs of
different lengths (9). To investigate whether RNA structure
inference from RNase-seq is affected by transcript length,
we binned transcripts according to their lengths and calcu-
lated AUCs of the four methods in each binned group (Fig-
ure 4B). Clearly the JPGM model outperforms the other
three in all groups and its accuracy is consistent in differ-
ent length ranges. By contrast, the accuracy of the log-ratio
score decreases quickly as the transcript length increases.
These comparisons demonstrate that the JPGM model pre-
dicts RNA structure states from RNase-seq data more ac-
curately than marginal methods or the log-ratio score and
is less affected by transcript length.

The advantages of the JPGM model over the log-ratio score.
The improved performance of the JPGM model over the
log-ratio score lies in its probabilistic nature considering
both the absolute and relative amounts of read counts of
V1 and S1, as well as the dependence among adjacent nu-
cleotides. To illustrate the advantages of the JPGM model,
we examined seven yeast RNAs (RDN58, snR10, snR33,
snR37, snR46, snR3 and snR81) with multiple alignments
across species available in the Rfam database (29). We used
PETfold (30), a comparative folding tool, to obtain consen-
sus RNA structure states from multiple alignments as refer-
ences. We also extracted the consensus RNA structure states
directly from Rfam (29). We found that the JPGM model
outperforms the other approaches, with a larger proportion
of predictions validated by the PETfold or Rfam reference
structures (Supplementary Figure S4). We further extracted
a conservative RNase-cleaved set of 52 single-stranded nu-
cleotides in the seven RNAs with PETfold single-strand re-
liability over 0.99, and 65 double-stranded nucleotides with
single-strand reliability below 0.01. On this conservative

Figure 4. Genome-wide assessment of RNA structure inference with re-
spect to the RNAfold benchmark . (A) The ROC curves and AUCs of
the four approaches. (B) The AUCs of the four approaches under differ-
ent ranges of transcript length. The transcripts are binned into five groups
based on transcript length. JPGM: predictions based on the posterior
probabilities of the JPGM model applied to V1 and S1 jointly; NB-V1:
predictions based on the posterior probabilities of the NB model applied
to V1 only; NB-S1: predictions based on the posterior probabilities of the
NB model applied to S1 only; Log-ratio: predictions based on the log-ratio
score of V1 versus S1 signals.

benchmark data set, the validated percentage of the pre-
dictions from the JPGM model is notably higher than that
from the log-ratio score, or from the NB model fitted by V1
or S1 alone (Figure 5A). Among the seven RNAs, snR81
has the lowest average nucleotide coverage as well as a high
sparsity (the percentage of uncleaved nucleotides; Supple-
mentary Table S1) and was chosen as an example to vi-
sualize predictions from JPGM and the log-ratio score at
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Figure 5. Assessment of RNA structure inference with respect to the PETfold benchmark. (A) The validation proportions of predictions on RNase-cleaved
nucleotides in the seven RNAs based on conservative PETfold reliability cutoffs. (B) Illustration of the improved prediction of the JPGM model over the
log-ratio score on 91–109 nucleotides of the snR81 RNA. The top row shows the stacked bar plot of V1 and S1 signals per nucleotide. The other three rows
are structure states from the log-ratio score, the JPGM model and the PETfold reference structure. For the log-ratio score, a cutoff of zero is used for calling
the structure state. For JPGM, NB-V1 and NB-S1, the structure states are inferred by the maximum posterior probabilities. Red represents double-strand
state. Green represents single-strand state. Gray represents nucleotides missed by the log-ratio score.

single-nucleotide level. A region within snR81 is manually
selected such that the V1 and S1 read counts demonstrate
notable sparsity and variability and the PETfold reference
structure contains consecutive single-stranded and double-
stranded nucleotides. The structure state predictions from
the log-ratio score and the JPGM model were plotted along
with the PETfold reference structure states for the region
(Figure 5B). The log-ratio score is undefined in nucleotides
with neither V1 nor S1 read counts. Thus, it makes no pre-
dictions for three nucleotides in this region (shown in gray).
The JPGM model correctly predicted the structures states
of all these three nucleotides comparing to the PETfold ref-
erence structure. In addition, as the log-ratio score is sen-
sitive to small read counts, it wrongly predicts the struc-
ture states of two nucleotides (positions 94 and 99), while
the JPGM model recovers them due to the consideration of
dependences among adjacent nucleotides. We noticed that
there is still one nucleotide that both the log-ratio score and
the JPGM model predict to be single-stranded while it is
double-stranded in the PETfold reference structure. The S1
signal is much stronger comparing to the V1 signal at this
nucleotide. In the PETfold reference structure, this position

takes the form of A-U pairing, which has only two hydrogen
bonds and is less stable than G-C pairing such that it might
not be stably paired in reality. Alternatively, there might be
potential errors in the RNase-seq signal.

Structure states of nucleotides with overlapping V1 and S1
cleavage sites. We further examined the structure states of
≈300 000 nucleotides with overlapping cleavage sites of V1
and S1 (10). These nucleotides are either ‘unstable’ (having
multiple conformations) or in single-stranded regions that
can also be cleaved by RNase V1. These two scenarios can
not be distinguished by the log-ratio score (Figure 6A). To
distinguish between these hypotheses, we plotted the distri-
bution of the posterior probabilities of the double-strand
state (i.e. the paring probabilities) resulted from the JPGM
model over the ≈300 000 nucleotides. Intriguingly, the ‘bell’
shape of the pairing probabilities suggests that most of these
nucleotides are in one dominant structure state (Figure 6B).
There are about three quarters of nucleotides with a pairing
probability lower than 0.1 or higher than 0.9. We further
examined the pairing probabilities of all nucleotides of the
yeast transcriptome outputted by the JPGM model (Fig-
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Figure 6. Comparison of the log-ratio score and the JPGM-derived base pairing probabilities. (A) Histogram of the log-ratio scores for the nucleotides with
overlapping V1 and S1 cleavage sites; (B) Histogram of the base pairing probabilities derived from the JPGM model for the nucleotides with overlapping
V1 and S1 cleavage sites; and (C) Histogram of the base pairing probabilities derived from the JPGM model for all nucleotides in the yeast transcriptome.

ure 6C). We found that the nucleotides with overlapping
V1 and S1 cleavage sites have a larger percentage of single-
strand state comparing to all nucleotides. There is still a
small percentage of nucleotides without obvious structure
preference, which may represent those in multiple structure
conformations.

RNA accessibility. We next investigated whether the RNA
accessibility �ij inferred by the JPGM model may reflect
RNA 3D structure conformation. To test this, we used
Chimera (31) to calculate the solvent accessible surface
area (SASA) for each nucleotide of the tRNA tE-UUC-B
given its available crystal structure in the Protein Data Bank
database (ID: 486D-E) (32). Higher SASA of a nucleotide
indicates higher accessibility to a solvent. We found a posi-
tive correlation (SCC = 0.19 and one-sided t-test P-value =
0.10) between SASA and �ij. We also collected seven RNAs
with known secondary structures and used RNAcomposer
(33) to computationally predict their tertiary structures and
calculated the SASA values. The SCCs between the SASA
values and �ij are all positive and most of the P-values are
low (Table 4). We also calculated an alternative measure-
ment of 3D structure conformation, the nearest neighbor
density estimation (KDE), for each nucleotide based on the
tertiary structures predicted by RNAComposer. The higher
the KDE is, the more compact and less accessible the nu-
cleotide is within a local region. The SCCs between the
KDE values and �ij are listed in Table 4. Consistently, all
the SCCs show negative correlations and low P-values. Al-
though the correlation coefficients are not very high, the
consistently low P-values across these RNAs exhibit a sig-
nificant association between the inferred RNA accessibility
and the two measurements of RNA 3D structure confirma-
tion. It suggests that the RNA accessibility �ij derived by the
JPGM model is associated with the 3D structure conforma-
tion of RNAs, i.e. the higher the �ij is, the less crowded the
local region of a nucleotide tends to be . In Figure 7, we
plotted the �ij values as a color scale to overlay with the 3D
structure of the snR33 RNA. It displays lower RNA acces-
sibility in tightly packed regions and higher accessibility in
loose regions. The low (but significant) correlations suggest

Figure 7. Overlay of RNA accessibilities estimated by the JPGM model
on the 3D structure of snR33

that RNA structure profiling using RNases (such as V1 and
S1) may be influenced by the 3D conformations of RNAs.
Therefore, the effect of 3D conformations of RNAs should
be taken into account when interpreting RNase-seq data.



9196 Nucleic Acids Research, 2015, Vol. 43, No. 19

Table 4. Correlation between �ij and the RNA 3D structure measurements SASA and KDE

RNA Cor-SASA P-value Cor-KDE P-value

RDN58-2 0.1069 0.1094 -0.1938 0.0124
SNR10 0.0736 0.1377 -0.1527 0.0116
SNR37 0.0970 0.0332 -0.1732 0.0005
SNR33 0.2612 0.0005 -0.4049 0.0000
SNR46 0.2095 0.0029 -0.3146 0.0000
SNR53 0.2214 0.0672 -0.2449 0.0486
SNR81 0.0164 0.4253 -0.1086 0.1056

DISCUSSION

In this study, we have developed the JPGM model to in-
fer RNA structures from joint modeling of complementary
RNase-seq profiles. The JPGM model captures the corre-
lation and variability of different RNases and the local de-
pendence among adjacent nucleotides along the transcripts.
We applied it to analyze the RNase-seq data of V1 and S1
jointly in the yeast transcriptome. It extracts interpretable
structural features ab initio from the ‘noisy’ nucleotide-level
read counts at the genome scale. Our model surmounts the
drawbacks of approaches that analyze V1 or S1 alone, or
simple take the log-ratio of the two signals. We have demon-
strated that the JPGM model correctly predicts a much
greater number of nucleotides while achieves higher accu-
racy than other alternatives. Our work illustrates the benefit
of integrative modeling of complementary RNase-seq data
(i.e. from both double-strand specific the single-strand spe-
cific RNases) for more accurate inference of RNA structure.
In general, our methodology is widely applicable to analyze
both in vitro and in vivo (15,34) RNase-seq data for RNA
structure analysis in any transcriptome. With extensions,
our approach can also be adapted to analyze other genomic
or transcriptomic profiles generated from high-throughput
sequencing.

We have used a conservative subset of RNAfold-derived
structure states as a benchmark for genome-wide assess-
ment. Comparative folding, although limited in the number
of RNAs in Rfam, is a promising alternative. Compared to
folding a single sequence, comparative folding algorithms
such as PETfold combines conservation information across
species and may achieve higher quality. As RNAs avail-
able for comparative folding grow in number, it will pro-
vide a valuable resource for large-scale validation of high-
throughput RNA structure profiling analysis methods.

One of the major advantages of the JPGM model over
previous approaches (such as the log-ratio score) is its in-
ferential nature. It models multiple RNase-seq data sets
with a unified probabilistic framework. It outputs the pos-
terior probabilities of different structure states for all nu-
cleotides simultaneously, which can then be prioritized into
specific classes using the maximum posterior probability.
The JPGM framework specifically models the correlation
between multiple RNase-seq profiles, as well as local de-
pendence among adjacent nucleotides, which are lacking in
previous approaches.

The JPGM model is able to learn multiple RNA structure
state components automatically. In principle, it can be gen-
eralized to learn any number of components. When applied
to the yeast RNase-seq data, the JPGM model learns three

components, which represent three structure states (double-
strand, single-strand and inaccessible-for-cleavage). Only a
small proportion of nucleotides have roughly equal poste-
rior probabilities of being either unpaired or paired states,
some of which may possess multiple conformations. In a
more dynamic environment, such as living cells, more com-
ponents may be explored to fully capture the complex con-
figurations of RNA structures.

The HMM implementation of the JPGM model is a sim-
plification of the structural associations among adjacent nu-
cleotides in one transcript. When more data are available,
such as the footprint sequencing profiles of more diverse
types of RNases, it can be extended to capture more com-
plex dependence structures among nucleotides. As the first
approach to capture the dependence among adjacent nu-
cleotides, the JPGM model already demonstrates dramatic
improvement over previous approaches such as the simple
log-ratio score.

When applying the JPGM model to the yeast RNase-
seq data sets, we obtain the first genome-wide estimation of
RNA accessibilities through the latently modeled variable
�ij, which is shown to be associated with RNA 3D structure
conformation. It points to the potential influence of RNA
3D structure on RNase cleavage. The low correlations sug-
gest that there might also be other effects, such as additional
experimental factors or sequence bias that affect RNase
cleavage. While the 3D structures of RNAs are largely un-
available, the genome-wide measurements of RNA accessi-
bility may play an important role for dissecting the func-
tional elements encoded in RNAs and deepening our un-
derstanding on the global RNA regulation.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We thank Yuping Zhang for critical reading and comment-
ing on the manuscript. We also thank the IT support of The
Jackson Laboratory for Genomic Medicine and the Univer-
sity of Connecticut for assistance.

FUNDING

The Jackson Laboratory for Genomic Medicine [to Z.O.].
Funding for open access charge: The Jackson Laboratory
for Genomic Medicine [to Z.O.].
Conflict of interest statement. None declared.

http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkv950/-/DC1


Nucleic Acids Research, 2015, Vol. 43, No. 19 9197

REFERENCES
1. Yoav,A., Yulei,W., John,D.S., Chih Long,L., Patrick,O.B. and

Daniel,H. (2003) Genome-wide analysis of mRNA translation
profiles in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A.,
100, 3889–3894.

2. Ding,Y. and Lawrence,C.E. (1999) A Bayesian statistical algorithm
for RNA secondary structure prediction. Comput. Chem., 23,
387–400.

3. Mathews,D.H., Sabina,J., Zuker,M. and Turner,D.H. (1999)
Expanded sequence dependence of thermodynamic parameters
improves prediction of RNA secondary structure. J. Mol. Biol., 288,
911–940.

4. Zuker,M. and Stiegler,P. (1981) Optimal computer folding of large
RNA sequences using thermodynamic and auxiliary information.
Nucleic Acids Res., 9, 133–148.

5. Zuker,M. (2003) Mfold web server for nucleic acid folding and
hybridization prediction. Nucleic Acids Res., 31, 3406–3415.

6. Guo,F., Gooding,A.R. and Cech,T.R. (2004) Structure of the
Tetrahymena ribozyme: base triple sandwich and metal ion at the
active site. Mol. Cell, 16, 351–362.

7. Latham,M.P., Brown,D.J., McCallum,S.A. and Pardi,A. (2005) NMR
methods for studying the structure and dynamics of RNA.
Chembiochem, 6, 1492–1505.

8. Mueller,F., Sommer,I., Baranov,P., Matadeen,R., Stoldt,M.,
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