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ABSTRACT

Objective: As coronavirus disease 2019 (COVID-19) started its rapid emergence and gradually transformed into

an unprecedented pandemic, the need for having a knowledge repository for the disease became crucial. To ad-

dress this issue, a new COVID-19 machine-readable dataset known as the COVID-19 Open Research Dataset

(CORD-19) has been released. Based on this, our objective was to build a computable co-occurrence network

embeddings to assist association detection among COVID-19–related biomedical entities.

Materials and Methods: Leveraging a Linked Data version of CORD-19 (ie, CORD-19-on-FHIR), we first utilized

SPARQL to extract co-occurrences among chemicals, diseases, genes, and mutations and build a co-occurrence

network. We then trained the representation of the derived co-occurrence network using node2vec with 4 edge

embeddings operations (L1, L2, Average, and Hadamard). Six algorithms (decision tree, logistic regression,

support vector machine, random forest, naı̈ve Bayes, and multilayer perceptron) were applied to evaluate per-

formance on link prediction. An unsupervised learning strategy was also developed incorporating the t-SNE (t-

distributed stochastic neighbor embedding) and DBSCAN (density-based spatial clustering of applications with

noise) algorithms for case studies.

Results: The random forest classifier showed the best performance on link prediction across different network

embeddings. For edge embeddings generated using the Average operation, random forest achieved the opti-

mal average precision of 0.97 along with a F1 score of 0.90. For unsupervised learning, 63 clusters were formed

with silhouette score of 0.128. Significant associations were detected for 5 coronavirus infectious diseases in

their corresponding subgroups.

Conclusions: In this study, we constructed COVID-19–centered co-occurrence network embeddings. Results in-

dicated that the generated embeddings were able to extract significant associations for COVID-19 and coronavi-

rus infectious diseases.
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INTRODUCTION

Having now affected millions of people worldwide, coronavirus dis-

ease 2019 (COVID-19)/the novel coronavirus has become a major

pandemic of the century. Most countries have declared a state of na-

tional emergency and took actions effective immediately to slow the

spread. Researchers and medical personnel around the world have

published and released thousands of articles over a short period of

time, covering a vast scientific ground and exploring medical treat-

ments and possible vaccines for the virus.1 With all this information,

it is important to assemble all the available heterogeneous informa-

tion and be aware of the explicit or implicit associations among sub-

jects related to COVID-19 (eg, certain genes could be linked to

other genes and/or mutations related to COVID-19 and other coro-

navirus infectious diseases). Figuring out which subjects appear to-

gether is one of the approaches for identifying these associations and

linking them together. Traditionally, text semantic similarity2,3 is

one of the approaches for detecting links between words or senten-

ces from unstructured data. One limitation is that it is inefficient to

apply this approach over a large collection of free-text data, hamper-

ing the global view to detect significant associations across literature

from heterogeneous domains. Normalized data stored in semi-

structured graph format is more suitable for global link detection, as

linked data4 by nature provide efficient query scheme over triplets

to interpolate between “macroscopic” and “microscopic” search.

Several efforts were made in the graph-based analysis of

COVID-19. For example, Ahamed and Samad5 developed a graph-

based model using abstracts of 10 683 COVID-19–related scientific

articles and applying betweenness-centrality to rank order the im-

portance of keywords related to drugs, diseases, pathogens, hosts of

pathogens, and biomolecules. Bellomarini et al6 presented a report

on ongoing work about the application of automated reasoning and

knowledge graph technology to address the impact of the COVID-

19 outbreak on the network of Italian companies. Tsiotas and Mag-

afas7 used visibility graphs to study Greek COVID-19 infection

curve as a complex network. Per request of the White House Office

of Science and Technology Policy, a new COVID-19 machine read-

able dataset (CORD-19)8 has been released, and several studies have

featured it dataset to investigate COVID-19–related topics. For ex-

ample, Wolinski9 used CORD-19 to extract diseases at risk and cal-

culate relevant indicators as well as created VIDAR-19

(VIsualization of Diseases At Risk in CORD-19). Wang et al10 con-

ducted CORD-19 named entity recognition leveraging the distant

supervision strategy. CORD-19-on-FHIR is a Linked Data version

of CORD-19.11 It is represented in FHIR RDF12,13 and was pro-

duced by data mining the CORD-19 dataset and adding semantic

annotations. In addition, Groza14 featured CORD-19-on-FHIR in

the analysis of how semantically annotated dataset can be applied

for detecting and preventing the potential spread of deceptive infor-

mation regarding COVID-19.

A vast co-occurrence information contained in CORD-19 data-

sets allows for detection of novel associations across findings from

various research articles. However, such information has been

largely unexplored for association extraction. Moreover, the lack of

measurable association among heterogeneous biomedical entities

hampers the capability for a quantitative analysis. Inspired by the

success of word embeddings15 in building distributed semantic rep-

resentations for each word given a corpus, network embeddings pro-

vide a solution to map graph nodes to distributional representations

and translate nodes’ relationships from graph space to embedding

space, which makes the association between the nodes measur-

able.16–18 In this study, we filled this gap by constructing network

embeddings for the CORD-19 co-occurrence network. Specifically,

we first derived a co-occurrence network by querying the CORD-

19-on-FHIR and focused on the extraction of biomedical entities

falling in 4 categories: chemical, disease, gene, and mutation. We

then applied the node2vec model over the generated network and

constructed network embeddings. We conducted the evaluation

quantitatively and qualitatively. For the quantitative evaluation, we

generated different embeddings with 4 embeddings generation oper-

ations using a downstream application on graph link prediction and

measured the performance with 6 machine learning algorithms. For

the qualitative evaluation, we visualized clusters generated by the

optimal COVID-19 network embeddings and analyzed associations

of heterogeneous biomedical entities related to COVID-19 and other

coronavirus infectious diseases.

MATERIALS AND METHODS

CORD-19-on-FHIR
The purpose of building CORD-19-on-FHIR is to represent linkage

with other biomedical datasets and enable answering research ques-

tions. In this study, we used a subset of CORD-19-on-FHIR datasets

annotated by Pubtator19 and LitCovid,1 including 3207 COVID-

19–related articles in total. Each article was stored in one specific

annotation file. For each file and for each paragraph in the file,

CORD-19-on-FHIR provides a way to capture all the annotated

biomedical entities. A high level example of data stored in the Terse

RDF Triple Language (Turtle) format is shown:

• pmc: annotations [
• pmc: id “1”;
• pmc: infons [pmc: identifier “MESH: D003371”;

pmc: type “Disease”];
• pmc: locations [pmc: length “5”^^xsd: int;

pmc: offset “20312”^^xsd: int];
• pmc: text “cough”],
• pmc: id “2”;
• pmc: infons [pmc: identifier “MESH:

C000657245”; pmc: type “Disease”];
• pmc: locations [pmc: length “19”^^xsd: int;

pmc: offset “14766”^^xsd: int];
• pmc: text “2019-nCoV infection”] ,],
• pmc: annotations [
• pmc: id “5”;
• pmc: infons [pmc: identifier “59272”; pmc:

ncbi_homologene “41448”; pmc: type “Gene”];
• pmc: locations [pmc: length “31”^^xsd: int;

pmc: offset “1986”^^xsd: int];
• pmc: text “angiotensin-converting enzyme

2”],
• pmc: id “7”;
• pmc: infons [pmc: identifier “MESH:

C000657245”; pmc: type “Disease”];
• pmc: locations [pmc: length “19”^^xsd: int;

pmc: offset “14766”^^xsd: int];
• pmc: text “2019-nCoV infection”] ,],

where “pmc: annotations” was used to differentiate different para-

graphs within a same article, “pmc: id” was used to indicate differ-

ent biomedical entities along with entity type (“pmc: type”),

location and offset (“pmc: location”), and the original text from lit-
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erature (“pmc: text”). Such encoding of the data made it possible to

easily detect co-occurrence of biomedical entities within a single par-

agraph for building the network across the literature.

Node2Vec
The node2vec model used a random walk-based sampling strategy

to balance the graph homophily20 and structural equivalence.21 The

reason we chose to use node2vec is its ability to learn node represen-

tations with a balance between the breadth-first search and depth-

first search, which is essential for learning associations in a graph

with both local and global views.

METHODS

The workflow of this study is made of 3 modules, including a

CORD-19-on-FHIR–based co-occurrence network generation mod-

ule, a network embeddings construction module, and an unsuper-

vised learning module (Figure 1).

Co-occurrence network generation
For each literature, we treated paragraph-level co-occurrence in this

study. We first designed a SPARQL query statement to extract

paragraph-level co-occurrence of biomedical entities from CORD-

19-on-FHIR. Particularly, in order to largely collect coronavirus re-

lated diseases and comorbidities, we built a list of keywords for dis-

eases and symptoms to constrain the searching space, which

includes COVID-19, SARS, pneumonia, fever, fibrosis, diarrhea, co-

ronavirus, bronchitis, Ebola, influenza, and ZIKA. We extracted co-

occurrences between gene-disease, mutation-disease, and chemical-

disease using the following SPARQL query by replacing

“Biomedical_Entity” with “Gene,” “Mutation,” and “Chemical,”

respectively:

• PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-

ns#>
• PREFIX fhir: <http://hl7.org/fhir/>
• PREFIX pmc: <https://www.ncbi.nlm.nih.gov/pmc/articles#>
• SELECT distinct? pmc_id0? text0? pmc_id1? text1

(count(? text1) as? count) WHERE f
• ? pmc pmc: annotations
• [pmc: id? id0; pmc: text? text0; pmc: infons
• [pmc: type? type0; pmc: identifier? pmc_id0] ].
• FILTER ((? type0 ¼ Biomedical_Entity)).
• fselect * wheref
• ? pmc pmc: annotations
• [pmc: id? id1; pmc: text? text1; pmc: infons
• [pmc: type? type1; pmc: identifier? pmc_id1]].

• FILTER ((? type1¼"Disease") && (contains

(lcase(str(? text1)), “coronavirus”) k contains

(lcase(str(? text1)), “sars”) k contains (lca-

se(str(? text1)), “covid-19”) k contains (lca-

se(str(? text1)), “pneumonia”) k contains

(lcase(str(? text1)), “fever”) k contains (lcase(str(?

text1)), “fibrosis”) k contains (lcase(str(? text1)),

“diarrhea”) k contains (lcase(str(? text1)),

“bronchitis”) k contains (lcase(str(? text1)), “ebola”) k con-
tains (lcase(str(? text1)), “influenze”) k contains
(lcase(str(? text1)), “zika”))).

• g
• g
• gGroup by? pmc_id0? text0? pmc_id1? text1 Order

by DESC(? count)

The outputs of the query were composed of a list of pairwise bio-

medical entities with co-occurrence frequency. We then built a net-

work based on this list by adding a link between any 2 biomedical

entities if they have co-occurred at least once. As shown in Figure 1,

the co-occurrence network was represented by source-target pairs,

which were then used as input data for training node representa-

tions.

Network embeddings representation learning
We applied the node2vec model in this module. Node2vec imple-

ments a second-order random walk over the graph topological struc-

ture, denoting that 3 types of node are involved in a specific walk,

namely source entity, intermediate entity, and target entity. Given

any source entity as Es, target entity as Et, intermediate entity that

exists on the path between Es and Et as Ei, normalization constant

as Z, the distribution of entity Et with a fixed length of random

walk can be represented as:

P EtjEið Þ ¼
p Ei; Etð Þ

Z
if Ei;Etð Þ is an edge

0 otherwise

8<
: (1)

where p Ei; Etð Þ is a transition probability between entities Ei and

Et. Given the weight over edge Ei;Etð Þ as w Ei;Etð Þ ¼ 1, p Ei; Etð Þ
could be calculated as:

p Ei; Etð Þ ¼ a Es;Etð Þ �wðEi;EtÞ (2)

a Es;Etð Þ is a searching bias term developed in node2vec. Specifi-

cally, node2vec introduced 2 hyperparameters p and q to balance

between the breadth-first search and depth-first search searching

strategies for both local and global optimization. Given the shortest

distance between Es and Et as sd Es;Etð Þ, a for entities Es and Et is

computed based on p and q:

Figure 1. Study workflow.
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a Es;Etð Þ ¼

1

p
if sd Es;Etð Þ ¼ 0

1 if sd Es;Etð Þ ¼ 1

1

q
if sd Es;Etð Þ ¼ 2

8>>>>>><
>>>>>>:

After learning the sampled network data using random walk, we

then leveraged the Skip-Gram model to train entity representations

on the sampled data. For each entity node Es 2 E and all its sam-

pled neighbors NðEsÞ, the loss function for entity representation

learning could be described as:

max
f

X
Es 2 E

logPðNðEsÞ jf ðEsÞ Þ (4)

In the end, we normalized the prediction distribution by using a

nonlinearity (eg, softmax) and optimize this loss function using Sto-

chastic gradient descent.

Unsupervised clustering of network embeddings
To render the relatively high-dimensional embedding representa-

tions of network embeddings into a lower-dimensional space, we

utilized the t-distributed stochastic neighbor embedding (t-SNE) al-

gorithm22 to render the embeddings for all entity nodes into a 2-di-

mensional space. t-SNE does not perform clustering in and of itself,

but instead renders each node embedding into a ðx; yÞ coordinate.

As such, additional postprocessing is needed to regroup these points

into discrete clusters. The density-based spatial clustering of applica-

tions with noise (DBSCAN) algorithm23 was therefore used over

output generated by the t-SNE to further partition different entity

groups into distinct clusters. Given a parameter e that denotes how

close points should be to each other and another parameter k that

indicates the minimum number of points, the DBSCAN clustered

similar entity nodes together based on density according to the pre-

defined 2 parameters.

EXPERIMENTS

From CORD-19-on-FHIR, we extracted 49 696 co-occurred bio-

medical entities for 3626 coronavirus related diseases, 5741 genes,

524 mutations, and 6878 chemicals. Thus the derived co-occurrence

network contains 16 769 nodes and 49 696 edges in total.

For quantitative evaluation, we generated the optimal network

embeddings by performing a downstream link prediction task. Link

prediction is a procedure where the goal is to predict the relationship

between any 2 nodes and use the performance of a prediction to

evaluate the quality of the generated network embeddings. Edge

embeddings were used in this task in order to investigate the rela-

tionships between nodes leveraging distributional representations

provided by entity embeddings. For any given nodes Es, Et and their

corresponding entity representations f ðEsÞ and f ðEtÞ, edge embed-

dings were calculated using 4 operations, namely Hadamard, Aver-

age, L1 and L2 as shown in equations 5-8, respectively:

Hadamard Es; Etð Þ ¼ f ðEsÞ�f ðEtÞ (5)

Average Es; Etð Þ ¼ f ðEsÞ þ f ðEtÞ
2

(6)

L1 Es; Etð Þ ¼ jf ðEsÞ � f ðEtÞj (7)
L2 Es; Etð Þ ¼ jf ðEsÞ � f ðEtÞj2 (8)

We used 6 conventional classification algorithms to evaluate the

performance of different edge embeddings on link prediction task,

including decision tree (DT),24 logistic regression (LR),25 support

vector machine (SVM),26 random forest (RF),27 naı̈ve Bayes (NB),28

and multilayer perceptron (MLP).25 Specifically, The Boolean func-

tion L Es; Etð Þ was used to determine the existence of edge(s) be-

tween nodes Es and Et, where L Es; Etð Þ ¼ 1 indicates positive links

and L Es; Etð Þ ¼ 0 represents negative links. We fit features of edge

embeddings with labels provided by L Es; Etð Þ to train the model.

For positive examples, for each of the 4 networks, 60%, 10%, and

30% of all their edges were used for training, validation, and testing

purposes, respectively. For negative examples, an equal number of

node pairs were randomly sampled (with the same ratio among

training, validation, and testing sets as 60%, 10%, and 30%, respec-

tively).

For each classifier, we plotted the receiver-operating characteris-

tic (ROC) curve and computed the area under the ROC curve to re-

port link prediction performance. Moreover, as shown in

equations 9-12, we used precision, recall, F1 score, and average pre-

cision (AP) to quantify the link prediction performance among 4

edge embeddings.

Precision ¼ jfTrue Relationsg \ fPredicted Relationsgj
j Predicted Relations jgf (9)

Recall ¼ jfTrue Relationsg \ fPredicted Relationsgj
j True Relations jgf (10)

F1 score ¼ 2�precision�recall

precisionþ recall
(11)

AP ¼
X

n

ðRecalln � Recalln�1ÞPrecisionn (12)

For qualitative evaluation, we first visualized the network

embeddings clustering output and used the silhouette score to evalu-

ate clustering outputs. Silhouette score is adopted to calculate the

average distance to entities in the same cluster with the average dis-

tance to entities in other clusters. Given any entity node e in cluster

Ce, the internal mean distance is defined as:

m eð Þ ¼ 1

Ce � 1

X
t2Ce ; e 6¼t

dðe; tÞ (13)

where dðe; tÞ is the distance between node e and t in Ce. Similarly,

external mean distance is described as:

n eð Þ ¼ min
k6¼e

1

Ck

X
t2Ce

dðe; tÞ (14)

Overall, the silhouette score is calculated incorporating both in-

ternal and external mean distances:

s eð Þ ¼

1�m eð Þ
n eð Þ ; if m eð Þ < n eð Þ

0; if m eð Þ ¼ nðeÞ
nðeÞ
mðeÞ � 1; if m eð Þ > n eð Þ

8>>>>>><
>>>>>>:

(15)

For some selected coronavirus infectious diseases, we also lo-

cated the cluster they belonged to and checked the most similar enti-

ties within the same cluster using cosine similarity. Let Es denote

any given coronavirus infectious disease and Et denote any biomedi-

cal entity inferred by network embeddings, and f ðEsÞ and f ðEtÞ rep-

resent the embeddings for Es and Et respectively, cosine similarity

was calculated as shown in equation 16.

cosinesimilarity Es;Etð Þ ¼ f ðEsÞ � f ðEtÞ
k f ðEsÞ kk f ðEtÞ k

(16)
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RESULTS

Different embeddings were generated by using neighbor size of 10,

number of walks of 10, window size of 10, and dimensionality of

128. The optimal p and q were also tuned as 0.5 and 0.25 for each

training process, respectively. Detailed network embeddings and the

corresponding clustering information could be found online (https://

github.com/shenfc/COVID-19-network-embeddings). We have also

implemented a Web-based user-friendly tool for clustering visualiza-

tion and entity similarity checking (https://www.davidoniani.com/

covid-19-network).

Quantitative evaluation
As shown in Table 1, we presented the evaluation results of 4 differ-

ent edge embedding operations along with 6 different classification

algorithms. We found that, in general, the embeddings trained by

the Average operation achieved the best performance across all the

evaluation metrics. The optimal AP, ROC score, precision, and re-

call was reached when the RF was used, and the optimal F1 score

was achieved by using NB. L1 and L2 had roughly the same perfor-

mance, both peaking at ROC ¼ 0.95 and AP ¼ 0.96 with RF classi-

fier. Among all 4 approaches, Hadamard yielded the worst

performance, peaking at ROC ¼ 0.89 and AP ¼ 0.92 with RF classi-

fier. Across all 6 classification algorithms, the worst performance,

on the other hand, was shown by DT and MLP classifiers.

Regarding different classification algorithms, for the L1 embed-

dings embedding operation, RF and LR had similar performance,

with ROC_RF ¼ 0.96, AP_RF ¼ 0.97, and ROC_LR ¼ 0.96,

AP_LR ¼ 0.95. SVM, NB, and MLP were also not much different

from each other. DT had the worst performance, with ROC ¼ 0.80

and AP ¼ 0.75. Similarly, for L2, RF and LR had roughly the same

performance. SVM, NB, and MLP were also equally performant.

DT had the worst performance, with ROC ¼ 0.80 and AP ¼ 0.75.

For the Average operation, RF has outperformed all the other classi-

fication methods, with ROC ¼ 0.96 and AP ¼ 0.97. LR and NB had

similar performance. DT, SVM, and MLP were similar, yet all of

them were behind RF, LR, and NB. For Hadamard, RF showed the

best performance, with ROC ¼ 0.89 and AP ¼ 0.92. The rest of the

methods showed roughly the same performance, except for MLP,

which had the worst performance across all classification algorithms

Table 1. Evaluation results for the 4 edge embeddings operations along with 6 machine learning algorithms

Operations Algorithms Average Precision (AP) ROC score Precision Recall F1 score

Hadamard DT 0.79 0.82 0.84 0.82 0.81

LR 0.89 0.83 0.86 0.82 0.81

SVM 0.80 0.81 0.85 0.81 0.81

RF 0.92 0.89 0.87 0.86 0.86

NB 0.82 0.84 0.86 0.84 0.84

MLP 0.56 0.60 0.63 0.60 0.57

Average DT 0.81 0.84 0.85 0.84 0.84

LR 0.94 0.92 0.87 0.85 0.85

SVM 0.83 0.86 0.87 0.86 0.85

RF 0.97a 0.96a 0.91a 0.91a 0.90

NB 0.88 0.91 0.91a 0.91a 0.91a

MLP 0.78 0.84 0.84 0.84 0.84

L1 DT 0.75 0.80 0.80 0.80 0.80

LR 0.95 0.94 0.89 0.89 0.89

SVM 0.87 0.89 0.90 0.89 0.89

RF 0.96 0.95 0.89 0.88 0.88

NB 0.85 0.88 0.89 0.88 0.88

MLP 0.87 0.89 0.89 0.89 0.89

L2 DT 0.75 0.80 0.80 0.80 0.80

LR 0.94 0.93 0.89 0.88 0.88

SVM 0.87 0.88 0.90 0.88 0.88

RF 0.96 0.95 0.89 0.88 0.88

NB 0.85 0.87 0.88 0.87 0.87

MLP 0.85 0.87 0.88 0.87 0.87

DT: decision tree; LR: logistic regression; MLP: multilayer perceptron; NB: naı̈ve Bayes; RF: random forest; ROC: receiver-operating characteristic; SVM: sup-

port vector machine.
aHighest value.

Figure 2. Receiver-operating characteristic scores for the average operation

with 6 machine learning algorithms. DT: decision tree; LR: logistic regression;

MLP: multilayer perceptron; NB: naı̈ve Bayes; RF: random forest; SVM: sup-

port vector machine.
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as well as across every embedding generation approach, with ROC

¼ 0.60 and 0.56.

We finalized the network embeddings generated by the Average

operation as the optimal one and an ROC curve for the performance

across 6 classification algorithms is shown in Figure 2.

Qualitative evaluation
We clustered the network embeddings by selecting the optimal

hyperparameters e ¼ 1:5 and k ¼ 37 for the DBSCAN algorithm.

Sixty-three clusters were generated with a Silhouette score of 0.128.

We used the network embeddings generated through the optimal

Average operation to conduct a further qualitative evaluation. We

first visualized clusters for diseases and clusters for all the entities as

shown in Figure 3. In Figure 3A, we found that pneumonia, fever, fi-

brosis, and bronchitis appeared in each cluster, indicating that they

are common comorbidities among all types of coronavirus infectious

diseases. We also observed that COVID-19 co-occurred with coro-

navirus, SARS, Ebola, and ZIKA in different clusters respectively,

denoting that there exists tremendous overlap between these dis-

eases regarding underlying mechanisms. Clusters shown in

Figure 3B further illustrate how different genes, mutations, and

chemicals can link diseases with similar mechanisms. For example,

COVID-19 was grouped in cluster #6, which contains 606 biomedi-

cal entities in total, including infection of SARS, Ebola viruses,

rs180047 mutation, and carbohydrates chemical component. Based

on literature search, we found that rs180047 is strongly related to

TGF-b1, a master regulator for pulmonary fibrosis, which is a com-

mon comorbidity related to COVID-19, infection of SARS, and

Ebola viruses.29 In addition, carbohydrates-based diagnostic was re-

cently reported to be a potential new approach for testing COVID-

19,30 was also detected from cluster #6. The comprehensive infor-

mation for entities included in each cluster was illustrated online

(https://github.com/shenfc/COVID-19-network-embeddings).

We then selected 5 coronavirus infectious diseases and listed top

10 closest entities using cosine similarity as shown in Table 2.

COVID-19 was clustered in cluster #6, and the top 2 closest entities

in cluster #6 are VP35 and HD11 (both being genes). VP35 is a vi-

rus protein of the other highly infectious disease Ebola.31 HD11,

also known as Homeobox protein, is known for regulating infec-

tious diseases such as Avian infectious bronchitis virus (IBV)32 that

is in the coronavirus family. Pulmonary coronavirus infection was

grouped in cluster #1 and has the closest associations with gene PTP

(protein tyrosine phosphatase), which has been mentioned in SARS-

CoV replication inhibition studies.33 In case of SARS-CoV–infected

human airway epithelia cell cultures, it is easy to notice that the en-

tity is directly linked to the coronavirus infection.34 As for SARS-

CoV infection damages lung that listed in cluster #2, IL-1-alpha (in-

terleukin 1Alpha) also known as IL-1a, has the closest association

with SARS-CoV, and evidence could be found in a research study.35

In particular, IL-1a is a proinflammatory cytokine that shows in-

crease when infected by SARS-CoV. Sucralfate is a chemical com-

pound that also holds close association with SARS-CoV, which has

been studied as a potentially effective means against early-onset

ventilator-associated pneumonia.36 Coronavirus upper respiratory

infection was found in cluster #23, and pleuropneumoniae (disease)

and plasmin (gene) are most 2 similar entities. Pleuropneumoniae is

a pneumonia complicated with pleurisy, which has been linked to

porcine upper respiratory tract37 and plasminogen (PLG) (the zymo-

gen of plasmin) has also been proved to be related with coronavirus

upper respiratory infection in research studies.38 Coronavirus-

infected pneumonia was detected in cluster #10. The top 2 closest

diseases are respiratory syncytial viral infection and pegylated inter-

feron-alpha, which could be proved by reviewing research studies in

Zou and Zhu39 and Haagmans et al.40

DISCUSSION

In this study, we used 11 keywords to query CORD-19-on-FHIR for

constructing the COVID-19–centered coronavirus co-occurrence

network. As research studies of COVID-19 published on a daily ba-

sis, we will keep watching the new results and adding more signifi-

cant diseases and comorbidities into the keyword list to provide

timely update for the co-occurrence network.

PMID information was not incorporated as an attribute into the

co-occurrence network, which creates difficulties on the capability

to trace each biomedical entity back to the original literature. In the

future, we will add PMID list for each entity. On the one hand, it

will help our evaluation on detecting if the closely associated terms

are from the same article or different publications. On the other

hand, it will provide more evidence to scientists and clinical investi-

Figure 3. Clustering visualization for (A) diseases and (B) all the biomedical entities. COVID-19 (coronavirus disease 2019) is represented in red, SARS (severe

acute respiratory syndrome) is represented in black, coronavirus is represented in green, pneumonia is represented in blue, fever is represented in cyan, fibrosis

is represented in yellow, diarrhea is represented in magenta, bronchitis is represented in olive drab, Ebola is represented in pink, influenza is represented in dark

orchid, ZIKA is represented in khaki, all the genes are represented in purple, all the mutations are represented in silver, and all the chemicals are represented in

salmon.
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gators for assisting their research studies on COVID-19 in an effi-

cient manner.

We didn’t consider the co-occurred frequency for the pairs of

biomedical entities while training the network embeddings. Instead

of treating each edge equally, in the future, we will add weights over

edges using frequency in order to better represent associations in the

network and provide more accurate edge embeddings to better

quantify power of associations among biomedical entities.

In unsupervised learning approach, there is always a balance be-

tween the number of clusters and the silhouette score. In most cases,

the silhouette score tends to be higher if the number of cluster is

small.41 In this study, we used a heuristic way to determine silhou-

ette score and the number of clusters for making clear separations

over the biomedical entities. In the future, we sought to use our

previously developed hierarchical clustering optimization algo-

rithms to make dynamic balance between the optimal silhouette

Table 2. Top 10 intracluster closest biomedical entities for 5 selected coronavirus infectious diseases

Coronavirus infectious diseases Top 10 closest entities Cosine similarity score

COVID-19 (cluster #6) VP35 (Gene) 0.9777

HD11 (Gene) 0.9774

Coronavirus infection process (Disease) 0.9700

Fibroblast growth factor (FGF)-2 (Gene) 0.9655

Acute respiratory infection illness (Disease) 0.9596

PIGS (Gene) 0.9576

TGF alpha (Gene) 0.9571

SFPQ (Gene) 0.9561

Tumor necrosis factor (TNF) (Gene) 0.9549

Praziquantel (Chemical) 0.9537

Pulmonary coronavirus infection (cluster #1) PTP (Gene) 0.9754

SARS-CoV–infected human airway epithelia cell cultures (Disease) 0.9699

“5’-tgg gat tca aca” (Chemical) 0.9672

Trachea nasal respiratory epithelial cells and llamas (lama glama) (Disease) 0.9658

Suppressor of cytokine signaling 3 (Gene) 0.9620

KAT (Gene) 0.9604

CD32 (Gene) 0.9573

Maternal SARS infection (Disease) 0.9553

Respiratory syndrome coronavirus (MERS-CoV) infections (Disease) 0.9547

S27 (Gene) 0.9546

SARS-COV infection damages lung (cluster #2) IL-1a (Gene) 0.9560

Sucralfate prn (Chemical) 0.9589

Acute respiratory syndrome-cov infection (Disease) 0.9555

IL-5– and IL-13–producing ilc-iis (Gene) 0.9487

HAP1 (Gene) 0.9342

FSK (Chemical) 0.9337

Low fever (Disease) 0.9328

HIV and Ebola virus infection (Disease) 0.9327

YKL-40 (Gene) 0.9288

ETF (Gene) 0.9280

Coronavirus upper respiratory infection (cluster #23) Viruses Actinobacillus pleuropneumoniae (Disease) 0.9890

Plasmin (Gene) 0.9719

JAM-1 (Gene) 0.9654

TNF receptor–associated factor 6 (Gene) 0.9648

GPC3 (Gene) 0.9613

Renin (Gene) 0.9582

ZO-1 (Gene) 0.9563

Cathepsin G (Gene) 0.9556

rs5743313 (Mutation) 0.9547

Alpha1 antitrypsin (Gene) 0.9544

Coronavirus-infected pneumonia (cluster #10) Respiratory syncytial viral infection (Disease) 0.9923

Pegylated interferon-alpha (Chemical) 0.9891

IFITM6 (Gene) 0.9872

Feline b (Chemical) 0.9858

E119V (Mutation) 0.9854

Epac2 (Gene) 0.9850

GFTP2 (Gene) 0.9849

Hepatitis coronavirus infection (Disease) 0.9843

Ouabain (Chemical) 0.9797

LY6G (Gene) 0.9786

Cluster ID and the type of entities are marked in parentheses.
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score and suitable cluster density.42–44 Moreover, after checking

top similar entities for 5 selected coronavirus infectious diseases,

we observed that applying clustering over the network embeddings

could detect both explicit and implicit associations. It is easy to

check explicit links, as most of them might be documented in exist-

ing studies. But for implicit associations, although they might hold

huge potential on new discoveries, in order to validate their cor-

rectness, we will invite a clinical investigator from Mayo Clinic Di-

vision of Pulmonary and Critical Care Medicine for manual

evaluation.

CONCLUSION

This study has explored the construction of co-occurrence network

embeddings for COVID-19 and related coronavirus infectious dis-

eases. We have tested different edge embeddings operations along

with different machine learning algorithms to optimize the final net-

work embeddings and developed unsupervised clustering algorithms

to deep dive into specific COVID-19–related associations. Results

indicated that the co-occurrence network embeddings were able to

perform link prediction task well and detect both explicit and im-

plicit associations for COVID-19, demonstrating its potential usage

for discovering new disease management and treatment plan for

COVID-19. Detailed implementations and data sources could be

found online (https://github.com/shenfc/COVID-19-network-

embeddings). A Web-based user-friendly tool for clustering visuali-

zation and entity similarity check is available online (https://www.

davidoniani.com/covid-19-network).
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