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Ferroptosis is a novel process of regulated cell death discovered in recent years,

mainly caused by intracellular lipid peroxidation. It is morphologically

manifested as shrinking of mitochondria, swelling of cytoplasm and

organelles, rupture of plasma membrane, and formation of double-

membrane vesicles. Work done in the past 5 years indicates that induction

of ferroptosis is a promising strategy in the treatment of hepatocellular

carcinoma (HCC). System xc-/GSH/GPX4, iron metabolism, p53 and lipid

peroxidation pathways are the main focus areas in ferroptosis research. In

this paper, we analyze the ferroptosis-inducing drugs and experimental agents

that have been used in the last 5 years in the treatment of HCC. We summarize

four different key molecular mechanisms that induce ferroptosis, i.e., system

xc-/GSH/GPX4, iron metabolism, p53 and lipid peroxidation. Finally, we outline

the prognostic analysis associated with ferroptosis in HCC. The findings

summarized suggest that ferroptosis induction can serve as a promising new

therapeutic approach for HCC and can provide a basis for clinical diagnosis and

prevention of this disease.
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Introduction

Cell death is important for maintaining homeostasis and

cellular functions. Cell death is classified into two types:

accidental cell death (ACD) and regulated cell death (RCD)

(Fuchs and Steller, 2011). Of these, RCD is further divided

into apoptosis, necroptosis, pyroptosis, and ferroptosis in the

early stage (Grootjans et al., 2017; Tang D et al., 2019).

Different types of cell death have different morphological

characteristics and response mechanisms with distinct

molecular mechanisms and regulatory factors. Ferroptosis

as a mechanism of cell death was first proposed in 2012. It

is an iron-dependent form of RCD that, unlike apoptosis, is

not dependent on caspases or the BCL-2 family. It is mainly

characterized by accumulation of ferrous ions and

unrestricted lipid peroxidation leading to plasma

membrane rupture (Dixon et al., 2012; Stockwell et al., 2017).

Liver diseases are the leading cause of death worldwide

(Asrani et al., 2019; Fu et al., 2022). Liver is the metabolic

center for absorption of glucose, amino acids, and other

nutrients (Feng F et al., 2021; Pan et al., 2021; Li L et al.,

2022; Pan et al., 2022). Therefore, dysregulation of liver

function may lead to oxidative stress, potentially causing a

series of liver diseases. Ferroptosis plays an important role in

liver metabolic pathways such as regulation of NADPH levels,

GSH levels, and fatty acid metabolism (Chen et al., 2022). In

addition, iron metabolism, which induces ferroptosis, is also

mainly regulated by the liver. Ferroptosis-induced cell death

plays an important role in the development of liver diseases

such as hemochromatosis, alcohol-associated liver disease

(ALD), hepatitis C virus (HCV) infection, non-alcoholic

steatohepatitis (HCV), and hepatitis B, alcoholic

steatohepatitis (NASH), and hepatocellular carcinoma (HCC)

(Nie et al., 2018; Shojaie et al., 2020).

The latest cancer statistics released in 2020 in the Global

Cancer Statistics Report show that primary liver cancer is the

sixth most common cancer and the third most deadly cancer

worldwide (Sung et al., 2021). HCC ranks fifth in global

incidence and places a significant economic burden on the

world’s public health systems. Owing to the rapid growth and

migration of HCC, it is often difficult to control its

development with existing treatment modalities, ultimately

leading to a lower survival rate (Chen et al., 2021b; Li L et al.,

2022). Modern HCC treatment include both surgical and non-

surgical treatments. The proportion of patients that can be

treated surgically is less than 30% (Zhou et al., 2016).

Furthermore, surgical treatment is associated with a 40%

recurrence rate (Ryerson et al., 2016). Non-surgical

treatments include targeted drug therapy (Liu Z et al.,

2019; Song et al., 2019), chemotherapy (Goyal et al., 2019),

radiotherapy (Zaheer et al., 2019), and Chinese medicine

(Yang et al., 2020b). These treatment strategies are aimed

at selective killing of cancer cells without affecting normal

cells. Despite this, existing treatments often have the

disadvantages of also causing normal cell death along with

incomplete killing of cancer cells. In recent years, a major

breakthrough has been made in inhibiting the growth of HCC

by selective induction of cell death.

Recent studies have shown that the tumor

microenvironment plays a complex and multifaceted role

in the induction of cancer cell ferroptosis. For example,

immune cells such as neutrophils and macrophages can be

recruited into cancer tissue through chemokines released

from cancer cells and cancer-associated stromal cells. These

are then directed by proteins, metabolites, etc., to perform

pro- or anti-tumor functions, thus affecting the regulation of

iron metabolism in cancer cells (Liang and Ferrara, 2020). In

addition, substantial progress has been made in the

treatment of HCC via targeted regulation of ferroptosis.

The classical method of induction of ferroptosis is by

blocking intracellular glutathione peroxidase

GPX4 through the inhibition of cystine/glutamate

transporter (system xc−), thus resulting in inhibition of

HCC cell proliferation (Yang et al., 2014). Modern drugs

used to induce the onset of ferroptosis in liver cancer cells are

erastin and sorafenib, which target the RCD process and may

provide a new effective therapeutic measure to inhibit HCC.

In this paper, we present a systematic summary of the

mechanisms of ferroptosis, including System xc−, iron

metabolism, p53, and lipid peroxidation. We also

enumerate the drugs and novel technologies used to target

ferroptosis in recent years and discuss how ferroptosis can be

used as a target in liver cancer treatment. Finally, we highlight

several key questions and challenges for future research.

Ferroptosis overview

Ferroptosis, a unique Fe-dependent cell death mechanism,

was first proposed in 2012. Cells undergoing ferroptosis

exhibit distinct morphological features such as shrunken

mitochondria and reduced number of mitochondrial ridges.

It is mainly characterized by an excessive accumulation of

lipid peroxide leading to impaired cell membrane function

(Dixon et al., 2012; Stockwell et al., 2017) (Figure 1).

Ferroptosis can be induced by inhibition of cell membrane

transport proteins through an exogenous pathway or by

blocking the activation of intracellular antioxidant enzymes

(Tang and Kroemer, 2020). Ferroptosis induces a unique form

of cell death that offers a potential for developing novel drugs

for cancers that are difficult to treat with conventional

therapies. Induction of ferroptosis in HCC is an attractive

alternative novel therapeutic approach for liver cancer. We

have compiled relevant physiological studies describing

ferroptosis in HCC and describe the relevant targets of

action and mechanisms (Table 1).
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Hepatocellular carcinoma- related
pathways in ferroptosis

System xc−/GSH/GPX4

The System xc−/GSH/GPX4 axis plays a crucial role in

promoting lipid peroxidation in the induction of ferroptosis

(Galadari et al., 2017). System xc− acts as a cystine and

glutamate transporter in the cell and promotes intracellular

GSH synthesis by simultaneously transporting cystine into

and glutamate outside the cell (Capelletti et al., 2020). GSH is

mainly composed of glutamate, cysteine, and glycine. These

amino acids contain sulfhydryl structures that can be

oxidized, allowing GSH to protect cells from oxidative stress

damage. As GSH serves as a cofactor for the selenoenzyme GPX4,

inhibiting the de novo GSH synthesis induces ferroptosis by

inactivating GPX4 (Ingold et al., 2018).

System xc− is a reverse transporter protein located on the

plasma membrane and consists of a light chain subunit SLC7A11

(x CT) and a heavy chain subunit SLC3A2 (CD98hc or 4F2hc)

linked by a covalent disulfide bond. Of these, SLC7A11 is highly

specific for cystine and glutamate. SLC3A2 is a chaperone protein

that helps to enhance the stability of SLC7A11 and participates in

regulating the transport of SLC7A11 to the plasma membrane

(Koppula et al., 2018; LinW et al., 2020). Inhibition of System xc−

can effectively downregulate GSH/GPX4 expression, thereby

inducing cancer cell ferroptosis. DAZAP1 is an RBP that was

initially found to be abundantly expressed in the liver, heart and

brain (Dai et al., 2001). Recent studies have shown that inhibition

of DAZAP1 expression can significantly destabilize SLC7A11

(Choudhury et al., 2014; Chen et al., 2020; Wang et al., 2021d).

Another recent study showed that downregulation of

SLC7A11 expression both at mRNA and protein levels was

effective in promoting ferroptosis. IFNγ is a glycosylated

protein that can induce apoptosis or autophagy in tumor cells

via immune cells along with other molecules (Castro et al., 2018;

Alspach et al., 2019). IFNγ was able to sensitize HCC cells to

ferroptosis by activating the JAK/STAT pathway in HCC,

downregulating the mRNA and protein levels of

SLC7A11 and SLC3A2, eventually inhibiting System xc−

FIGURE 1
Molecular mechanism of ferroptosis in HCC. Ferroptosis is mainly caused by lipid peroxidation, and proper induction of ferroptosis may be an
effective treatment for related cancers. The occurrence of ferroptosis mainly involves three aspects: System xc−, iron metabolism, p53, and lipid
peroxidation. System xc− introduces cystine into cells primarily at a 1:1 reverse amino acid transport ratio, ultimately in glutamate-cysteine ligase
(GCL), glutathione synthase (GSS), glutathione Induced intracellular lipid peroxidation under the action of peptide peroxidase. Iron metabolism
is mainly caused by lipid peroxidation caused by excessive release of iron ions with the participation of iron ions. Lipid peroxidation is mainly through
fatty acid-induced lipid peroxidation. TCA, tricarboxylic acid cycle; ROS, reactive oxygen species; GSH, glutathione; GPX4, glutathione peroxidase;
TFR1, transferrin receptor; Acetyl-CoA, acetyl-CoA; PUFA, poly unsaturated fatty acid.
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activity (Kong et al., 2021). BCAT2 is a transaminase that

mediates sulfur amino acid metabolism whose inhibition can

reduce glutamate de novo synthesis, affect the conversion of

System xc− cystine to glutamate, and inhibit cystine uptake, thus

inducing ferroptosis (Wang et al., 2021c). Transforming growth

factor beta (TGFβ-1) can regulate cell growth and differentiation,
and has inhibitory effects on cancer cells. TGFβ-1 can inhibit

xCT through Smad3 and reduce the expression of GSH and

GPX4 (Dituri et al., 2019; Kim et al., 2020). Finally, Circular

RNAs (circRNAs) are a class of non-coding RNAs that can

inhibit the growth, migration, and invasion of HCC (Yao

et al., 2017). Indeed, knockdown of circ0097009 was found to

enhance the sensitivity of HCC cells to ferroptosis through miR-

1261 downregulation of SLC7A11 expression (Lyu et al., 2021).

GSH is a scavenger of free radicals and is the main cofactor

involved in lipid peroxide reduction by GPX4. It has an

important role in cellular defense against oxidative stress.

Several studies have shown that inhibition of GSH/GPX4 can

increase ferroptosis. Inhibition of O-GlcNAcylated c-Jun, the

first oncogenic factor identified, can inhibit GSH synthesis by

suppressing PSAT1 and CBS transcription (Vogt, 2002: Chen Y

et al., 2019). Ribonucleotide reductase (RR) is essential during

DNA replication and repair, and consists of two subunits

(RRM1 and RRM2). RRM2 plays an important role in tumor

development (Duxbury et al., 2004; Duxbury and Whang, 2007).

RRM2 expression was significantly elevated in HCC, and its

inhibition induced ferroptosis through GSS inhibition of GSH

synthesis (Yang et al., 2020a). Ferroptosis upregulation factor

(FUF) and ferroptosis downregulation factor (FDF) are regulated

by transcription factors HIC1 and HNF4a respectively.

HIC1 induces ferroptosis directly through upregulation of

HBA1 or by suppressing the expression of PSAT1 leading to

downregulation of GSH. HNF4a on the other hand inhibits

ferroptosis through upregulation of STMN1 or by

upregulation of PSAT1 leading to upregulation of GSH. By

controlling HIC1 and HNF4a expression, it is possible to

selectively inhibit GSH expression (Tang H et al., 2019). Non-

coding RNAs have also been reported to be involved in tumor

suppression (Liu et al., 2016). CircIL4R was shown to be

significantly upregulated in HCC tissues and circIL4R

knockdown was able to inhibit GPX4 activity via mir-541-3p

(Yao et al., 2019; Xu et al., 2020). Taken together, these studies

suggest that HCC can be effectively inhibited by inhibiting the

System xc−/GSH/GPX4 axis. However, some cancer cells remain

TABLE 1 Pathways and targets of ferroptosis in HCC.

Target Effector/reagent Proposed mechanism References

SLC7A11 Inhibition of
DAZAP1

Destabilization of SLC7A11 Choudhury et al. (2014); Chen et al. (2020);
Wang et al. (2021d)

Knock down
circ0097009

Downregulation of SLC7A11 expression Lyu et al. (2021)

SLC7A11 and
SLC3A2

IFNγ IFNγ activates JAK/STAT and downregulates SLC7A11 and SLC3A2 expression Kong et al. (2021)

System Xc- Inhibition of BCAT Reduces glutamate synthesis and affects System xc- Wang et al. (2021c)

TGFβ-1 Inhibition of System xc−, reduction of GSH and GPX4 by Smad3 Dituri et al. (2019); Kim et al. (2020)

GSH Inhibition of C-Jun Inhibition of GSH expression level Vogt (2002); Chen Y et al. (2019)

Inhibition of RRM2 Duxbury et al. (2004); Duxbury and
Whang (2007)

Inhibition of PSAT1 Tang H et al. (2019)

GPX4 Knockdown
CircIL4R

Inhibition of GPX4 expression levels Yao et al. (2019); Xu et al. (2020)

ferroptosis Upward HBA1 Direct induction of ferroptosis Tang H et al. (2019)

HNF4a HNF5a upregulates STMN1 to directly inhibit ferroptosis

TFRC OGlcNAcylation Enhancement of YAP transcriptional activity and upregulation of TFRC Zhu et al. (2021)

TRIB2 Inhibition of TRIB2 and upregulation of TFRC Guo et al. (2021)

LIP RSL3 Upregulation of LIP Asperti et al. (2021)

Iron ions CP CP-FPN system causes iron ion efflux and inhibits ferroptosis Shang et al. (2020)

Ferritin
autophagy

Circular RNA cIARS Negative regulation of ALKBH5 Liu et al. (2020)

SREBP1 and
SCD1

Lactate Inhibition of HCAR1/MCT1 was able to block ATP production, which initiated
AMPK phosphorylation, inhibited the expression of downstream SREBP1 and
SCD1, and suppressed ferroptosis

Zhao et al. (2020)

ACSL4 Lactate Inhibition of ACSL4, inhibition of ferroptosis Zhao et al. (2020)

POR G6PD Positive regulation Yang et al. (2019); Koppula et al. (2021)
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resistant to ferroptosis even after GPX4 inhibition, indicating the

existence of additional ferroptosis defense mechanisms that

deserve further investigation.

TP53

As one of the “star molecules” in antitumor research, p53 has

attracted the attention of researchers around the world. Its

functions and post-translational modifications have

highlighted the diversity and complexity of this protein (Liu Y

et al., 2019). Studies have shown that deletion or mutation of the

p53 gene leads to loss of wild-type p53 activity and malignant

transformation of tumors (Bykov et al., 2018; Levine, 2020).

Approximately 50% of patients with HCC have p53 gene deletion

in their tumor cells (Aning and Cheok, 2019). Traditionally, it

was thought that p53 mainly induces cell cycle arrest, senescence

or apoptosis (Brady et al., 2011; Li et al., 2012; Liu and Gu, 2022).

However, in recent years, it has been found that p53 can have

oncogenic functions even with loss of function mutations (Liu

and Gu, 2021). Several studies have shown that p53 plays a

crucial role in regulating tumor metabolic activities (including

glucose metabolism, oxidative phosphorylation, and lipid

metabolism) (Schwartzenberg-Bar-Yoseph et al., 2004;

Contractor and Harris, 2012; Liu and Gu, 2021). TP53 is also

involved in regulating ferroptosis. On the one hand, p53 is able to

inhibit SLC7A11 expression at the transcriptional level,

increasing the likelihood of ferroptosis through GSH-

dependent versus non-dependent (P53/SLC7A11/ALOX12)

forms (Jiang et al., 2015; Ou et al., 2016; Venkatesh et al.,

2020). On the other hand, p53 is also able to inhibit

ferroptosis. For example, p53 inhibits ferroptosis by activating

iPLA2β but promotes ferroptosis when external stimuli exceed a

certain threshold (Chen et al., 2021a). Notably, although p53 has

also been widely explored in HCC, there are very few reports

highlighting its role in inducing ferroptosis in HCC. Therefore,

how p53 induces or inhibits ferroptosis in HCC is a topic that

needs further investigation.

Iron metabolism

Iron is indispensable for maintaining normal life activities of

organisms. Iron metabolism plays an important role in the

process of ferroptosis, in which extracellular Fe3+ is

transported to the cell and reduced to Fe2+ through transferrin

on the cell membrane. Fe2+ accumulates with excess intracellular

H2O2 through the Fenton reaction leading to ROS, which

promotes intracellular lipid peroxide (LPO) production and

triggers ferroptosis (Stockwell et al., 2017).

Ferritin is an important site for intracellular Fe2+ storage.

Release of sufficient Fe2+ through autophagy induces ferroptosis.

Transferrin receptor (TFRC) is a protein located on the

membrane whose expression correlates with tumor stage or

cancer progression. Early targeted regulation of TFRC

expression has been reported as an effective strategy for the

treatment of various cancers (Horonchik and Wessling-Resnick,

2008; Daniels et al., 2012). For example, OGlcNAcylation, a

reversible post-translational modification catalyzed by

O-GlcNAc transferase (OGT), significantly enhances YAP

transcriptional activity, which leads to increased TFRC

expression. TFRC overexpression enhances cellular iron

uptake and enhances ferroptosis (Zhu et al., 2021). Another

study indicated that Tribbles homolog 2 (TRIB2), which is highly

expressed in HCC, suppresses TFRC expression, thereby

inhibiting Fe3+ uptake and reducing ferroptosis (Guo et al.,

2021). Iron ions exist in the form of divalent ions in the

cytoplasm, and formation of the cytoplasmic unstable iron

pool (LIP) is key to ferroptosis induction. In well-

differentiated HepG2 cells, GSH peroxidase 4 inhibitor (RSL3,

(1S,3R)-RSL3) treatment can upregulate LIP levels, while the

levels of transferrin receptor 1 (TFR1), membrane iron transport

protein 1 (FPN1), and ferritin, related proteins involved in

ferroptosis, were reduced (Asperti et al., 2021). Copper

cyanidin (CP) is a copper-containing glycoprotein, mainly

synthesized by the liver and present in large amounts in

human plasma, which can assist FPN to export iron ions and

regulate iron metabolism. The CP-FPN system causes iron ion

efflux and inhibits ferroptosis. Thus, downregulation of CP can

induce ferroptosis (Shang et al., 2020). Circular RNAs also play a

key role in iron metabolism. It was reported that the circular

RNA cIARS can negatively regulate ALKBH5 (demethylase, an

autophagy inhibitor) to induce ferritin autophagy and release

ferric ions thereby enhancing the effect of SOR treatment-

induced ferroptosis (Liu et al., 2020). Thus, iron metabolism

can increase ferroptosis sensitivity by multiple mechanisms.

Lipid peroxidation

Fatty acid components of the mevalonate pathway and

membrane phospholipids are involved in ferroptosis. The

mevalonate pathway is mainly dominated by Acetyl

Coenzyme A (CoA), while the fatty acids of membrane

phospholipids are mainly involved in polyunsaturated fatty

acids (PUFA). Polyunsaturated fatty acids (PUFAs) are

susceptible to oxidation in ferroptosis, leading to disruption of

the lipid bilayer and affecting cell membrane function. The

biosynthesis and maintenance of normal physiological

functions of polyunsaturated fatty acids in cell membranes

requires a series of enzymes, such as ACSL4 and LPCAT3, to

ensure that the cell membrane is not disrupted.

In cancerous cells, sugar metabolism is at the core of energy

generation, and its metabolic characteristics are distinct from

normal cells. Tumor cells mainly use glycolysis as the mode of

energy production, i.e., Warburg effect (Hanahan andWeinberg,
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2011). Lactate is a more involved product in Glucose metabolism,

and studies have shown that lactate uptake by cancer cells is

mainly achieved through the transporter protein MCT1, whose

expression level is regulated by HCAR1 (Roland et al., 2014;

Khan et al., 2020; Tasdogan et al., 2020). Excess lactate is able to

support ATP production through the tricarboxylic acid cycle

(TCA), and by inhibiting HCAR1/MCT1 is able to hinder ATP

production. This initiates AMPK phosphorylation, inhibits

downstream SREBP1 and SCD1 expression, and induces

ferroptosis. In addition, lactate inhibits the expression of

ACSL4 and thus protects HCC cells from ferroptosis.

Therefore, blocking lactate uptake may also induce ferroptosis

and inhibit HCC (Zhao et al., 2020).

Glucose-6-phosphate dehydrogenase (G6PD) was shown

to be a key enzyme in the pentose phosphate pathway (PPP)

and plays a critical role in the production of NADPH. G6PD

positively regulates ferroptosis by regulating POR (Cao et al.,

2021). Cytochrome P450 oxidoreductase (POR) increases

ferroptosis by upregulating peroxidation of membrane

polyunsaturated phospholipids (Yang et al., 2019; Koppula

et al., 2021), In conclusion, metabolic pathways are able to

participate in the induction of ferroptosis in cancer cells to

varying degrees. However, HCC is not well studied in the

context of lipid peroxidation-induced ferroptosis, a potential

pathway to induce ferroptosis in HCC.

Current stage of pharmacological
study of ferroptosis in hepatocellular
carcinoma

The recent discovery of ferroptosis has led to its application

in the inhibition of liver tumors. Use of ferroptosis inducers and

emerging technologies offers new possibilities for treating

patients with HCC with potentially reduced side effects

(Figure 2). In the next few sections, we describe the signals

associated with ferroptosis in HCC and highlight the potential

therapeutic agents for clinical translation (Table 2).

Sorafenib

Sorafenib (SOR) is the first multi-tyrosine kinase inhibitor

approved for the treatment of patients with unresectable HCC,

advanced kidney cancer, and differentiated thyroid cancer

(Kim and Park, 2011; Zhu et al., 2017). The main feature of

this compound is its ability to not only directly inhibit tumor

cell proliferation but also indirectly inhibit tumor

angiogenesis. Although several cancer-associated protein

kinase targets have been identified for SOR in HCC, the

underlying mechanism of its action remains unclear.

Despite its potential, clinical SOR use is associated with

FIGURE 2
Chemical structure of drugs related to the treatment of HCC by ferroptosis. Structural formula of some compounds that can target ferroptosis
to inhibit HCC. Sorafenib, SOR; Sulfasalazine, SAS.
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side effects. These include worsening liver dysfunction and

reduced survival benefit in SOR-treated patients with

advanced cirrhosis of Child-Pugh class B or C (Pinter

et al., 2009; Wörns et al., 2009). Although SOR has been

consistently reported to cause ferroptosis via system xc−, its

mechanism was unlike the homologous system xc− inhibitors

sulphasalazine and elastin. Therefore, SOR is not exclusively

responsible for HCC cell death via system xc− induced

ferroptosis in different HCC cell lines (Zheng et al., 2021).

It was shown that the anticancer activity of SOR via

ferroptosis induction relies mainly on the inhibition of System

xc− (Dixon et al., 2014). Therefore, we will discuss the specific

mechanism of SOR-mediated induction of ferroptosis in HCC.

SOR-mediated inhibition of liver cancer cell growth is not via a

TABLE 2 Drugs and pathways of action related to ferroptosis in HCC.

Target Remarks Action mechanism References

SOR Disruption of mitochondrial morphology and reduction of ATP synthesis Li Y et al. (2021)

GSH consumption

Knockdown MT1G Increase GSH consumption Houessinon et al. (2016); Sun
et al. (2016a)

SPARC overexpression Promotes LDH release andenhances the toxic effects of SOR Hua et al. (2021)

Joint use of RSL3 Inhibition of GSTZ1 increases the effect of SOR on the induction of
ferroptosis

Wang K et al. (2021)

Downward adjustment of Rb Increased SOR-induced mortality in HCC cells Louandre et al. (2015)

Knock down CISD2 Increase ROS,MDA levels and promote SOR-induced ferroptosis Li B et al. (2021)

Reduce P62, NRF2 Promote SOR-induced ferroptosis Ichimura and Komatsu
(2018)

DSF/Cu,NRF2 Promote SOR-induced ferroptosis Ren et al. (2021)

QSOX1,NRF2 Promote SOR-induced ferroptosis Sun et al. (2021)

Natural Products Formosanin C Downregulation of ferritin heavy chain polypeptide 1 (FTH1) and
upregulation of NCOA4

Lin P. L et al. (2020)

Heteronemin Induction of ROS formation Chang et al. (2021)

Mycalols Decrease the expression of GPX4 and increase the expression of NCOA4 Riccio et al. (2021)

Solasonine Inhibition of Gpx4 and GSS Jin et al. (2020)

Artesunate Promotes lysosomal histone B/L activation, ferritin autophagy, and lipid
peroxidation

Li Z. J et al. (2021)

DHA Increased expression of ROS, MDA and decreased activity of glutathione
(GSH), GPX4, solute carrier family (SLC) SLC7A11, SLC3A2

Wang Z et al. (2021)

S. barbata Decreased GPX4 and SLC7A11, increased IREB2, ACSL4 expression Li Y et al. (2022)

Atractylodin Decrease GPX4,FTL levels and increase ACSL4,TFR1 levels He et al. (2021)

Novel Drug
Technologies

MnMSN(FaPEG-MnMSN@SFB) Depletion of HSG, suppression of System xc- Tang H et al. (2019); Tang H
et al. (2020)

HKUST-1 Integrates cyclooxygenase 2 (COX-2), which depletes GSH and inhibits
GPX4 activity; induces PINK1/Parkin-mediated mitochondrial autophagy

Gu et al. (2011); Tian et al.
(2022)

MIL-101(Fe)@sor NPs Increased lipid peroxidation and MDA levels, decreased GSH and GPX4 Liu et al. (2021)

Cas13a or microRNA combined with
iron nanoparticles

Induce ferroptosis Sun et al. (2021)

LDL-DHA GSH depletion and inhibition of GPX4 Ou et al. (2017)

Exosomes (ExosCD47) Bypassing the phagocytic effects of MPS, chemophotodynamic therapy
targets the induction of ferroptosis

Chen R et al. (2019); Du et al.
(2021)

Others MicroRNA-214-3p (miR-214)
combined with Erastin

Increased MDA, ROS expression levels, upregulated iron ion concentration,
and decreased GSH levels

Bai et al. (2020)

Ketamine Inhibits GPX4 expression Zhu et al. (2021)

Haloperidol Downregulation of S1R, downregulation of GSH levels and upregulation of
lipid peroxidation in liver cancer cells

Wang et al. (2015); Bai et al.
(2019)

Nucleoprotein 1 (NUPR1) inhibitor
ZZW-115

Disruption of mitochondrial morphology and metabolic function Huang et al. (2021)

YAP/TAZ Induces the expression of SLC7A11 and inhibits ferroptosis Gao et al. (2021)

Necrostatin-1 Induces the expression of SLC7A11 and inhibits ferroptosis Yuk et al. (2021)
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single apoptotic process. Studies have revealed that blocking

apoptosis does not prevent the iron-dependent cytotoxicity of

SOR. In contrast, iron chelation did not prevent the toxic effects

of SOR on HCC cells under pro-apoptotic conditions. These

results suggest that SOR may be a better inducer of ferroptosis in

cultured liver cancer cells (Louandre et al., 2013). Treatment of

HCC cells with SOR for different times produced different levels

of phosphorylation in HCC cells. E3 ubiquitin protein ligase

MDM2 (Q00987) is involved in p53 regulation. The phosphosite

pSer166 (FC = 0.16, p = 0.022) on MDM2 is a key residue in this

regulation. Sorafenib treatment resulted in sixfold reduction of

pSer166 levels, while pSer315 (FC = 0.25, p = 0.019) and pSer392

(FC = 0.02, p = 0.027) sites on p53 decreased significantly by 4-

fold and 50-fold, respectively. By 60 min, significant changes

were observed in p53 (P04637), CAD protein (P27708), and iron

homeostasis important proteins such as heavy chain ferritin

FTH1, heme oxygenase 1 (HMOX1; P09601), and PCBP1

(Q15365). These key targets are largely correlated with

ferroptosis, suggesting a possible involvement of phosphorus-

regulated signaling during SOR-induced ferroptosis (Werth et al.,

2020). In addition, ferroptosis manifests morphologically as

disrupted mitochondrial morphology. SOR is thus able to

disrupt the mitochondrial morphology of HCC cells

accompanied with decreased oxidative phosphorylation

activity, mitochondrial membrane potential and ATP

synthesis, and subsequent cell death via ferroptosis. In

addition, depletion of glutathione through cysteine deprivation

or cysteinase inhibition exacerbates SOR-induced ferroptosis and

lipid peroxide production, enhances oxidative stress and

mitochondrial ROS accumulation, and induces ferroptosis (Li

Y et al., 2021). However, SOR resistance is a potential problem in

the treatment of patients with HCC. New findings suggest that

NRF2 activation upregulates the expression of MT1G mRNA of

the metallothionein-1 (MT1) family during SOR treatment.

Knockdown of MT1G increases glutathione (GSH) depletion

and lipid peroxidation, thus inducing ferroptosis. Therefore,

MT1G may be a key regulator to target in tackling drug

resistance during SOR chemotherapy (Sun et al., 2016a;

Houessinon et al., 2016).

In HCC, there are some regulators can synergize or

antagonize SOR action. For instance, overexpression of

cysteine-rich secretory acidic protein (SPARC) induces

oxidative stress, which induces ferroptosis. This promotes the

release of lactate dehydrogenase (LDH), disrupts the expression

of proteins associated with ferroptosis, and enhances the toxic

effects of SOR in Hep3B and HepG2 cells (Hua et al., 2021).

Glutathione s-transferase (GSTZ1), an enzyme involved in

phenylalanine metabolism, is significantly downregulated in

SOR-resistant HCC cells. Downregulation of GSTZ1 leads to

activation of the NRF2 pathway, which upregulates glutathione

peroxidase (GPX4) and inhibits ferroptosis. The GPX4 inhibitor

RSL3 significantly inhibits GSTZ1 and promotes ferroptosis.

Thus, the use of RSL3 may provide a new therapeutic strategy

for HCC (Wang K et al., 2021). Loss of function of the

Retinoblastoma (Rb) protein has an important effect on

hepatocarcinogenesis. Thus, by downregulating Rb levels, the

mortality rate in SOR-exposed HCC cells is two to three times

higher than with SOR alone (Louandre et al., 2015). The

mitochondrial outer membrane protein CDGSH iron-sulfur

cluster structural domain 2 (CISD2) is highly expressed in

HCC cells. Knocking down CISD2 expression can increase

ROS, MDA, and iron ion levels, which can promote SOR-

induced ferroptosis in HCC resistant cells. Thus, SOR

combined with CISD2 inhibition has therapeutic potential in

HCC (Li B et al., 2021). Several other studies have shown that

NRF2 plays a key role in enhancing SOR-induced ferroptosis in

Iron metabolism. The autophagy receptor protein p62 was found

to initiate autophagy via the Keap1-Nrf2 signaling pathway

(Ichimura and Komatsu, 2018). p62 competes with Nrf2 to

bind Keap1, leading to dissociation of Nrf2 from Keap1. Thus,

when p62 expression increases, Keap1 can no longer bind to

Nrf2, leading to increased Nrf2 signaling and inhibition of

ferritin autophagy. The expression of FTH1, HO-1, etc., is

upregulated and ROS production is inhibited, thus protecting

cells from ferroptosis. Therefore, inhibition of NRF2 expression

or activity increases the anticancer activity of erastin and SOR

in vitro and in vivo (Sun et al., 2016b). Disulfiram (DSF) is a

divalent metal ion chelator that binds metal ions in vivo and

inhibits acetaldehyde dehydrogenase activity (ALDH). Recent

studies have shown DSF to possess antitumor activity, which can

be enhanced in combination with Cu plasma (Skrott et al., 2017).

DSF/Cu can inhibit nuclear translocation of Nrf2 and enhance

SOR-induced ferroptosis to inhibit HCC cell proliferation (Ren

et al., 2021). Resting sulfhydryl oxidase-1 (QSOX1) promotes the

formation of disulfide bonds in peptides and proteins and also

the oxidation of reduced molecules to generate hydrogen

peroxide. QSOX1 is highly expressed in a variety of cancer

tissues (Lake and Faigel, 2014) and studies have pointed to

QSOX1 as a potential oncogene in HCC (Zhang et al., 2019).

However, its expression varies in different tumor environments.

QSOX1 inhibits EGF-induced EGFR activation by promoting

ubiquitination-mediated EGFR degradation and accelerating its

intracellular endosomal transport, resulting in reduced

NRF2 activity. In addition, QSOX1 enhances sorafenib-

TABLE 3 Seven derivatives of Mycalols.

Mycalol-550 R1 = C5H11 R2 = Ac

Mycalol-522 R1 = C3H7 R2 = Ac

Mycalol-578 R1 = C7H15 R2 = Ac

Mycalol-594 R1 = C5H11 R2 = (3S)-3HB

Mycalol-622 R1 = C7H15 R2 = (3S)-3HB

Mycalol-636 R1 = C8H17 R2 = (3S)-3HB

Mycalol-650 R1 = C9H19 R2 = (3S)-3HB
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induced ferroptosis by inhibiting NRF2 in vitro and in vivo (Sun

et al., 2021). In summary, SOR plays a role in inducing ferroptosis

in HCC, either alone or in combination, and to some extent can

also induce ferroptosis and cause death of HCC. However, its use

in the treatment of HCC is still a great challenge due to the

associated side effects.

Natural products

Natural plant (Fueki et al., 2022; Huang et al., 2022; Otsuki

et al., 2022) extracts and plant monomers occupy a significant

proportion of the research on anti-HCC compounds. Of these,

herbal medicine is a focus of research (Wang et al., 2020; Wang

FIGURE 3
Application of Chinese medicine in the induction of HCC ferroptosis. Traditional Chinese medicine: Formosanin C(FC), Heteronemin, Mycalols,
Solasonine, S. barbata, Atractylodin, Artesunate, Dihydroartemisinin (DHA). Of these, seven derivatives of Mycalols have been identified.
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et al., 2021a; Wang et al., 2021b) involving extracts and

compounds implicated in the induction of ferroptosis to

inhibit HCC (Figure 3). Several studies have shown that plant

extracts and compounds are able to induce intracellular ROS

production and increase susceptibility of cells to ferroptosis. For

example, Formosanin C (FC), a natural compound that induces

autophagic flux, inhibits HCC growth by downregulating ferritin

heavy chain polypeptide 1 (FTH1), and upregulating

NCOA4 expression. This causes increased ferritin autophagy,

leading to increased intracellular ferric ion levels, thus increasing

reactive oxygen species (ROS) levels and inducing ferroptosis

(Lin P. L. et al., 2020). Heteronemin is a marine natural product

isolated from the sponge Hyrtios sp. Heteronemin induces ROS

formation and leads to p38/jnk activation and caspase-related

apoptosis and ferroptosis, thereby inducing death in liver cancer

cells (Chang et al., 2021). Mycalols, polyoxyglycerol alkyl ethers

are mainly isolated from the Antarctic sponge M. (Oxymycale)

acerata. Mycalol can reduce the expression level of GPX4 and

increase the expression of NCOA4 (Table 3). Enhanced

NCOA4 expression induces ferroptosis, which may be directly

related to the inhibition of liver cancer cell growth by mycalol

(Riccio et al., 2021). Solasonine, a compound isolated from

Solanum melongena, has anti-infective and neurogenesis-

promoting effects. Metabolomics analysis showed that

Solasonine increases lipid ROS levels in HepG2 cells by

inhibiting Gpx4 and GSS. Solasonine also promotes

ferroptosis in HCC cells through Gpx4-induced disruption of

the glutathione redox system (Jin et al., 2020). In addition,

numerous Chinese herbs also possess anti-hepatocellular

carcinogenic ability. For example, Semen (Scutellaria barbata)

can increase the expression of iron peroxidation-related genes

IREB2 and ACSL4 by significantly reducing the expression levels

of GPX4 and SLC7A11 in nude mice. It also promotes iron

peroxidation and lipid ROS metabolism to induce ferroptosis in

HCC cells (Li Y et al., 2022). Atractylodin decreases GPX4 and

FTL protein expression, upregulates ACSL4 and TFR1 protein

expression, and increases ROS levels in liver cancer cells (He

et al., 2021). In recent years, several studies have reported that

active components of Artemisia annua can induce ferroptosis

and inhibit HCC. Of these, artesunate, a semisynthetic derivative

of artemisinin, has earlier been reported to have anticancer

activity (Efferth et al., 2001), Newer studies have shown that

artesunate-induced lysosomal activation synergizes with

sorafenib-mediated pro-oxidation by promoting lysosomal

histone protease B/L activation, ferritin autophagy, lipid

peroxidation, and subsequent ferroptosis. A series of responses

were significantly exacerbated by combining Artesunate and

sorafenib treatments in the inhibition of HCC (Li Z. J et al.,

2021). Another study showed that the artemisinin derivative

dihydroartemisinin (DHA) can increase the expression of ROS,

MDA, decrease the activity of glutathione (GSH), GPX4, solute

carrier family (SLC) SLC7A11, SLC3A2, reduce their expression

and induce ferroptosis. In addition, this study also found that

DHA was able to enhance the activity of GSH degrading cation

transporter-like protein 1 (CHAC1) promoter. This enhanced

activity was found to influence theunfolded protein response

(UPR) resulting in reduced GSH activity and inducing

ferroptosis (Wang Z et al., 2021).

Novel drug technologies

HCC is difficult to detect in the early stages and is often

transformed into advanced HCC when diagnosed clinically.

Since advanced HCC often has strong resistance to

chemotherapy, the efficacy of common chemotherapeutic

drugs is not satisfactory. Additionally, clinical application is

somewhat limited due to poor solubility, low bioavailability,

and rapid metabolism of many drugs. Therefore, there is an

urgent need to develop new technologies to improve

bioavailability of drugs and to achieve better therapeutic

outcomes (Figure 4).

Studies have shown that new technologies such as designed

nanoparticles and chemical photodynamic therapy can induce

ferroptosis to inhibit HCC. Biodegradable silica nanoparticles are

inorganic nanoparticles that can be renally cleared and have

features such as reduced toxic accumulation in vivo along with

the advantage of facilitated drug delivery and controlled release.

It was found that GSH can be depleted by developing manganese

doped silica nanoparticles (MnMSN). Targeted SFB loaded

MnMSN (FaPEG-MnMSN@SFB) can deplete GSH on one

hand and inhibit System xc− on the other hand to achieve

dual inhibition of GSH and thus induce ferroptosis (Tang H

et al., 2019; Tang H et al., 2020). Metal-organic framework

compound material (MOF) is a highly crystalline inorganic-

organic hybrid porous material. HKUST-1 nanocatalyst is a

type of MOF with large surface area, high porosity, and

uniform pore size (Gu et al., 2011). By integrating

cyclooxygenase 2 (COX-2), inhibitor was able to deplete GSH,

inhibit GPX4 activity, and trigger chemodynamic therapy (CDT)

mediated ROS accumulation lipid peroxides (LPO) induced

ferroptosis. In addition, COX-2 downregulation can also

induce PINK1/Parkin mediated mitochondrial autophagy

synergizing with SOR to achieve a dual ability to inhibit HCC

activity (Tian et al., 2022). Metal-organic framework compounds

MIL-101(Fe) NPs are capable of drug loading, controlled release,

peroxidase activity, biocompatibility, and T2 magnetic resonance

imaging. MIL-101(Fe)@sor NPs can increase lipid peroxidation

and MDA levels, decrease GSH and GPX4, and inhibit tumor

progression through ferroptosis (Liu et al., 2021). The NF-κB-
specific promoter Cas13a or microRNA can selectively

downregulate genes related to iron metabolism, fpn or lcn2.

This in combination with iron nanoparticles can significantly

induce ferroptosis (Sun et al., 2021).

It has also been shown that LDL nanoparticles and exosomes

play a key role in the induction of ferroptosis to inhibit the
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growth of liver cancer cells. For example, LDL nanoparticles

reconstituted from (LDL-DHA) natural omega-3 fatty acid,

docosahexaenoic acid, significantly induce lipid peroxidation,

GSH depletion, and inhibition of GPX4 activity. A study showed

no association with apoptosis, necrosis or autophagy pathways

from human HCC cell results. In vivo, elevated levels of lipid

peroxidation and inhibition of GPX4 expression were found in

liver tumor tissues, verifying the induction of ferroptosis by LDL-

DHA (Ou et al., 2017). Exosomes are small membrane vesicles

containing complex RNA and proteins. Small nanocapsules are

novel communication and drug delivery mediators that can

transport biologically active molecules between cells via a

variety of biomolecules (e.g., proteins, nucleic acids) and

regulate the cellular microenvironment and immune system

(Chen R et al., 2019). Since exosomes are susceptible to

phagocytosis by the monocyte phagocytic system (MPS),

functionalization of CD47 on exosomes (ExosCD47)

effectively avoids the phagocytic effect of MPS. This facilitates

loading of Erastin and photosensitizer (Rose Bengal, RB) into

exosomes to inhibit HCC viability by targeting induction of

ferroptosis through chemophotodynamic therapy (Du et al.,

2021). In summary, novel technologies such as

nanotechnology and chemophotodynamic therapy have the

potential to target and improve HCC treatment, enhance the

ability of drugs to induce ferroptosis, and provide new

possibilities for development of new drug treatment vectors.

Others

In addition to the above related drug studies, there is clear

evidence that Erastin, sulfasalazine (SAS) can also inhibit HCC

activity by inducing ferroptosis. For example, microRNA-214-3p

(miR-214) further increases MDA and ROS expression levels,

upregulates Fe2+ concentration and decreases GSH levels when

combined with Erastin. This is mainly due to Erastin mediated

upregulation of activating transcription factor (ATF4). miR-214

ameliorates this upregulation, and the combination reduces the

ability of ATF4 to inhibit ferroptosis, thus upregulating

ferroptosis (Bai et al., 2020). Ketamine (a derivative of

FIGURE 4
Modern technology for the treatment of HCC by ferroptosis. To achieve higher bioavailability by designing nano-encapsulated materials to
prevent drug degradation, including 1) silica nanoparticles; 2) low-density lipoprotein nanoparticles; 3) metal-organic framework compound
materials MOF + nanocatalyst HKUST-1; 4) iron-containing Ionic MIL-101(Fe)NPs. In addition, chemophotodynamic therapy 5) combined with
exosome use induces ferroptosis.
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phencyclidine) inhibits GPX4 expression by reducing

plasmacytoma variable translocation gene 1 (lncPVT1), and

lncPVT1 promotes GPX4 expression by adsorbing miR-214-

3p. The LncPVT1/miR-214-3p axis is one of the potential

mechanisms by which ketamine regulates GPX4 expression to

modulate iron sagging in HCC cells (Zhu et al., 2021).

Haloperidol (Haloperidol), a typical butylphenyl antipsychotic,

has been reported in recent years to have a high affinity for

Sigma-1 (S1R) (Rousseaux and Greene, 2016). Downregulation

of S1R can generate oxidative stress (Wang et al., 2015; Bai et al.,

2019). Haloperidol treatment significantly downregulates GSH

levels and upregulates lipid peroxidation levels in HCC cells (Bai

et al., 2017). The nuclear protein 1 (NUPR1) inhibitor ZZW-115

is able to disrupt mitochondrial morphology and metabolic

function by inhibiting the expression of mitochondrial

transcription factor A (TFAM). This leads to accumulation of

lipid peroxidation, thus inducing ferroptosis (Huang et al., 2021).

Additional partial studies that blocked ferroptosis in HCC

enabled a better reverse understanding of the underlying

mechanisms of escape resistance in cancer. For example,

YAP/TAZ induces the expression of SLC7A11 in a TEAD-

dependent manner. By maintaining the protein stability,

nuclear localization and transcriptional activity of the

transcriptional activator factor (ATF4), HCC cells inhibit

SOR-induced ferroptosis (Gao et al., 2021). In addition,

Necrostatin-1 inhibits System xc− mediated ferroptosis in

Huh7 and SK-HEP-1 cells probably by inducing xCT

expression (Yuk et al., 2021).

In conclusion, the inhibition of ferroptosis in HCC has

great therapeutic potential. Such inhibition involves direct

inducers of ferroptosis such as SOR, Erastin, SAS, etc., which

can act synergistically or antagonistically to ferroptosis

inducers by inducing or inhibiting the activity of related

targets. The above also describes the role of natural

products in the induction of ferroptosis inhibitory activity

in HCC in recent years, revealing the potential value of natural

products in the inhibition of HCC. In addition, rapid

development of new technologies such as nano- and

exosomes have a high potential in facilitating inhibition of

HCC. The review of modern drug-induced ferroptosis

inhibition of HCC viability can be a guide for subsequent

research and development targeting ferroptosis inhibition

of HCC.

Prognosis of ferroptosis in hepatocellular
carcinoma

Prognostic analysis can be clinically important in

predicting the progression of disease after onset.

Prognostic analysis of HCC and ferroptosis will provide

further insight into the induction of ferroptosis to inhibit

HCC. Numerous studies have shown that

ACSL4,SL7A11,SLC3A2, and G6PD are major regulators

in ferroptosis. ACSL4 (Du and Zhang, 2020; Feng J et al.,

2021), SL7A11 (Tang B et al., 2020; Zhang et al., 2021),

SLC3A2, and G6PD (Dai et al., 2021) are genes associated

with ferroptosis in HCC with clear prognostic significance.

ABCB6 (Zhang et al., 2020), UBA1 (Shan et al., 2020) etc.,

have good predictive ability in HCC and ferroptosis by

affecting HO-1, FTH1, FTL to regulate iron metabolism

and induce ferroptosis. Some long-stranded non-coding

RNAs (IncRNAs) also have good predictive ability in

ferroptosis-induced HCC (Chen Z. A et al., 2021; Xu

et al., 2021). In summary, modern prognostic analysis in

ferroptosis of HCC using bioinformatics tools is important

for finding key targets for treatment.

Conclusion

Ferroptosis is an important form of regulatory cell

necrosis. Proper induction or inhibition of cellular

ferroptosis can help improve and treat a variety of

diseases. Ferroptosis plays a very important role in HCC.

Currently, the main drugs that induce ferroptosis in HCC are

SOR, SAS, etc., Natural product extracts and monomers

including Chinese herbs also provide new strategies for

HCC treatment. To further improve drug resistance,

nanotechnology, and drug combination therapy in the

induction of HCC ferroptosis is a promising research

hotspot. Ferroptosis-targeting drugs, drug combination

applications, nanotechnology, etc., act to induce

ferroptosis in HCC mainly through System xc−/GSH/

GPX4, iron metabolism, p53, and lipid peroxidation

pathways. These signaling pathways intersect with each

other and exert combined effects. A large number of

bioinformatics studies for prognostic analysis of induced

HCC ferroptosis provide information not only for the

study of new targets in HCC but also to support better

clinical treatment.

Not surprisingly, the role of ferroptosis in HCC has

attracted the interest of clinical researchers. Ferroptosis

has a complex interdependent role in liver tumor

prevention, diagnosis, prognosis, and treatment. These

aspects will require extensive and ongoing research to

better understand the regulatory mechanisms and

signaling pathways of ferroptosis in HCC. In recent years,

TCM has emerged to have a clear role in suppressing liver

tumors. The TCM system is huge, but there are a few reports

on induction of ferroptosis to inhibit HCC by TCM, which

holds great promise in future HCC research. Solving the

global problem of liver cancer patients through TCM alone

or in combination with clinical western drugs to induce

ferroptosis is a challenge. Therefore, we believe that

induction of ferroptosis in HCC either by TCM alone or
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in combination with modern techniques will provide a better

strategy to improve the treatment and prognosis of HCC.
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