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Abstract

Cellular regulatory networks are not static, but continuously reconfigure in response to sti-

muli via alterations in protein abundance and confirmation. However, typical computational

approaches treat them as static interaction networks derived from a single time point. Here,

we provide methods for learning the dynamic modulation of relationships between proteins

from static single-cell data. We demonstrate our approach using TGFß induced epithelial-

to-mesenchymal transition (EMT) in murine breast cancer cell line, profiled with mass

cytometry. We take advantage of the asynchronous rate of transition to EMT in the data and

derive a pseudotime EMT trajectory. We propose methods for visualizing and quantifying

time-varying edge behavior over the trajectory, and a metric of edge dynamism to predict

the effect of drug perturbations on EMT.

Introduction

Cellular identity is largely determined by the computations occurring in a cell: what inputs

does a cell sense, how it processes these inputs through regulatory networks and how it imple-

ments a response. Responses to environmental cues play a key role in development, cellular

differentiation and fate. Different cellular states therefore have altered input-output behavior.

A useful analogy is to imagine a cell as a logic circuit, with a clearly defined input-output map-

ping. In a cell, gene and protein interactions form the logic. If the input to the circuit changes

then the intermediate signals (levels of genes and proteins) may change, but the underlying cir-

cuitry is the same. What truly defines a cellular identity change, such as during differentiation,

development, or cancer progression is the reconfiguration of the logic itself.

In this work, we test and utilize this intuitive understanding by quantifying the rewiring of

the regulatory network along a progression of cells in single-cell data. We computationally
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align the cells into a one-dimensional trajectory, also known as “pseudotime” in literature [1–

3] to approximate the progression of cells along a real time axis, and study protein interactions

along it. We demonstrate our approach using the epithelial-to-mesenchymal transition

(EMT), which is a controlled state change system that naturally occurs during embryogenesis

and cancer progression but can be induced artificially. EMT can be initiated by an external

TGFß signal, resulting in signaling and transcriptional activation, followed by functional and

morphological changes. We study EMT using a mouse breast-cancer cell line [4, 5] measured

with mass-cytometry. TGFß-induced EMT is thought to involve the SMAD, MAPK and AKT

pathways, which activate multiple transcription factors such as Snail1, Slug, Twist and Zeb and

in turn their targets [6, 7], thereby altering the underlying regulatory network and response to

input stimuli. An example of altered input-output behavior in EMT is in cell adhesion signal-

ing. Epithelial cells can sense cell-cell adhesion and grow in response to that, while mesenchy-

mal cells do not process this information. This can be seen in the decrease in E-Cadherin

expression level, indicative of loss of cell-cell contact, as E-Cadherin is an archetypal protein

that mediates cell-cell adhesion [8].

In order to assess the rewiring of network, we quantify the change in association strength

between pairs of proteins (edges) during the EMT process. Such edges are based on statistical

dependencies and reflect direct or indirect phosphorylation or other specific biological mecha-

nisms. In particular, we first approximate the EMT progression by aligning cells onto a one-

dimensional trajectory using wanderlust [1], followed by quantification of changes in edge

strength continuously along the pseudotime. The construction of the pseudotime is facilitated

by the asynchronous nature of the transition and the availability of cells in all phases of EMT

on a single snapshot of data. To track signal strength along the wanderlust derived trajectory,

we extend our previously developed mutual-information based metric for quantifying edge

strength DREMI (conditional-Density Resampled Estimate of Mutual Information) [9] into a

metric to model the functional dependence of a protein on another protein and pseudotime.

In particular, for a given pair of assayed proteins X and Y, we model each cell with three coor-

dinates (1) pseudotime of the cell (2) abundance of X (3) abundance of Y, and by treating each

cell as a point of information we learn modulation in relationship between X and Y along

pseudotime. We call our metric Trajectory Interpolated DREMI Scores (TIDES) and use it to

analyze the ebb and flow of information in the network. We find that edges involved in EMT

change in their strength throughout the transition. We validate our edge modulation assess-

ment using perturbations that support our TIDES metric.

We therefore have a new dynamic network model where each edge has (pseudo)-time vary-

ing strength. This description of the network is significantly different than previous dynamic

models of edges such as Ordinary Differential Equations (ODEs) [10, 11] and has different

advantages. ODEs describe the model as being governed by differential equations where the

dynamics themselves are fixed, i.e., they carry a quasi steady-state assumption. Thus, they can-

not be directly applied to find the ways in which the network is rewired or actively repro-

grammed over time. Other approaches such as Bayesian networks [12] provide a static picture

of the network and are not able to quantify how a network changes over time. However, the

advantage of the time-varying view of a network is that most state changes such as EMT are

likely defined by a cascade of network reconfigurations before reaching a final state. That is,

different gene modules are turned off and on as differentiation occurs and this cannot be

encoded as a time invariant system based on measured variables.

If this is indeed the case, then a promising avenue for preventing undesirable end states is

to disrupt this rewiring process itself by inhibiting edges that are critical to the process as

defined by some measure of criticality, a notion we address in this manuscript. For this, we

also develop an edge criticality measure that takes into account the overall dynamism of the

Pseudo-time signaling dynamics in single cells
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edge. We validate this hypothesis with another type of perturbation: a chronic inhibition of the

protein kinase for 5 days and observe the fraction of cells transitioned at the end of 5 days as

an endpoint measurement, thus proving that our time varying view of the regulatory network

is amenable for finding perturbations, and potentially therapeutic targets.

Results

Measuring signaling during TGFß-induced EMT

To study the signaling network and phenotypic changes during EMT (Fig 1A), we used Py2T

murine breast cancer cells following chronic exposure to TGFß [13] (Fig 1B). Cells were sam-

pled daily in biological triplicate over a four-day TGFß time course. We used mass cytometry

[14] to assay transcription factors and signaling activity (phospho-protein abundance) in sin-

gle cells. A total of 32 markers were simultaneously measured, including three surface markers

and 29 intracellular markers (S1 Table). The markers were chosen to assess epithelial (high

expression of E-cadherin) and mesenchymal (high expression of Vimentin and CD44) states,

signaling activity of the SMAD, AKT, MAPK, WNT and NFκB pathways, EMT transcription

factors, cell cycle, and apoptosis (S1 Table).

Starting on day two, we observed a profound number of cells ranging from the epithelial to

the full mesenchymal state. Days two, three and four had 19%, 29% and 36% of cells in the

mesenchymal state (Fig 1C, Parts A and B of S1 Fig). The epithelial cells showed high levels of

E-cadherin. Cells labeled as mesenchymal recapitulated mesenchymal characteristics, includ-

ing loss of E-cadherin and gain of Vimentin. The transitioning cells exhibited intermediate

marker expression that shared both epithelial and mesenchymal characteristics, based on the

expression of E-cadherin, CD44 and Vimentin (Parts A-E of S2 Fig). Taken together, we

observed a continuum of cells from the epithelial to the mesenchymal state that implies a high-

degree of variability either in the rate of transition or in commitment of a given cell to the

EMT state. Therefore, rather than treating EMT as a two state-system, in all subsequent analy-

ses we treated the heterogeneous population of cells as a continual trajectory and ordered cells

along a pseudotime axis of EMT progression, inferred using the Wanderlust algorithm [1]. We

call the Wanderlust pseudotime ordering “EMT-time” (Fig 2A and 2B).

Extracting an EMT progression from static mass cytometry data via

wanderlust

Given multi-dimensional single cell data, Wanderlust infers a one-dimensional axis of progres-

sion and has been shown to recapitulate developmental trajectories [1, 15]. We applied Wander-

lust separately to cells from days two, three and four after EMT induction based on E-cadherin

and Vimentin. EMT-time recapitulated expected changes: E-cadherin showed a monotonic

decrease in abundance while Vimentin and CD44 showed a monotonic increase through the

transition (Fig 2B and Parts A-C of S3 Fig). The marker expression trend is robust across repli-

cates (mean cross-correlation > 0.86) (Part D of S3 Fig). Moreover, the inferred trajectories are

similar at different days following EMT induction. Part E of S3 Fig shows that the Wanderlust

trajectories are closely correlated between days 2, 3 and 4 (mean cross-correlation > 0.76), sug-

gesting that EMT-time might represent a cell-state that is agnostic to the day of measurement,

once the full range of cells from the epithelial to the mesenchymal state are present.

Signaling edges along EMT progression

Using the EMT progression, we studied the modulations of pairwise relationships in the data

or edges in the signaling network. Such relationships are based on statistical dependencies.

Pseudo-time signaling dynamics in single cells
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Studying the dynamics of protein expression and protein phosphorylation levels can tell us

which pathways are modulated. Studying an edge over time can tell us about how influences

between molecules and pathways change. We first compared a canonical edge pPLCγ2-

pMEK1/2 between the epithelial, transitional and mesenchymal states using DREMI and

DREVI [9] to quantify and visualize edge strength. Fig 2C and 2D illustrates how the expres-

sion of pMEK1/2 and pPLCγ2 and the relationship between them changes along EMT-time.

The DREMI score between pPLCγ2 and pMEK1/2 increases from 0.225 to 0.457 from the epi-

thelial to transitional state, and subsequently decreases to 0.275 as the cells approach the mes-

enchymal state (Fig 2D). Thus, the abundance of pPLCγ2 holds most information on pMEK1/

2 levels in the intermediate state: the same increase in the abundance of pPLCγ2 (from 1 to 3.5,

in the units of arc-sinh transformed protein abundance) corresponds to only a small increase

in the abundance of pMEK1/2 in epithelial cells (from 0.05 to 0.8) and mesenchymal cells

(from 1.4 to 2.3), but a higher increase in transitional cells (from 0.05 to 2).

We sought to confirm whether signaling relationships were more dependent on the actual

time point after TGFß induction of EMT (wall time), or on a cell’s position in the EMT pro-

gression as derived by Wanderlust (EMT-time). The latter is a possibility when different cells

progress at individual rates through a fixed EMT program. We binned cells into four stages

based on our inferred EMT-time (Fig 3A). For each bin, we computed DREMI scores for all

pairs of signaling proteins. We found a high mean correlation of 0.69 between the DREMI

scores across days (Fig 3B) when controlled for phase-of-transition (i.e., bins along EMT-

time). This result also holds true across various replicates (Part A of S4 Fig). This result sug-

gests that in our experimental system many signaling relationships are determined by the

phase, whereas differences in behavior between time points (wall time) in bulk measurements

largely derive from the different proportions of cells in each phase.

Since our data indicates a continuous trajectory with transitional cells between the epithelial

and mesenchymal states, we formulated a method to model how relationships between pro-

teins continuously rewire over the course of the EMT progression. We selected Day 3 as a rep-

resentative sample where cells were relatively uniformly spread throughout the transition. This

sets the stage for analysis of protein signaling relationships and their dynamics during the

EMT cell-state transition from a single snap-shot.

Inferring information modulation in edges

Given a particular signaling edge X-Y, the relationship involves X processing the information

it receives (cues via upstream proteins) and passing it onto Y via biochemical modifications

such as phosphorylation. This can be thought of as informational flow from X to Y. As a cell is

undergoing a drastic cell state transition such as EMT, such relationships could have different

behavior or strengths depending on where the cell is during the transition. Therefore, it is of

interest to gain a continuous view of informational flow in an edge. To this end, we extended

DREVI to a 3rd dimension, where the level of the molecule Y is modeled as a function of two

parameters: the abundance of the molecule X and EMT-time (T) (See Methods). DREVI is

based on the empirical conditional density, estimated directly from the data. As dimensionality

increases, data becomes sparser and therefore robust density estimation becomes more

Fig 1. Edge modulation during phenotypic change in EMT. (A) Conceptual diagram of edge modulation as cells undergo EMT. (B)

Immunofluorescence images of Py2T cells stained for canonical markers E-cadherin (in red) and Vimentin (in green) are shown after 1, 3 and 5

days of 4ng/ml TGFß stimulation. Three days after TGFß treatment we find both cells that express E-cadherin and cells that express Vimentin. (C)

Contour plots of Vimentin and E-cadherin following 2–4 days of TGFß exposure show a shift in density from epithelial to mesenchymal with 19%,

29% and 36% of cells in the mesenchymal phase respectively. The data is arcsinh transformed with a cofactor of 5. The plots show a continuum of

intermediate cell states indicating that EMT is a rate-heterogeneous process.

https://doi.org/10.1371/journal.pone.0203389.g001
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Fig 2. Expression of molecules along EMT-time (wanderlust pseudotime). (A) Scatterplot where each point represents a Py2T cell collected 3 days after TGFß

stimulation, colored by their Wanderlust-derived pseudotime label, which we call “EMT-Time” [1]. (B) Smoothed expression levels of E-cadherin, Vimentin, CD24 and

CD44 along EMT-time. The EMT-time is normalized to a scale of 0–1, where epithelial cells are near 0 and mesenchymal cells are near 1. Marker levels are also

normalized to 0–1 and are smoothed using a sliding-window Gaussian filter. The shaded region around each curve captures 1-standard deviation across replicates,

indicating consistency. (C) Smoothed expression levels of signaling markers pPLCγ2 and pΜEK1/2, as well as E-cadherin along EMT-time. (D) DREVI (conditional-

Density Rescaled Visualization) [9] plots show the relationship between pPLCγ2 and pMEK1/2 at three different points along EMT-time corresponding to epithelial,

transitional and mesenchymal phenotypes. Each DREVI plot illustrates the renormalized conditional density estimate of the abundance of pMEK1/2 given the

Pseudo-time signaling dynamics in single cells
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challenging. We extended the heat-equation based kernel density estimation [16] used in [9]

to higher dimensions (See Methods). We then normalize the density estimate by two parent

dimensions, rather than one dimension as in [9], to derive the conditional distribution on an

X-T plane. We typically visualize a red surface representing the conditionally dense portion of

DREVI surface that shows Y’s “typical” behavior for each level of X and point T along EMT-

time (Fig 3CI). Once the 3D-DREVI is computed, we can compute 3D-DREMI, measuring the

degree of information X and T together provide for the value of Y, analogous to 2D-DREMI

[9] (see Methods).

While 3D-DREMI provides a general score indicating the degree in which both X and T

influence Y, it does not directly address how edge strength changes over time. To derive a

quantification of the change in edge strength over the course of the trajectory we introduce a

new dynamic measure of dependency that we call Trajectory Interpolated DREMI Scores
(TIDES). A TIDES curve is computed by first calculating a 3D conditional density estimate f
(Y|X, T) where T is EMT-time and X-Y are two molecules whose time varying dependency we

intend to assess. Next, we linearly interpolate the 3D conditional density at a fixed value of T

(EMT-time) to obtain a 2D slice of the relationship between X and Y (See Fig 3CI, 3D and 3E,

Methods for details). Thus, the projection of the 3D-conditional density on to a slice allows us

to compute the DREMI score between the two markers at any given EMT-time. When taking

a causal interpretation of an edge (possibly due to prior knowledge of mechanism), higher

DREMI suggests that X exerts a stronger influence on Y. Computing DREMI at each point

along EMT-time results in a TIDES curve, which provides a concise, quantitative view describ-

ing how pairwise molecular relationships change during the progression.

The continuous nature of TIDES enables the detection of transient relationships that could

potentially be critical but hard to detect computationally. For example, Fig 3CI shows a simu-

lated example of three entities T, X and Y where X and Y have a transient but strong relation-

ship for small values of T. The relationship then weakens as the value of T increases (indicated

by the flattening of 3D-DREVI surface). This short-lasting relationship is correctly captured by

TIDES (Fig 3CII) because it allows for density to be continuously interpolated along T. How-

ever, an alternative approach in which we computed DREMI in discrete overlapping bins (Fig

3CIII) was unable to detect the transient interaction.

A continuous view of edge modulation during EMT

TIDES allows us to examine how the relationship between two molecules evolves during a

state transition. For example, the relationship between signaling molecule GSK3ß and the

transcription factor Snail1 is shown in Fig 3DI. GSK3ß phosphorylates Snail1 at two motifs

and is known to inactivate its transcriptional activity and cause protein degradation [6]. How-

ever, phosphorylation of GSK3ß (pGSK3ß) (e.g. through the AKT and PKC pathways [17])

inhibits its activity and therefore pGSK3ß is positively correlated with Snail1. Snail1, in turn,

modulates genes relevant to EMT and among others activates additional transcription factors

[6]. The strength of the relationship between pGSK3ß and Snail1 is weak at the beginning of

the transition (DREMI = 0.27) and then grows steadily and peaks as the cells are on the verge

of completing the transition (DREMI = 0.42), Fig 3DII. This change is consistent across repli-

cates (Part B of S4 Fig).

abundance of pPLCγ2. The red color indicates the conditionally dense regions. The solid black lines indicate that an equal rise in the level of pPLCγ2 results in a higher

increase in the abundance of pMEK1/2 during the transitional phase as compared to the epithelial and mesenchymal phase. The strength of the relationship is quantified

by DREMI, which computes mutual information on the conditional probability between two molecules.

https://doi.org/10.1371/journal.pone.0203389.g002
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Fig 3. Signaling relationships along EMT-time. (A)-(B) Relationship between signaling molecules is similar across days when controlled for EMT-time. (A) TGFß-

treated cells from Days 2, 3 and 4 are binned into four groups along EMT-time. Expression levels of E-cadherin and Vimentin are shown for reference. (B) Heat map

shows the correlation of DREMI scores computed on all pairs of signaling molecules in each group across days. The mean correlation is 0.69. (C) A simulated example

illustrating transient relationships captured by TIDES. (I) 3D-DREVI representation of a simulated data with three variables T, X and Y. X and Y have strong but

transient relationship at lower values of T, which flattens out as T increases. (II) TIDES of X-Y at various values of T. Continuous nature of TIDES allows it to correctly

detect the strong but short-lived relationship between X and Y at lower values of T. (III) DREMI scores of X-Y for overlapping bins along T. Binning the data is unable

to capture any relationship between X and Y. (D)(I) 3D-DREVI between pGSK3ß and Snail1 along EMT-time on Day 3. (II) The pseudo-dynamics of the relationship

between pGSK3ß and Snail1 along EMT progression is represented by the TIDES curve (purple curve) which shows the time-varying change in relationship strength

(depicted on the Z axis) in the units of DREMI. The 2D-DREVI slices depict the normalized conditional density estimate of the abundance of Snail1 given the

abundance of pGSK3ß at three specific time-points during EMT. (E) (I) A 3D-DREVI plot of the relationship between pMEK1/2 and ß-Catenin on Day 3. (II) The

TIDES curve and slices of 2D-DREVI along EMT progression show the dynamics of the pMEK1/2—ß-Catenin relationship.

https://doi.org/10.1371/journal.pone.0203389.g003
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Another example is the edge between phosphorylated MEK (pMEK1/2) and ß-Catenin

shown in Fig 3E. This relationship increases and peaks in strength during the transition

(DREMI = 0.41) and decreases as the transition concludes (DREMI = 0.31). It is known that

MEK1/2-ERK1/2 pathway is initiated by activation of Ras mediated by ShcA in response to

TGFß treatment [6]. Activated MEK1/2-ERK1/2 pathway can then directly phosphorylate

LRP6, which is a co-receptor and a key regulator of the WNT/ß-Catenin signaling pathway

[18, 19]. We find that this interaction is transmitting the most information during the transi-

tional phase, as indicated by the high DREMI score. This change is consistent across replicates

(Part C of S4 Fig).

In addition to analyzing edges individually, TIDES can also be used to globally understand

when there is a high information flow in the entire system. There are points in EMT-time

when many signaling molecules pass signal to transcription factors (points of high DREMI). It

can be assumed that such points of high information transfer correspond to critical points,

when the system is going through a phase transition. In Fig 4, we combine TIDES scores

incoming into the EMT transcription factor Slug, a known core-regulator of EMT [20] which

in turn regulates additional EMT transcription factors such as Twist [21]. The average TIDES

curve of signaling molecules into Slug shows the scores start rising at around EMT-time 0.20,

around when the cell morphology begins to change and hence corresponds to where the tran-

sition is beginning. We see a peak towards the end of the transition at around EMT-time 0.82

which might correspond to an additional change in cell state (Fig 4). Additionally, we see simi-

lar behavior at similar EMT-times for two more EMT transcription factors, Snail1 and Twist

(Parts A and B of S5 Fig).

Validation of TIDES with acute inhibitions

TIDES quantifies the strength of relationship between proteins at any point during the transi-

tion. For a given pair of proteins X-Y, high TIDES value suggests a stronger influence of X on

Y and a lower TIDES value indicates a weaker influence. This motivates the idea that upon

Fig 4. Information transfer during EMT. Average TIDES curve of the relationship between several molecules (pCREB,

pSTAT5, pFAK, pMEK1/2, pNFκB, pP38, pAMPK, pAKT, pERK1/2, pGSK3ß, pSMAD1/5, pSMAD2/3, ß-catenin, CAHIX,

pMARCK, pPLCγ2, pS6, pSTAT3) and Slug, across three replicates for Day 3. The curves start rising steadily at near EMT-

time = 0.20, and peak near EMT-time = 0.82.

https://doi.org/10.1371/journal.pone.0203389.g004
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inhibition of X, assuming X-Y is the causal direction, the expression level of Y should be

impacted more in regions of high TIDES as compared low TIDES. We define an impact curve
as the difference between the abundance of Y along EMT-time under control (no drug-pertur-

bation) and the abundance of Y along EMT-time with drug-perturbation of X. We expect

regions of high TIDES to coincide with the regions of high impact and test this by correlating

the TIDES curve against the impact curve, using cross-correlation to match the trajectories

(Fig 5A and Methods).

For the ease of interpretation, we consider relationships between proximal members along

a short signaling pathway. Distant relationships can have inputs or convergence from several

pathways and therefore the TIDES curve may not accurately match the output. To this end, we

chose to inhibit MEK1/2 because it has a potent and specific inhibitor and we were able to

measure proximal downstream phosphorylation targets of MEK1/2 (ERK1/2 and P90RSK) by

mass cytometry. Inhibiting the kinase for 30 minutes should accentuate the immediate down-

stream effects on signaling pathways without substantially altering transcriptional activity,

EMT phenotype, or allowing for compensatory effects. Hence, we can directly compare EMT-

time of the control and treated condition.

Py2T cells were treated with TGFß for 3 days, followed by inhibition of MEK1/2 by the

small molecule PD184352 for 30 minutes. We first compared the pP90RSK impact curve along

with the pMEK1/2-pP90RSK TIDES curve, Fig 5A. pMEK1/2 is upstream of pP90RSK with

pERK1/2 the mediatory kinase that directly phosphorylates P90RSK. We find that the impact

curve shows a high cross-correlation of 0.80 with the TIDES curve (Fig 5A(V)), a trend that is

repeated across replicates (Part A of S6 Fig). Note the correlation between the abundance of

pP90RSK in control and the TIDES curve is only -0.01 demonstrating that 1) TIDES does not

trivially follow levels of the Y-molecule, and 2) that it adds additional predictive value to edge

strength (Part B of S6 Fig). Similarly, the impact curve of pERK1/2 under MEK1/2-inhibition

matches the pMEK1/2-pERK1/2 TIDES curve with a cross-correlation of 0.69 (Fig 5B, Part C

of S6 Fig), further validating the approach. The cross-correlation between the pERK1/

2-pP90RSK TIDES curve and the impact curve of pP90RSK under MEK1/2-inhibition is also

high (0.74 and 0.59 across replicates, Parts D and E of S6 Fig). Thus, we have validated the pre-

dictive capability of TIDES in measured edges downstream of pMEK1/2 in our data. This vali-

dation suggests that TIDES successfully predicts the impact to downstream partners in

signaling relationships and can therefore be used to study the time-varying behavior of signal-

ing edges.

Identification and validation of driver edges in EMT via 3D-DREMI

Next, we wanted to identify edges that are potential drivers for EMT based on edge modulation

behavior. We hypothesized that driving edges should involve proteins that have a strong

dependence on both EMT-time, and each other for the following reasons: a). A protein that is

not influenced by where a cell is during a transition is less likely to play important role during

the transition b). Proteins that do not interact strongly with each other are less likely to work

together to drive the transition. In other words, we speculated that proteins involved in edges

with high 3D-DREMI along the pseudotime play more important role in driving EMT. We

wanted to make sure that for a given pair of molecules X-Y and EMT-time (T), X and T

together provide more information about Y as compared to individually and Y is also highly

dependent on both X and T, individually. Therefore, we add together a 3D-DREMI score on

(T, X)-Y and 2D-DREMI on X-Y and T-Y in our panel and sort them by their average score

across the three replicates. We find that the top ranking edges are pSMAD2/3 –ß-catenin, ß-

catenin–pSMAD23, pGSK3ß –pERK1/2, pAMPK–pSMAD23, pAMPK–ß-catenin, pGSK3ß –

Pseudo-time signaling dynamics in single cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0203389 October 29, 2018 10 / 32

https://doi.org/10.1371/journal.pone.0203389


Pseudo-time signaling dynamics in single cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0203389 October 29, 2018 11 / 32

https://doi.org/10.1371/journal.pone.0203389


ß-catenin, pERK–ß-catenin and pMEK1/2 –pAMPK (S3 Table). This suggests that these pro-

teins, and their corresponding pathways, could be involved in interactions that are strongly

regulated during EMT progression. We predict that interrupting these molecules and path-

ways will have an impact on EMT.

To validate whether our driver edge predictions modulate EMT, we perturb these edges

using drug inhibitions and activations. To determine the effect of the modulation on the EMT

phenotype, we chronically inhibited/activated the respective molecules and pathways for 5

days while treating the Py2T cells with TGFß (see Methods). For comparison, cells were only

treated with and without TGFß for the same time. As an additional negative control we used

AKT inhibition as an example of a molecule that does not score high in the critical edge list

(although typically associated with EMT in other systems). We then compare the percentage

of cells that transitioned as measured by mass cytometry (Fig 6).

Inhibited molecules/pathways from our predicted critical edges include 1) SMAD2/3 path-

way, 2) MEK/ERK/MAPK pathway, 3) ß-catenin/WNT pathway and 4) AMPK. All results

shown in Fig 6 are supported by biological replicates (S7 Fig).

1. SMAD2/3: Upon TGFß stimulation, SMAD2/3 is phosphorylated by the TGFß-receptor

[22], thus inhibition of the TGFß-receptor (SB431542) will abrogate SMAD phosphoryla-

tion. We find that inhibition of the TGFß-receptor causes the strongest impact on the pro-

gression. The fraction of cells that complete the transition drops to 2% under TGFß-

receptor inhibition as compared to 54% in the control (Fig 6A).

2. MEK1/2-ERK1/2: Inhibition of MEK1/2 (PD318088) blocks the activity of the MAPK path-

way (and therefore also the activity of ERK1/2 and P90RSK). Under the MEK1/2-inhibi-

tion, the fraction of cells that complete the transition drops to 17% (Fig 6B), less than a 1/3

of the cells that transitioned under control conditions, supporting its role in driving EMT

[13].

3. ß-catenin: To probe WNT/ß-catenin pathway, we use the drug XAV-939, which is known

to perturb WNT signaling and cause further ß-catenin degradation. Under this inhibition,

the fraction of cells that complete the progression drops to 11% from 26% and 46% from

53% in control, respectively (Fig 6C).

4. AMPK: For AMPK, we tested an activator rather than an inhibitor, Phenformin. Activation

of AMPK slightly increased the percentage of cells that underwent EMT to 60% compared

to 52% in control (Fig 6D).

Additionally, we tested the AKT inhibitor (PHT427) as a negative control. AKT has been

reported to be an important regulator in EMT for other cell lines such as human squamous

carcinoma cells (SCC13 and SCC15) [23] and NMuMMG mammary epithelial cells [24].

Despite the AKT pathway being reported as prominent in the literature [17], we find edges

involving AKT to be low in our ranking and indeed we empirically measure that AKT inhibi-

tion has little to no impact on EMT (Fig 6E, 55% of cells transition, compared to 54% on con-

trol). This result illustrates that EMT is not driven by the same edges across different systems.

Fig 5. Validation of TIDES via short-term drug inhibition. (A) (I) 3D-DREVI plot shows a typical behavior of pP90RSK given pMEK1/2 and EMT-time. The

cells are treated with TGFß for 3 days. (II) The levels of pP90RSK under control (stimulated with TGFß) and under MEK1/2-inhibition (TGFß + MEK1/2i)

along EMT-time. As expected, MEK1/2-inhibition substantially reduces the level of pP90RSK as compared to the control. (III) TIDES curve between pMEK1/2

and pP90RSK. (IV) The impact curve, computed as the level of pP90RSK under control minus under MEK1/2-inhibition, shows regions of high effect of MEK1/

2-inhibition on pP90RSK along EMT-time. (V) Cross-correlating the curves results in a correlation of 0.80. The depicted curves have been normalized to 0–1

and shifted appropriately based on the lag obtained from cross-correlation (see Methods). (B) Cross-correlating the TIDES curve of pMEK1/2 on pERK1/2

against the impact curve of pERK1/2 under MEK-inhibition gives a correlation of 0.69.

https://doi.org/10.1371/journal.pone.0203389.g005
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Fig 6. Validation of critical edges for EMT. (A)-(E) Bar plots showing the percentage of mesenchymal cells under control (TGFß stimulation) and under perturbation

of the stated molecule for 5 days. The percentage values measure the impact of the perturbation on EMT. Manual gates were defined to identify mesenchymal cells (see

Methods). (A) Inhibition of TGFß-receptor substantially reduces the fraction of cells completing the EMT transition from 54% under control to 2% following inhibition.

(B) MEK inhibition also has a large impact on EMT, under which the fraction of mesenchymal cells drops to 17% from 54% under control. (C) WNT inhibition also

causes the fraction of cells completing the transition to drop to 11% from 26% under control. (D) Activating AMPK on the other hand seems to slightly push cells into

EMT as the fraction of mesenchymal cells increases from 52% to 60%. (E) AKT inhibition on the other hand has no impact on EMT, fraction of cells completing the

transition is 55% compared to 54% under control.

https://doi.org/10.1371/journal.pone.0203389.g006
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In summary, 3D-DREMI successfully predicted important molecules and pathways

involved during EMT, suggesting that the 3D DREMI analysis can be used to generate novel

hypotheses on edges that are most relevant for a biological process of interest.

Discussion

Here, we studied a cell-state transition system, and examined how regulatory relations are modu-

lated during this transition. Specifically, we presented 3D-DREVI, 3D-DREMI and TIDES to

visualize and quantify how the strength and shape of the relationship between two proteins

change during a cell state transition. Importantly, we learned these dynamics from a single time-

point of multidimensional single-cell data through a combination of pseudotime analysis and

dependence-tracking along the resulting trajectory. Current high-throughput single-cell tech-

niques offer high-dimensional snapshot measurements of thousands of cells, but typically lack

dynamics. We utilized the variation in cell state, due to the variability and asynchrony in transi-

tion rates [25] to extract pseudo-temporal dynamics. A major assumption underlying our

approach is that while the cells progress through EMT at different rates, they largely do so along a

similar path. Therefore, we were able to map the process along a pseudotime dimension despite

the inability to follow any single cell. Once cells were aligned along their position in a pseudotime

trajectory, we tracked how relationships between molecules changed by formulating a dynamic

model of edge strength. As such, our approach enables a dynamic view on molecular relationships

in cell state transition and developmental processes. While several approaches have been proposed

for studying interactions between proteins [10, 26], many of them have severe limitations that

restrain their applicability in single-cell data. Our approach overcomes several of such limitations

such as requiring prior knowledge of network topology, steady state assumptions, assuming conti-

nuity in protein concentration, computational inefficiency and the need to choose model parame-

ters, thus standing out as a useful approach to study signaling in single cells.

We validated our methods using acute and chronic perturbations in the EMT system.

Indeed, phases of higher dependency between proteins resulted in a larger impact upon per-

turbation. Moreover, we confirmed that the perturbation of these highly dynamic molecules,

as predicted by our analysis, enabled the identification of nodes that halt EMT. Hence studying

the dynamics can inform us of the key players involved in the transition and aid the selection

of drugs that target key factors.

Differentiation (or trans-differentiation like in EMT) is essentially a process of gene and

protein network rewiring and modulation. Thus, treating gene or protein networks as static

fundamentally misses key aspects of this dynamic behavior. In our study we analyzed the epi-

thelial-to-mesenchymal transition, which has important roles during development, wound

healing, tissue fibrosis and cancer. However, our methods are generic, and can be utilized in

any system that has a large number of cells distributed in a time-asynchronous way with

respect to a process. Our method is useful in deriving time-dependent dynamics, and for iden-

tification of key proteins driving the transition.

The presented method makes one key assumption. It is only applicable if we have a contin-

uous alignment of cells along a pseudotime. In this manuscript, we used Wanderlust [1] to

align the cells along EMT onto a one-dimensional trajectory. However, biological processes

can often involve bifurcations or multiple trajectories [2]. In such scenarios, our method can

be easily adapted to study protein interaction along any particular branch or trajectory. On the

other hand, complex tissues and disease systems can involve multiple cell-types that may not

have overlapping sets of cells. In such cases, it is not possible to align all the cells along a trajec-

tory. Thereby, the key assumption made by our method is violated making it inapplicable for

such systems involving discrete subpopulations of cells.
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Currently single-cell technologies are rapidly developing and enabling the measurement of

more cells and molecules of interest. Single-cell RNA-sequencing [27, 28] provides a transcrip-

tome-wide single-cell snapshot measurement and has enabled us to query complex biological

systems under normal, diseased or complicated perturbations. The method presented in this

manuscript can be extended to such higher dimensional data types, and allow for the study of

gene-gene relationship in diverse settings. A challenge to this approach is that single-cell RNA

sequencing (scRNA-seq) data tends to be sparse, typically capturing only about 10% of the

molecules whereas DREMI and the higher dimensional versions formulated here require suffi-

cient amounts of data to estimate density in the full dynamic range of molecules. Nevertheless,

recently proposed imputation and data de-noising methods [29–32] could be used to accu-

rately impute the data thus making our method more applicable. In addition, several computa-

tional tools have been developed that allow data-driven inference of developmental trajectories

[2, 3] in complex tissues [33–35]. Given such advancements, our method can be readily

adapted to scRNA-seq data with continuous progression of cells and thereby study gene-gene

dynamics along a trajectory. For example, our approach could be applied to understanding the

modulation in regulatory systems that govern malignant processes, opening up exciting possi-

bilities. Finally, results in mass cytometry are a function of the used antibodies and changes in

cell volume and cell cycle might influence results. Our antibodies used here were thoroughly

validated and our findings, many of which reproduce known biology, underline the informa-

tion content of the data.

Methods

Py2T cell culture and stimulation

Py2T cells were obtained from the laboratory of Gerhard Cristofori, University of Basel, Swit-

zerland [13]. Cells were tested for mycoplasma contamination upon arrival and regularly dur-

ing culturing and before being used for experiments. Cells were cultured at 37˚C in DMEM

(D5671, Sigma Aldrich), supplemented with 10% FBS, 2 mM L-glutamine, 100 U/ml penicillin,

and 100 μg/ml streptomycin, at 5% CO2. For cell passaging, cells were incubated with TrypLE™
Select 10X (Life Technologies) in PBS in a 1:5 ratio (v/v) for 10 minutes at 37˚C. For each

experiment, cells were seeded at the density of 0.3 million cells per plate (100 mm diameter)

and allowed to recover for 36 hours. After reaching 60% confluence, cells were either mock

treated or treated with 4ng/ml TGFß (Human recombinant TGFß1, Cell Signaling Technolo-

gies) for 2, 3 and 4 days. Cell growth media and 4ng/ml TGFß treatment was renewed every

day.

Cell harvesting

For cell harvest, cells were washed two times with PBS and incubated with TrypLE™ Select 10X

(Life Technologies) in PBS at a 1:5 ratio (v/v) for 10 minutes at 37˚C. Following cell detach-

ment, cells were cross-linked by addition of formaldehyde at a final concentration of 1.6% for

10 minutes at room temperature. Cross-linked cells were then centrifuged at 600 × g for 5 min-

utes at 4˚C. After aspirating the supernatant, the cell pellet was re-suspended in -20˚C metha-

nol to a suspension of 1 million cells/ml and transferred to −80˚C for long-term storage.

Metal-labeled antibodies

Antibodies were obtained in carrier/protein free buffer and labeled with isotopically pure met-

als (Trace Sciences) using MaxPAR antibody conjugation kit (Fluidigm), according to the

manufacturer’s standard protocol. After determining the percent yield by measurement of
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absorbance at 280 nm, the metal-labeled antibodies were diluted in Candor PBS Antibody Sta-

bilization solution (Candor Bioscience GmbH) for long-term storage at 4˚C. Antibodies used

in this study are listed in S1 Table.

Mass-tag cellular barcoding and antibody staining

Cell samples in methanol were washed three times with Cell Staining Media (CSM, PBS with

0.5% BSA, 0.02% NaN3) and once with PBS at 4˚C. The cells were then re-suspended at 1 mil-

lion cells/ml in PBS containing barcoding reagents (102Pd, 104Pd, 105Pd, 106Pd, 108Pd, 110Pd,
113In and 115In,) each at a final concentration of 100 nM. Cells and barcoding reagent were

incubated for 30 minutes at room temperature. Barcoded cells were then washed three times

with CSM, pooled and stained with the metal-conjugated antibody mix (S1 Table) at room

temperature for 1 hour. Unbound antibodies were removed by washing cells three times with

CSM and once with PBS. For cellular DNA staining, an iridium-containing intercalator (Flui-

digm) was diluted to 250 nM in PBS containing 1.6% PFA and added to the cells at 4˚C for

overnight incubation. Before measurement, the intercalator solution was removed and cells

were washed with CSM, PBS, and ddH2O. After the last washing step, cells were resuspended

in MilliQ H2O to 1 million cells/ml and filtered through a 40-μm strainer.

Mass cytometry analysis

EQTM Four Element Calibration Beads (Fluidigm) were added to the cell suspension in a 1:10

ratio (v/v). Samples were analyzed on a CyTOF1 (DVS Sciences). The manufacturer’s standard

operation procedures were used for acquisition at a cell rate of ~300 cells per second as

described in [14]. After the acquisition, all FCS files from the same barcoded sample were

concatenated using the Cytobank concatenation tool (http://www.support.cytobank.org/hc/

en-us/articles/206336147-FCS-file-concatenation-tool). Data were then normalized [36], and

bead events were removed. Cell doublet removal and de-barcoding of cells into their corre-

sponding wells was done using a doublet-free filtering scheme and single-cell deconvolution

algorithm [37]. Subsequently, data was processed using Cytobank (http://www.cytobank.org/).

Additional gating on the DNA channels (191Ir and 193Ir) was used to remove remaining dou-

blets, debris and contaminating particulate.

Immunofluorescence microscopy analysis

Cells were seeded on 12 mm glass coverslips in 24-well plates. After reaching 60% confluence,

cells were treated with TGFß for 3 and 5 days. The cell growth media containing 4ng/ml TGFß

was replenished once per day. All sample preparation steps were performed at room tempera-

ture. Cell samples were cross-linked with 4% paraformaldehyde in PBS for 20 min and per-

meabilized using 0.1% Triton X-100 in PBS for 3 min. After a blocking step with 0.5% BSA in

PBS for 20 min, cell samples were incubated with the primary antibodies (E-Cadherin, Alexa

Fluor1 647, 36/E-Cadherin, BD Biosciences; and Vimentin (D21H3) XP1 Cell Signaling

Technologies) for 1.5 hours, and subsequently incubated for 1 hour with the appropriate fluor-

ophore conjugated secondary antibodies (Alexa Fluor-488). Fluorophore-labeled antibodies

were diluted in buffer containing 0.5% BSA in PBS. Nuclei were stained with Hoechst 33258

stain (Sigma Aldrich) diluted in PBS for 3 min. Coverslips were mounted in ProLong1 Gold

Antifade Mountant (Thermo Fisher Scientific) on microscope slides and imaged with a confo-

cal microscope CLSM SP8 upright Leica. Images were acquired and analyzed using Imaris

Software (Bitplane, Switzerland) and the acquisition was performed on the same day to pre-

vent differences due to emission changes of the light sources. In addition, exposure times for a

given marker were kept constant for the comparative analysis of each antibody.
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Time course experiment

Mock-treated and TGFß-treated cells were sampled for measurement after 2, 3 and 4 days. For

each condition, three biological replicates were cultured, harvested and analyzed.

Acute kinase inhibition

After chronic TGFß stimulation for 3 days, cells were treated with MEK1/2 (PD184352) small

molecule inhibitors for 30 minutes at a concentration of 10μM and collected in two replicates.

Chronic kinase perturbation

For chronic kinase perturbation, small molecule inhibitors (S4 Table) were applied to the cells

at a concentration of 1 μM in parallel with TGFß or mock treatment. The small molecule

inhibitor was applied once per day for 5 days, after media change and 10 minutes before TGFß

stimulation, and collected in two replicates.

Data preprocessing

All data were arcsinh transformed with a cofactor of 5 [14]. Any remaining debris or doublets

were removed by gating on the DNA channels. For the time course and acute inhibition vali-

dation, the raw data was cleaned to remove cells that had spuriously high levels of certain sig-

naling markers and transcription factors (pCREB, pSTAT5, pMEK1/2, pNFκß, Twist, Snail1

and Slug). An example between pCREB and pMEK1/2 is shown in Part A of S8 Fig. The effect

is seen only in the markers whose metal antibodies have similar masses (S1 Table), hence indi-

cating that the high correlation could be experimental noise. Further uninformative cells that

had low levels of all markers were removed. For this, cells were clustered using Phenograph

[38] on a set of phenotypic markers and transcription factors (E-cadherin, Vimentin, CD24,

CD44, ß-Catenin, Snail1, Slug and Twist). The clusters of cells with low levels of markers were

discarded thereafter (Part B of S8 Fig). The junk cells present in the data used for validation via

acute inhibition (Fig 5 and S6 Fig) were also removed using Phenograph on the set of available

phenotypic markers and transcription factors (E-cadherin, Vimentin, CD24, CD44, ß-catenin,

Snail1 and Slug).

Assessing cellular heterogeneity

We quantified the proportion of cells that complete the transition (Fig 1C and S1 and S2 Figs)

by manually gating cells into various stages based on the expression levels of the canonical

markers, E-cadherin and Vimentin. Cells with expression level of Vimentin < 2 were defined

as epithelial cells, those with E-cadherin < 2.5 and Vimentin > 4 were defined as mesenchy-

mal and rest of the cells as transitional. The same gates were used for all time-course data.

Overview of computational methods to quantify edge dynamics

The computational methods developed in this paper are geared towards learning time-varying

edge dynamics from static snapshot data. We study pairwise relationships as a function of time

in cells undergoing the epithelial-to-mesenchymal transition. Studying such cell state dynam-

ics from a single time point require computational techniques that can efficiently harness the

rate of variability within large samples of cells to capture the transient dynamics.

We develop information theoretic techniques to study edge relationships as a function of

pseudotime. These methods quantify the edge strength and describe time-varying edge shape.

In particular, we develop:
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1. 3D-DREVI (3D conditional Density Rescaled Visualization) to visualize and characterize the

relationship between a pair of molecules, Y and Z, along time T. For this, we compute the

conditional density estimate p̂ðZjT;YÞ to capture the dependency of Z on T and Y and use

it visualize the average expression of Z given Y and T.

2. 3D-DREMI (3D conditional Density Resampled Estimate of Mutual Information) to quan-

tify the strength of relationship of Z on both T and Y by computing the differential entropy

of Z when conditioned on T and Y.

3. TIDES (Trajectory Interpolated DREMI Scores) to quantify the relationship between two

molecules continuously along time. This involves computing 2D-DREMI on fixed-time

slices in the 3D space to derive the time-varying strength of the relationship.

First, we use Wanderlust [1] to align cells along a one-dimensional EMT-trajectory, which

we call EMT-time. We treat EMT-time (T) as the x-variable and a pair of molecules Y and Z as

the y and z-variables in order to compute 3D-DREVI, 3D-DREMI and TIDES. Underlying all

our methods is the estimation of the joint density p̂ðT;Y;ZÞ, obtained using a fast heat-diffu-

sion based kernel density estimate [16], which we extended to 3 dimensions. The methods are

detailed as follows.

Kernel density estimation. Kernel Density Estimation (KDE) is a data-driven approach

for learning the underlying probability density function [39]. Given a set of points in

ðx1; x2; x3; . . . ; xnÞ 2 R, a kernel density estimate for the distribution of the points is given by,

f̂ xð Þ ¼
1

n

Xn

i¼1

Khðx � xiÞ

where, Kh is the kernel function. A popular choice of kernel is the Gaussian kernel, given by,

Kh xð Þ ¼
1

h
ffiffiffiffiffiffi
2p
p e

� x2
�

2h2

where, h is the bandwidth of the kernel. In higher dimensions, the kernel density estimate has

the same form with points replaced by vectors.

Heat-equation based KDE. A standard method for computing a kernel density estimate

amounts to evaluating a kernel function, Kh, at every data point and summing the result. How-

ever, this method can be computationally challenging for large data sets. Instead, we use a

method based on heat diffusion [16], which has previously been used successfully in single cell

data sets [9] for 2D-KDE. The method estimates the underlying distribution by modeling it as

the spreading of heat governed by the heat equation (with delta functions at the data points as

the initial condition). The intuition is that the fundamental solution to the heat equation, in an

infinite domain with Dirac delta function as the initial condition, is a Gaussian function.

Mathematically, the solution to

@

@t
f̂ x; tð Þ ¼

1

2

@2

@x2
f̂ x; tð Þ; f̂ x; 0ð Þ ¼

1

n

Xn

i¼1

dxi xð Þ; x 2 R

is given by,

f̂ x; tð Þ ¼
Xn

i¼1

1
ffiffiffiffiffiffiffi
2pt
p e

� ðx� xiÞ
2
�

2t ; t > 0:

For practical purposes, we have finitely many data points, so we rely on the finite domain

solution to heat equation as an approximation of the kernel density estimate. We enforce
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Neumann boundary conditions (derivative of the probability density function is 0 at the

boundaries), which preserves the total probability mass (initial amount of heat) inside the

boundary. Given the initial condition and the boundary conditions, the solution to the heat

equation can be written as [40],

f̂ x; tð Þ ¼
1

n

Xn

i¼1

X1

k¼� 1

e� k2pt=2cosðkpxÞcosðkpxiÞ:

Extending these ideas to 3-dimensions, and under Neumann same boundary conditions,

we obtain that the solution to

@

@t
f̂ x; y; z; tð Þ ¼

1

2

@2

@x2
f̂ ðx; y; z; tÞ þ

@2

@y2
f̂ ðx; y; z; tÞ þ

@2

@z2
f̂ ðx; y; z; tÞ

� �

; f̂ x; y; z; 0ð Þ

¼
1

n

Xn

i¼1

dxiðxÞdyi
yð Þdzi zð Þ; x; y; z 2 R;

is given by,

f̂ ðx; y; z; tÞ

¼
8

n

Xn

a;b;c¼1

X1

k;l;m¼� 1

e� ðk2þl2þm2Þpt=2cosðkpxÞcosðkpxaÞcosðlpyÞcosðlpybÞcosðmpzÞcosðmpzcÞ:

The solution can be efficiently computed using a fast Fourier transform (FFT) [41]. This

results in an estimate of the underlying probability density function. For 1- and 2-dimensions,

the bandwidth ð
ffiffi
t
p
Þ is obtained as a non-parametric solution to a fixed-point iteration [16,

41]. However, this method of obtaining bandwidth does not generalize beyond 2-dimensions

[42] and becomes expensive to compute numerically. To generalize these ideas to higher

dimensions, in this case 3-dimensions, we choose the bandwidth using Silverman’s rule of

thumb [43],

hj ¼
4

5n

� �1=
7

sj;

where n is the number of points, σj is the standard deviation in jth direction.

Algorithm. The algorithm starts by binning the data into a histogram. This is already a

rough estimate of the underlying probability density. Although fast to construct, a histogram is

not smooth, over-fits the data and depends heavily on the size of the bin. However, the

strength of the presented algorithm lies in the fact that the resulting histogram is treated as

delta functions on equally spaced points and this is used as the initial condition for solving the

heat equation. This reduces the sample space from the original data size to the number of bins,

hence achieving a considerable gain in speed. Then we transform the data into the frequency

domain using the discrete cosine transform (DCT), which can be implemented using FFT,

applied onto this initial condition. To use FFT we set the number of bins in the histogram to

be set to certain power of 2, 27 in this manuscript for 3D-KDE. This separates the signal pres-

ent in the histogram into high frequency (noise) and low frequency (informative), thus allow-

ing us to remove the noise and preserve meaningful information. The transform is then

allowed to evolve for a time t (square of the bandwidth obtained using the rule of thumb),

which is equivalent to multiplying by the exponential term (e� k2p2t=2) in the equation above,

which is equivalent to low-pass filtering of the DCT. The resultant is then inverted (inverse-

DCT) to obtain a smooth kernel density estimate, see S9 Fig. The method extends naturally to
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higher dimensions. Computing kernel density estimates using heat diffusion can be performed

in O(n + m log m) ~ O(n) for n�m, where n is the number of data points, m is the number of

bins. A sketch of the algorithm is as follows [41],

1. Construct a histogram

2. Transfer histogram into frequency domain via a discrete cosine transform

3. Evolve DCT (multiply DCT by e� k2p2t=2, where t is the square of the bandwidth, k = 1,. . .,m,

and m is the number of bins)

4. Inverse DCT for solution.

3D-DREVI. As with 2D-DREVI [9], the joint high-dimensional density estimate can

reveal areas of the state space that are densely and sparsely occupied by cells. However, as

dimensionality increases, the sparsity of the data, relative to the state space, has increasingly

larger impact. Already in 3 dimensions, the joint density of variables p(X,Y,Z) is often not

good at revealing the underlying relationship between X,Y and Z because the majority of cells

may be within a restricted portion of the dynamic range. Therefore, to accentuate the depen-

dencies between molecules, we consider the conditional relationship of Z given X and Y, thus

capturing the dependencies across the full dynamic range [9]. To compute conditional density

p(Z|X,Y), we normalize the joint density by the conditioning variables X and Y. Since it is diffi-

cult to visualize a 3-dimensional conditional density, we instead visualize the conditional

mean of Z given X and Y, resulting in a 2D surface (Fig 3C).

Computing 3D-DREVI. We begin by computing a 3D kernel density estimate p̂ðX;Y;ZÞ
on a cubic mesh grid {xi,yj,zk, 0< i,j,k<m,m is the number of bins} using our heat equation

based approach described above. Then each vector in the z-axis (corresponding to a fixed X-

and Y-value, X = xi,Y = yj) is renormalized by the marginal density estimate of X = xi,Y = yj,

p̂ zjxi; yj
� �

¼
p̂ðxi; yj; zÞ
p̂ðxi; yjÞ

¼
p̂ðxi; yj; zÞ

P
k p̂ðxi; yj; zkÞ

:

We thus obtain an estimate for the underlying conditional density p(Z|X,Y) on the cubic

mesh grid.

Visualizing 3D-DREVI. Computing p̂ðZjX;YÞ results in a 3-dimensional array, where

each entry represents the value of the density estimate at a particular vertex on the 3D-mesh

grid, making it difficult to visualize what is essentially a solid cube. Instead, we visualize a sur-

face through the conditional mean of Z given X and Y. This incidentally is often the area of the

highest conditional density. The conditional mean can be computed as follows,

Eðzjxi; yjÞ ¼
X

k

zk � p̂ðzkjxi; yjÞ;

which results in a matrix where each entry corresponds to the average value of Z conditioned

on the values of X and Y. This can be depicted as a surface plot on the X and Y mesh plane.

In this manuscript, we use 3D-DREVI to illustrate the relationship between two molecules

along EMT-time (e.g. Fig 3D and 3E). We treat the Wanderlust derived EMT-time (T) as the X
variable and the two molecules as Y and Z variables. We estimated the joint density at 27 x 27 x

27 points (128 bins in each axis) and obtain the conditional mean of Z given T and Y as

described above and render it as a red surface plot. Given a pair of molecules (Y and Z) and

EMT-time, 50 cells from the right tail of the distribution of Y were discarded to obtain a well-

populated dynamic range of Y, analogous to [9]. Finally, we remove wrinkles from the surface
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by smoothing the conditional mean using a linear sliding filter (of span 20 along both T and Y
axes), using the smooth function in MATLAB.

3D-DREMI. Once 3D-DREVI is computed, we compute 3D-DREMI, an extension of

DREMI [9], to quantify the strength of Z0s dependency on both X and Y. Similarly to DREVI,

we evaluate the strength of this dependency by re-weighing the contribution of each grid point

uniformly thus taking the full dynamic range of the function into account [9].

Computing 3D-DREMI. Given three variables X, Y and Z (we typically assume that X
and Y both influence Z), we quantify the dependence of Z on both X and Y. 3D-DREMI is

defined as the mutual information on data that is sampled from the rescaled denoised-condi-

tional density,

Rescale : p̂ zkjxi; yj
� �

¼
p̂ðzkjxi; yjÞ

max
k p̂ðzkjxi; yjÞ
� � ;

Denoise by setting p̂ðzkjxi; yjÞ < ε to 0 for all i; j:

We measure the change in entropy of Z when conditioned on both X and Y, by computing

the differential entropy between Z and Z|X,Y. That is, compute

IcðZjX;YÞ ¼ HcðZÞ � HcðZjX;YÞ; where;

Hc Zð Þ ¼ �
X

i

X

j

X

k

p̂ðxi; yj; zkÞ
p̂ðxi; yjÞ

logðp̂ðzkÞÞ; and

Hc ZjX;Yð Þ ¼ �
X

i

X

j

X

k

p̂ðxi; yj; zkÞ
p̂ðxi; yjÞ

logðp̂ðzkjyj; xiÞÞ;

where, c indicates that the mutual information and entropies are computed on the conditional

density.

This is a natural extension of 2D-DREMI as detailed in [9]. By treating EMT-time (T) as

the X-variable, we can assess the strength of relationship between Y and Z throughout EMT-

time. Pairs with high 3D-DREMI scores have a strong relationship with each other during the

course of EMT-time. By ordering edges based on their 3D-DREMI score, we find candidate

proteins that might be critical during EMT (S3 Table).

TIDES. 3D-DREMI quantifies the relationship between two molecules throughout EMT-

time. However, it does not provide information about the strength of the relationship at a

given EMT-time. We developed a method based on 2D-DREMI to evaluate how a relationship

changes continuously with EMT-time. We call this method TIDES for Trajectory Interpolated

DREMI Scores.

Computing TIDES. We start with the rescaled conditional density estimate of Z given T
and Y, where we consider EMT-time (T), as the X-variable. This 3-dimensional density esti-

mate is projected onto a slice along the Y-Z plane, resulting in the conditional dependence of Z
on Y for various fixed values of T. The projections are obtained by linearly interpolating the

3D density estimate onto a 2-dimensional slice, {(ti,yj,zk):0< j,k<m, and i is a fixed value, m
is the number of bins}, along Y and Z direction, for which we use the interp3 function in

MATLAB. The resulting conditional density estimate is denoised at ε = 0.9 to eliminate the
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technical noise from measurement [9],

p̂ðzkjti; yjÞ < ε to 0 for all j; k and fixed i:

2D-DREMI computed on the slice quantifies the relationship at the fixed EMT-time T,

IcðZjYÞ ¼ HcðZÞ � HcðZjYÞ; where

Hc Zð Þ ¼ �
X

i

X

j

p̂ðyi; zjÞ
p̂ðyiÞ

logðp̂ðzjÞÞ; and

Hc ZjYð Þ ¼ �
X

i

X

j

p̂ðyi; zjÞ
p̂ðyiÞ

logðp̂ðzjjyiÞÞ;

where, c indicates that the mutual information and entropies are computed on the conditional

density.

Visualizing TIDES. Repeatedly computing TIDES for several values along EMT-time

allows continuous tracking of edge strength during the EMT transition, resulting in a TIDES

curve. We compute TIDES values at 256 locations along EMT-time, twice the number of bins

used to estimate the density. Once computed, the TIDES curves were smoothed using a Gauss-

ian filter. For this, a Gaussian centered at each value of EMT-time (on which TIDES is com-

puted) is used to estimate the weighted average at each location. Averaging the values results

in a smooth TIDES curve. The weights are determined as follows,

Kjl ¼
1
ffiffiffiffiffiffi
2p
p

s2
exp �

ðtj � tlÞ
2

s2

 !

;

where, τj is the TIDES value at EMT-time j, τl is the mean TIDES value in the bin l and σ is the

bandwidth of the Gaussian chosen using Silverman’s rule of thumb [43]. The weighted average

is then calculated as,

Tl ¼
X256

j¼1

Kjl � tj:

Deriving wanderlust pseudotime

We used Wanderlust [1], a graph-based trajectory detection algorithm, to align the cells onto a

one-dimensional axis representing the transition of cells from epithelial to mesenchymal phe-

notype. We call the resulting pseudotime axis as EMT-time. EMT-time is normalized to 0–1,

where epithelial cells are near 0 and mesenchymal cells near 1. We compute EMT-time by run-

ning Wanderlust on a set of phenotypic markers and transcription factors: E-cadherin, Vimen-

tin, CD44, ß-catenin, Snail1, and Slug. A shared nearest neighbor graph was constructed using

K = 60 nearest neighbors and shared nearest neighbor (snn) = K/3 = 20. The parameter l
which is used to choose l out of K neighbors (to avoid short circuits) was set to K/5 = 12. The

constructed trajectory is robust to these parameters (S10 Fig). The start point was set to the set

of the cell with low E-cadherin and high Vimentin. In particular, the cell with maximum

expression of Vimentin from the set of cells whose expression of E-cadherin < 1.5 and

Vimentin > 4.5 was chosen as the start point. The resulting trajectory was then inverted. The

number of graphs (over which the result of the algorithm is averaged) was set to 5.

Once generated, we study the expression of various markers along EMT-time (e.g. Fig 2B

and 2C, Parts A-C of S3 Fig). The marker trends were generated by first partitioning EMT-
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time into 256 equally spaced bins, by dividing the range of the Wanderlust score by 256. Then

the weighted average of the marker using a Gaussian filter centered at the bin is computed, as

detailed in [15]. The weights are calculated as follows,

Kjl ¼
1
ffiffiffiffiffiffi
2p
p

s2
exp �

ðmj � �mlÞ
2

s2

 !

;

where, mj is the marker expression of cell j, �ml is the mean marker expression value in the bin l
and σ is the bandwidth of the Gaussian chosen using Silverman’s rule of thumb [43]. The

weighted average is then calculated as,

El ¼
XN

j¼1

Kjl �mj;where N is the total number of cells:

Consistency of marker trends along EMT-time across replicates. We demonstrate that

the marker trends are consistent across replicates (Part D of S3 Fig). For a given day, the

expression of a marker along EMT-time from one replicate was cross-correlated with the

expression of the same marker along EMT-time from another replicate. This was repeated for

all the markers and average correlation was computed. The computation was done for all 3

replicates from Day 2, 3 and 4. The markers used were: pCREB, pSTAT5, pFAK, pMEK1/2,

Twist, cmyc, Snail1, pNFκB, pP38, pAMPK, pAKT, pERK1/2, Slug, Cyclinb1, CAIX, pGSK3ß,

pSMAD1/5, CD44, Vimentin, pSMAD2/3, ß-catenin, pMARCK, CD24, pPLCγ2, pPH3, pS6,

E-cadherin, cleaved caspase 3 (ccasp), pSTAT3, pRb, Survivin.

Consistency of marker trends along EMT-time across days. We also find that the

marker trends are consistent across days (Part E of S3 Fig). The expression of a marker along

EMT-time on replicate 1 of Day 2 was correlated with the expression of the same marker along

EMT-time on replicate 1 of Day 3. This was repeated for all the markers and average correla-

tion was computed. The same is done to compare replicate 1 of Day 2 against Day 4 and repli-

cate 1 of Day 3 against Day 4. The final result is rendered as a heat-map. Similar heat-maps

were generated for replicates 2 and 3. The markers used were: pCREB, pSTAT5, pFAK,

pMEK1/2, Twist, c-myc, Snail1, pNFκB, pP38, pAMPK, pAKT, pERK1/2, Slug, Cyclinb1,

CAIX, pGSK3ß, pSMAD1/5, CD44, Vimentin, pSMAD2/3, ß-catenin, pMARCKS, CD24,

pPLCγ2, pPH3, pS6, E-cadherin, ccasp, pSTAT3, pRb, Survivin.

Consistency of signaling controlled for EMT-time. We demonstrate that signaling is

similar across days when controlled for EMT-time (Fig 3A and 3B, Part A of S4 Fig). Cells

from days 2, 3 and 4 were divided into four groups based on EMT-time: cells with EMT-

time < 0.25 (Group-1), between 0.25 and 0.5 (Group-2), between 0.5 and 0.75 (Group-3) and

greater than 0.75 (Group-4). DREMI on all pairs of signaling molecules in each of the groups

was computed. Then the DREMI scores from a group was correlated with the DREMI scores

from the same group on a different day, and the final result is rendered as a heat map. We used

signaling markers to perform this analysis, since were are interested in whether signaling pat-

tern is maintained between days. The markers used are: pCREB, pSTAT5, pFAK, pMEK1/2,

Twist, c-myc, Snail1, pNFκB, pP38, pAMPK, pAKT, pERK1/2, Slug, Cyclinb1, pGSK3ß,

pSMAD1/5, pSMAD2/3, ß-catenin, CAIX, pMARCK, pPLCγ2, pPH3, pS6, pSTAT3 and pRb.

Validating short-term drug inhibition

We used short-term drug inhibition to validate rewiring suggested by TIDES. For a given pair

of molecules Y and Z, TIDES (Y! Z) quantifies the strength of the statistical relationship
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between Y and Z continuously along EMT-time (T). We assume that inhibiting Y or some

molecule immediately upstream of Y should have higher impact on Z in the region where the

TIDES score is high, and analogously the impact should lower in regions of lower TIDES

scores. To validate TIDES, we compute TIDES curve of Y − Z and cross-correlate it with the

impact curve of Z, defined as the expression of Z under control minus the expression of Z
under treatment. A high correlation would indicate that TIDES correctly predicts the regions

of strong/weak relationship. For analysis, both the curves were normalized to 0 to 1 and cross-

correlated on the EMT-time axis. The shift which provided the maximum cross-correlation

was chosen and the Pearson correlation value was reported.

Validating long-term drug inhibition

We defined manual gates, based on the levels of E-cadherin and Vimentin, for computing the

fraction of mesenchymal cells to validate the impact of long-term drug perturbation on EMT

(S7 Fig). The gates used are: (1) TGFß-receptor, MEK1/2 and AKT inhibition: E-cadherin < 3,

vimentin > 4. (2) AMPK-perturbation: E-cadherin < 3 and Vimentin > 3.5. (3) WNT-inhibi-

tion: E-cadherin < 3 and Vimentin > 4 (Replicate 1), and E-cadherin < 3.5 and Vimentin > 4

(Replicate 2). Our predictions are validated across replicates.

Runtime analysis

We performed runtime analysis of our methods. We first assessed how our method scales with

size of the data. Since heat-diffusion based kernel density estimation starts off by computing

the histogram of the data (S9 Fig), we fixed the number of bins to 128. For randomly generated

data sets from uniform distribution, with sample size ranging from 5000 to 50000 (3 features

for each data-point), the heat-diffusion based method computes KDE within 1 second, Part A

of S11 Fig. The runtime is uniform across a range of data size because the algorithm is less

dependent on the data size and more on bin size, which was kept constant here. Second, we

studied the run time of our method against the number of bins in the initial histogram. We

fixed the size of the data set to 5000 points (each with 3 features) and altered the number of

bins in the initial construction of the histogram. For up to 256 bins in each direction (density

estimated at 224 points), the heat-diffusion based method computes KDE within 10 seconds

(Part B of S11 Fig). We compared the runtime of our method to an alternative approach [44].

We used the code available at http://www.ics.uci.edu/~ihler/code/kde.html. As shown in Part

C of S11 Fig, our method scales better than the alternative against the number of bins of histo-

gram. Using the heat-diffusion based KDE, 3D-DREVI and 3D-DREMI can be computed

within 25 seconds for 128 bins (Parts D and E of S11 Fig). Similarly, TIDES can be computed

in less than 5 minutes (Part F of S11 Fig). For all of these experiments, since the method

depends mostly on the number of bins for the histogram, only an example pair of edges (pS6

—pGSK3ß) along EMT-time was chosen for three replicates from Day 3 (unless stated other-

wise) and the average runtime was computed.

Time complexity

Given N data points and B bins, 3D-KDE first computes a 3D-histogram (of size B × B × B) of

the data, which scales as 3NB~O(NB) (S9 Fig for an illustration of the algorithm in 1D). Sec-

ond, it computes the discrete cosine transform of the histogram using Fast Fourier Transform,

which scales as O(B3log(B)) (for this we require B to be some power of 2). The result is then

multiplied element-wise by the exponential term followed by an element wise sum, which

costs O(B3). This is followed by inverse discrete cosine transform, which again costs O(B3log

(B)). Overall, the algorithm’s time complexity is O(NB + B3log(B)).
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Performance analysis

In order to assess how the presented algorithm performs as a function of the number of bins,

we first consider the case when the underlying probability density is known. We generate a

3-dimensional Gaussian distribution with mean 0.5 and variance 0.3 in each of the 3 dimen-

sions. We then randomly sample 5000 points from this distribution and apply our method to

approximate the underlying density function. Since we are estimating a 3-dimensional density

function, we obtain a density estimate at nbins x nbins x nbins number of points. We use the

sum of absolute difference between the ground truth distribution values and the estimated val-

ues at each of these points normalized by the number of estimated points (nbins3, that is nbins

raised to power 3) as a measure of error. As shown in Part A of S12 Fig, our choice of 128 bins

in each of X, Y and Z direction is a stable choice.

Second, to consider the effect of number of bins on our data, we compute the TIDES score

for 100 randomly chosen pairs of proteins from Day 3 Replicate 1 data for various values of

number of bins. The TIDES score are then correlated against each other and averaged over the

100 pairs of proteins. The final correlation matrix is shown in Part B of S12 Fig. The results

obtained with smaller number of bins are inconsistent with results obtained with higher num-

ber of bins, while results obtained using larger number of bins are more consistent with each

other. This suggests that there is not much improvement in the efficacy of the method on

increasing number of bins from 128 to 256, which supports our choice of 128 bins.

Comparison against other kernel choices

The formalism we employ here to construct Kernel Density Estimation by equating the under-

lying probability density function of some given continuous data as a solution to the heat-

equation with initial condition the data itself, works only for Gaussian kernels. The choice of

Gaussian kernel is motivated by our previous work [9]. However, in the present context we

compare our proposed method against alternate kernels (linear and cosine). The linear kernel

is given by,

Kl x; hð Þ ¼ 1 �
jxj
h

� �

I jxj < hÞ;ð

where h is the bandwidth and I is the indicator function (it is 1 if the argument, |x|< h, is true,

else it is 0). Employing this in 3-dimensions, the resulting estimated probability density func-

tion is given by [45],

f̂ l x; y; z; hx; hy; hz

� �
¼

1

n
Pn

i¼1
Klðx � xi; hxÞ Klðy � yi; hyÞ Klðz � zi; hzÞ;

where (xi,yi,zi) are the given input data and hx,hy,hz are the bandwidths in each of x,y and z
directions. Similarly, the cosine kernel is given by,

Kc x; hð Þ ¼
p

4
cos

p

2

jxj
h

� �

I jxj < hð Þ;

where h is the bandwidth and I is the indicator function (it is 1 if the argument, |x|< h, is true,

else it is 0). The estimated probability density function is given by [45], f̂ c x; y; z; hx; hy; hz

� �
¼

1

n

Pn
i¼1

Kcðx � xi; hxÞ Kcðy � yi; hyÞ Kcðz � zi; hzÞ. To evaluate the effectiveness of each of these

kernels, we consider the 3D-DREVI plots generated due to each of these kernels (see Parts E

and F of S9 Fig). As we can see, linear and cosine kernels lead to visually inferior results in
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terms of smoothness of the resulting DREVI plots. This is indicative that linear and cosine ker-

nels are likely over fitting our data.

To quantitatively assess the effectiveness of our proposed choice of kernel, we compute

robustness of the kernels to various sub samplings of the data set, and compare it against alter-

nate kernels. For each kernel, we consider the density estimated on the full data set as the

ground truth. Then we randomly subsample cells without replacement from the data to vari-

ous sizes (e.g. to 90% of the original size) and re-estimate the underlying density in the same

set of points as on the full data set. This allows us to directly compare the estimated densities.

In particular, we compute the L1 norm of the difference between the estimated densities

(ground truth computed in the original data and density estimated in subsampled data) and

use it as a metric of robustness of the choice of kernel. Therefore, if Dk is the density estimated

using kernel k in the original data, which serves as the ground truth for that kernel, and D̂k;sub

is the density estimated using kernel k in the subsampled data, then we define the error as
P
jDk � D̂k;subj. We report results for two example pairs of proteins in Parts G and H of S9 Fig.

As we can see, the Gaussian kernel is much more robust than linear and cosine kernel.

Data and software availability

All data and the software will be available at https://github.com/dpeerlab/tides.

Supporting information

S1 Fig. TGFβ treatment reproducibly induces EMT: (A-B) Contour plots of Vimentin and E-

cadherin after 2–4 days of TGFβ stimulation; biological replicates for main Fig 1C. Replicates

confirm a shift in density of cells from epithelial to mesenchymal phenotype with time and

illustrate a continuum of cells in transition on days 2–4.

(TIFF)

S2 Fig. EMT characteristics are consistent across replicates: (A) Scatterplot where each point

is a cell treated with TGFβ for 3 days. The cells are divided into three distinct categories: Epi-

thelial, Transitional and Mesenchymal (see Methods). (B)-(E) A distribution of marker levels

is shown for the three categories. Expression of E-cadherin (B) and CD24 (C) is high in epithe-

lial cells, decreases in transitional cells, and is much lower in mesenchymal cells, consistently

across replicates. Expression of Vimentin (D) and CD44 (E) is low in epithelial cells, increases

in the transitional cells, and is higher in the mesenchymal cells, consistently across replicates.

(TIFF)

S3 Fig. A spectrum of marker trends along EMT-time are seen consistently across replicates:

(A)-(C) Plots show the expression of various markers along Wanderlust generated EMT-time

in the cells treated with TGFβ on Day 2, 3 and 4 respectively. Smoothing was performed by a

sliding-window Gaussian filter. The shaded region around each curve indicates one standard

deviation across replicates indicating consistency. (D) Plot showing the average cross-correla-

tion of marker expression along EMT-time across replicates. For a given marker, the expres-

sion along EMT-time is cross-correlated across replicates. The average correlation over the set

of markers is rendered as a heat map. (E) Average cross-correlation of marker expression

along EMT-time is similar across the different days within each replicate.

(TIFF)

S4 Fig. Signaling relationships along EMT-time in replicates: (A) TGFβ-treated cells from

Days 2, 3 and 4 are binned into four groups along EMT-time. DREMI score between all pairs

of signaling molecules is computed in each group. Heat map shows the correlation of the
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DREMI scores for each group across days. Average correlation is 0.68 (Replicate-2) and 0.73

(Replicate-3). (B) Dynamics of the relationship between pGSK3β and Snail1, similar to main

Fig 3D across biological replicates. 3D-DREVI depicts the typical expression of Snail1 condi-

tioned on pGSK3β and EMT-time. The modulation in the relationship is visualized by the

2D-DREVI slices along EMT-time and quantified the TIDES curve (purple curve) shown

along the z-axis. (C) Dynamics of the relationship between pPLCγ2 and pMEK1/2 similar to

Fig 3E across biological replicates.

(TIFF)

S5 Fig. Information transfer during EMT across transcription factors: Average TIDES curve

of the relationship between several molecules (pCREB, pSTAT5, pFAK, pMEK1/2, pNFκB,

pP38, pAMPK, pAKT, pERK1/2, pGSK3β, pSMAD1/5, pSMAD2/3, β-catenin, CAH IV,

pMARCK, pPLCγ2, pS6, pSTAT3) and Snail1 (B) and Twist (C), across three replicates for

Day 3. Similar to Slug in main Fig 4, the curves start rising steadily at near EMT-time ~ 0.25,

and peak near EMT-time ~ 0.75.

(TIFF)

S6 Fig. Validation of TIDES via short-term drug inhibition for direct and indirect edges in

replicates: (A) Cross-correlation of TIDES curve between pMEK1/2-pP90RSK with the impact

curve of pP90RSK results in a high correlation. This is a biological replicate of main Fig 5A.

(B) Cross-correlation of TIDES curve between pMEK1/2-pP90RSK with the expression level

of pP90RSK under control. Lower correlation than in (A) indicates that TIDES does not trivi-

ally follow the levels of pP90RSK. The curves end at EMT-time ~0.5 as the control does not

contain sufficient cells in the mesenchymal state. (C) Biological replicate of Fig 5B; cross-corre-

lating TIDES curve between pMEK1/2-pERK1/2 with the impact curve of pERK1/2 results in a

high correlation. (D)-(E) Cross-correlation of pERK1/2-pP90RSK TIDES curve and pP90RSK

impact curve under MEK-inhibition is 0.84 and 0.80 across two replicates.

(TIFF)

S7 Fig. Validation of critical edges for EMT via long-term drug inhibition in replicates: (A)-

(E) Shown are contour plots of cells treated with TGFβ (Control) and with TGFβ plus a

chronic drug perturbation of the stated molecule for 5 Days, across biological replicates.

Results of replicate 1 were shown as bar plots in Fig 6. Inhibition of TGFβ-receptor (A), MEK

(B) and WNT (C) cause a substantial decrease in the fraction of cells that complete transition,

while activation of AMPK (D) increases the proportion of cells that complete transition. AKT

(E) on the other hand does not seem to impact the transition.

(TIFF)

S8 Fig. Data clean-up: (A). Scatterplot showing the relationship between pCREB and pMEK1/

2 on Day 3 (shown is replicate 1). A spurious relationship between pCREB and pMEK1/2 at

high pCREB values is seen. These events were manually gated out from time course and acute

inhibition validation data sets. (B) Shown are heat maps of the expression of markers on vari-

ous clusters obtained using Phenograph [46] on a set of phenotypic markers and transcription

factors. The data shown is from Day 3 (replicate 1). The cells comprising the clusters with low

expression of markers (such events are found in most mass cytometry experiments) were

removed (indicated by red rectangles) from further analysis.

(TIFF)

S9 Fig. Computing Kernel Density Estimate: (Α) Plot shows histogram of a randomly chosen

marker on Day 3. Constructing the histogram of the data is the first step in computing kernel

density estimate. The histogram represents the initial condition for solving the heat equation.
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(Β) The histogram is then transformed into frequency domain by the Discrete Cosine Trans-

form (DCT). (C) A low-pass filter smooths the DCT by removing the noisy parts. This is

obtained by multiplying the DCT by an exponentially decaying term (exp(-k2π2t/2), see Meth-

ods) or in other words, evolving the initial condition in time. (D) The smooth density estimate

is derived by inverting the smoothed-DCT. (E) Plot shows 3D-DREVI of pERK1/2 -> pS6

along EMT-time for various choices of kernel (Gaussian, linear and cosine) used in the estima-

tion of underlying 3D-density. (F) Same as (E) for pERK1/2 -> Snail1 along EMT-time. (G)

Plot shows robustness of each of the kernels against various sub samplings of the data. The

density estimated using the full data is taken as the ground truth and the error is defined as the

sum of the absolute difference between density estimated in various subsamples of the data

against the ground truth. The solid line indicates the mean and the error bars indicate 1-stan-

dard deviation across 20 repetition of subsampling. The result is shown for pERK1/2 -> pS6

along EMT-time using Day 3 Replicate 1 data. (H) Same as (G) for pERK1/2 -> Snail1 along

EMT-time (see Methods).

(TIFF)

S10 Fig. Robustness of Wanderlust generated EMT-time: (A) Heat-map shows the correlation

between trajectories generated for various values of K-nearest neighbors. The shared nearest

neighbor (snn) parameter was fixed at 20, while the l parameter (to avoid short circuits in the

graph) was fixed at 12. (B) Heat-map shows the correlation between trajectories generated for

various values of l parameter. K was fixed at 60 and snn was fixed at 20. (C) Heat-map shows

the correlation between trajectories generated for various values of snn. K was fixed at 60 and l
was fixed at 12. The results shown are for data on Day 3 (replicate 1), and holds true for all of

our data.

(TIFF)

S11 Fig. Runtime Analysis. (A) Runtime for computing heat-diffusion based KDE against

data size. The data is uniformly generated with 3 features. The number of bins used to construct

the initial histogram was fixed to 128 in each of the three directions. The green line shows the

mean while shaded region shows one standard deviation for 100 iterations. (B) Runtime against

the log of number of histogram bins (in each of the three directions) for 5000 uniformly gener-

ated points. Computing density estimates on 224 points takes less than 10 seconds. (C) Runtime

comparison of our method against an alternate (based on computational geometry) [47] for

computing three-dimensional KDE. The shaded region shows the standard deviation across

three replicates from the time-course data Day 3 for an edge (pS6-pGSK3β) and EMT-time.

Our method can compute 3D density estimates at 224 points in less than 10 seconds while the

alternative takes more than 10 minutes. (D)-(F) Plots show runtime of heat-diffusion based

method against log of number of bins in computing 3D-DREVI, 3D-DREMI and TIDES

respectively. The shaded region shows the standard deviation in runtime across three replicates

of data from Day 3 for the edge used in (C), and the middle line shows the mean runtime.

(TIFF)

S12 Fig. Performance Analysis: (A) Performance analysis of the presented method against

number of bins. The plot shows reconstruction error against number of bins on a simulated

data. The underlying distribution is a 3-dimensional Gaussian distribution with mean 0.5 and

variance 0.3 in each of X, Y and Z directions. The reconstruction error is defined as the sum of

absolute difference between the ground truth and the estimated density (using our method)

for various number of bins normalized by the number of points density is estimated at (nbins

x nbins x nbins). The density was estimated using 5000 randomly sampled points from the

underlying distribution. The solid line shows the mean and the error bars show 1-standard
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deviation across 20 random sampling of the data points. (B) Plot shows the correlation in

TIDES scores computed using various number of bins and averaged over a set of 100 randomly

chosen pairs of proteins from Day3 Replicate 1 data.

(TIFF)

S1 Table. List of molecules and antibodies used for all mass cytometry analysis except the

acute inhibition experiment.

(DOCX)
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